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We study the phenomenon of wave-packet revivals of Bloch electrons and explore how to control them by
a magnetic field for quantum-information transfer. It is shown that the single electron system can be modulated
into a linear dispersion regime by the “quantized” flux and then an electronic wave packet with the components
localized in this regime can be transferred without spreading. This feature can be utilized to perform the
high-fidelity transfer of quantum information encoded in the polarization of the spin. Beyond the linear
approximation, the relocalization and self-interference occur as the interesting phenomena of quantum
coherence.
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I. INTRODUCTION

Most recently, many theoretical investigations about
quantum-information transfer �QIT� based on quantum spin
systems are carried out in order to implement scalable quan-
tum computation �1–13�. Here, the quantum spin system usu-
ally behaves as a quantum data bus to integrate many qubits.
These investigations mainly aim at transferring the quantum
state through a solid-state data bus with minimal spatial and
dynamical control over the on-chip interactions between qu-
bits. In this paper we will pay attention to a fundamental
aspect of QIT and generally study the wave-packet spreading
and revival of Bloch electrons in one-dimensional lattice sys-
tems.

For the problems of wave-packet evolution, we can cast
back for much earlier investigations by Schrödinger and oth-
ers about the quantum-mechanical descriptions of localiza-
tion of macroscopic objects �14�. They demonstrated that a
class of wave packets �now we call them coherent and
squeezed states� of the harmonic oscillator can keep their
shapes during propagation and their centers of mass �CM�
follow a classical trajectory. As a semiclassical solution of
the Schrödinger equation, a superposition of the much higher
excitation states with an almost-homogeneous spectrum form
a coherent-state-type wave packet in the Coulomb potential,
which can show the phenomena of nonspreading evolution
and self-interference on classical orbits �15�. This prediction
has been demonstrated in the experiment involving the laser-
induced excitation of atomic Rydberg wave packets �16,17�.

We can refer such nonspreading wave-packet evolution
with a complete autocorrelation �14� as a perfect QIT if we
could encode the quantum information in the spin polariza-
tion of an electron. The investigation in this paper is moti-
vated by our recent explorations about the QIT based on the
quantum system possessing a commensurate structure of en-
ergy spectrum matched with a symmetry �SMS�, which en-

sures a perfect QIT both in one- and higher-dimensional
cases �3,18�. Actually the almost-homogeneous spectrum for
the coherent-state-type wave packet just satisfies the condi-
tion of SMS. In particular the nonspreading transfer of a
zero-momentum wave packet is attractive for the task of
quantum information transmission since a static superposi-
tion can behave as a quantum storage. This is very similar to
the scheme of the quantum storage of a photon based on an
atomic ensemble where two stored photonic wave packets
localized in the same position with different polarizations
can function to decode the information of a qubit �19,20�.

This paper will focus on a realistic, but simplest, Bloch
electron system �see Fig. 1� in a magnetic field where the
on-site Coulomb interactions are ignored. In this sense the
spin polarization is always conserved during the time evolu-
tion of an arbitrary state and then quantum information en-
coded in the spin polarization of an electron can be well
protected. Thus the locality of electron wave packet becomes
a crucial element to maximize the fidelity of QIT. We show
that, by the “quantized” flux threading the ring lattice, the
effective dispersion relation of a Bloch electron can be
modulated into a liner dispersion regime that possesses SMS
structure, and then an electronic wave packet with the com-
ponents localized in this linear regime can be transferred
without changes of its shape. This feature can be utilized to
perform the high-fidelity QIT encoded in the polarization of
the spin. The phenomena of wave packet revivals and self-
interference can also be demonstrated for the cases beyond
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FIG. 1. �Color online� The schematic illustration for the time

evolution of a wave packet in a ring threaded by a magnetic field.
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the linear dispersion regime. These interesting quantum co-
herence effects may suggest a feasible protocol to implement
the perfect QIT of Bloch electrons manipulated by the exter-
nal magnetic field.

II. MODEL OF FLUX-CONTROLLED BLOCH ELECTRON
IN A RING AND ITS LINEARIZATION

In this section, we present the Bloch electron model under
consideration, a simple tight-binding model in an external
magnetic field. Here, the Coulomb interaction is ignored for
simplicity. We restrict our attention to the influence of the
applied field on the propagation of the Bloch electrons.

Consider a ring lattice with N sites threaded by a magnetic
field illustrated schematically in Fig. 1. The Hamiltonian of
the corresponding tight-binding model,

H��� = − J�
j,�

�ei2��/Naj,�
† aj+1,� + H . c . � , �1�

depends on the magnetic flux � through the ring in the unit
of flux quantum �0=h /e. Here, aj,�

† is the creation operator
of Bloch electron at the jth site with spin �= ↑ ,↓. The flux �
does not exert force on the Bloch electrons, but can change
the local phase of its wave function due to the Aharanov-
Bohm �AB� effect. Note that the interaction between the field
and electrons is independent of the intrinsic degree of free-
dom spin. This will be crucial to employ such kind of setup
to transfer quantum information encoded in the polarization
of the spin. Because of the AB effect, the role of the mag-
netic flux cannot be removed trivially.

Now we consider the evolution of the GWP,

����k0,NA�� =
1

��1
�

j

e��2/2��j − NA�2
eik0j�j�� �2�

with the momentum k0, where �j�=aj,�
† �0�, the half width of

the wave packet,

2�ln 2/� 	 N , �3�

and the normalization factor �1=� jexp�−�2�j−NA�2�. The
limitation for the width of the GWP ensures the locality of
the state and avoids the overlap between the head and the tail
of the wave packet. We will see that as time evolves, the
head and tail do meet in certain situations and the interfer-
ence phenomenon occurs.

In the following, we will show that the appropriate mag-
netic flux can ensure the transfer of the wave packet without
spreading. The well-known Bloch dispersion relation


k = − 2J cos	k +
2��

N

 , �4�

where

k =
2�l

N
�l = 1,…,N� , �5�

can be obtained through the Fourier transformation

ak,�
† =

1
�N

�
j

eikjaj,�
† , �6�

which can be employed to diagonalize H��� as

H��� = �
k,�


knk,�, �7�

with the number operator nk,�=ak,�
† ak,�.

It is observed that, when we tune the flux � into each
discrete value

� = �n � 	1

2
n +

1

4

N , �8�

for n=0, 1, 2, …, there is a linear dispersion regime with
momenta k around zero, i.e., 
k�k. For the wave packets as
a superposition of those eigenstates with momenta just in this
region, the effective Hamiltonian becomes

Hef f = vp , �9�

which is of the “ultrarelativistic” type with the effective
“light velocity” v= �−1�n2J and

p = �
k,�

kak,�
† ak,� �10�

is the Bloch momentum operator. Obviously, this can directly
result in a nonspreading wave-packet transmission in the lin-
ear dispersion regime. Figure 3 illustrates how the “quan-
tized” magnetic flux �=�n where n=0, 1, 2, …, can speed
up the zero-momentum Gaussian wave packet �GWP�
���0,NA�� centered at site NA with the width 1/�. The details
of it will be given in the next section.

Actually, with the linearized Hamiltonian Hef f, the time
evolutions of some states can be described as a spatial trans-
lation by the evolution operator

U�t� = exp�− ipvt� � T�vt� , �11�

with a displacement x=vt. Here the the translational operator
is defined by

T�x0��j�� = �j + x0�� �12�

for arbitrary �j��.
For small �, ���0,NA��� is a GWP of width � around k

=0 in k space, and then the wave function at instance t is a
translational GWP,

���t��� = T�vt����0,NA��� = ei���„0,Nc�t�…��, �13�

which is centered at Nc�t�=NA+vt. The overall phase factor
ei� has no effect on the final result. It is seen that the wave
packet moves with velocity v. Since all the wave functions
satisfy the periodic boundary condition

���0,N + j��� = ���0, j���, �14�

we have
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��j���t��� = ��j − N���t��� for j � N ,

��j���t��� = ��j + N���t��� for j 
 1.
� �15�

Obviously, the wave packet moves along the ring keeping the
initial shape without any spreading as illustrated in Fig. 2
schematically.

III. NONSPREADING WAVE-PACKET EVOLUTION AND
SOLID-STATE FLYING QUBIT

To analyze the cyclic motion of Bloch electrons, the nu-
merical simulation is performed for a zero-momentum GWP
with �=0.1 in the system of N=100 and �=N /4=25. The
simulated time evolution of the wave packet is plotted in Fig.
3. For the cases with different values of � and �, the auto-
correlation functions

�A�t�� = �
�

�����t���0,NA���� , �16�

which can be used to describe the properties of the electron
propagation, are investigated numerically. The results for �
=20, 25, 33 and �=0.1, 0.3 are plotted in Figs. 3�a� and 3�b�,
which show that a zero-momentum GWP with small � can
be transferred without spreading when � are around each �n.

Meanwhile, the flux threading the ring can control the
shape and destination of the final wave packet. It is observed
from the above analysis that the flux plays an important role
for manipulating the nonspreading wave packet. Actually,
such a phenomenon can also be understood by the following
transformation of the basis vectors of Hilbert space. The ex-
istence of the flux is equivalent to adding a speed to boost
the zero-momentum wave packet since the magnetic flux
provides an extra phase to the basis in the position space, i.e.,

�j�� → ������� = e2�i�j/N�j��. �17�

In other words, a GWP with small � and momentum k0
=��2n+1� /2 can be transferred along the ring without
spreading approximately. We will also demonstrate this in
the last section about open chain systems.

In the above studies, the spin state of the Bloch electron is
a conserved quantity that cannot be influenced during the
propagation no matter how the spatial shape of the wave

function changes. From an abstract point of view, the spatial
properties of the carrying particle, i.e., the Bloch electron,
seems to be irrelevant since only amplitudes and relative
phases are used to encode quantum information. However,
when the propagation of the Bloch electron can be exploited
to transfer the information of qubit, the nonspreading propa-
gation of the carrier is very crucial for the expected high-
fidelity of quantum state transfer from one location to an-
other.

With the above consideration we can imagine the elec-
tronic wave packets with spin polarization as an analog of
photon “flying qubit,” the type-II �polarized� photon qubit
where the quantum information was encoded in its two po-
larization states. We define the solid-state flying qubit, at a
single location A in a quantum wire, as the two Bloch elec-
tronic wave packets �1�A= �1��NA� and �0�A= �0��NA� be en-
coded as

�1��NA� =
1

��1
�

j

e−��2/2��j − NA�2
ei��/2�jaj,↑

† �0� ,

�0��NA� =
1

��1
�

j

e−��2/2��j − NA�2
ei��/2�jaj,↓

† �0� . �18�

Because of the intrinsic linearity of the Schrödinger equa-
tion, it is self-consistent to encode an arbitrary state

FIG. 2. �Color online� Numerical simulation of the time evolu-
tion of a zero-momentum Gaussian wave packet �GWP� with �
=0.1 in position-space i of the 100-site ring with �=N /4. The time
t is in the unit of 100/J.

FIG. 3. Numerical simulation of the autocorrelation functions
�A�t�� of the zero-momentum GWPs �or k0=2�� /N for the system
without external field� with �=0.1 �a, c� and �=0.3 �b, d� in the
100-site ring �a, b� and chain �c, d� with �=20, 25, and 33 �or �
=0 but the GWP with corresponding speed�. It shows that for small
� and 2�� /N=� /2 the GWP can be transferred without spreading.
The unit of time t is 1 /J.
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��� = cos	�

2

�1�A + sin	�

2

ei��0�A �19�

as

����,���A =
1

��1
�

j

e−��2/2��j − NA�2
ei��/2�jaj.�

† �0� �20�

and then it is transferred to another place B with a very high
fidelity due to the feature of nonspreading propagation of
Bloch electron.

IV. SELF-INTERFERENCE AND REVIVAL OF SPREADING
WAVE PACKET

We now turn our attention to the problem of nonspreading
propagation of Bloch electronic wave packets beyond the
linear dispersion regime. We consider a zero-momentum
GWP in an external field with � far from �n �or a GWP with
small momentum k0 but �=0�. Because of the nonlinear dis-
persion relation, such kind of wave packet spreads while its
center is moving. It is clear that, when the head of the wave
packet catches up with its tail, quantum interference phe-
nomena set in.

In order to demonstrate this phenomenon, numerical
simulation is performed for a GWP with �=0.3 and k0
=0.05� �or a zero-momentum GWP with the external mag-
netic flux �=k0N /2�� in the 100-site ring system. The time
evolution of the GWP obtained by numerical simulation is
plotted in Fig. 4�a�. The interference fringe appears when the

GWP spreads, which demonstrates the self-interference phe-
nomenon. The profile of the fringe can be estimated analyti-
cally as follows.

Consider a GWP ���k0 ,NA�� at t=0 in the coordinate
space. When �=0, the Hamiltonian H�0� can be approxi-
mately written as

Hef f = − J�
k,�


kak,�
† ak,� �21�

for 
k��2−k2�. On the other hand, ���k0 ,NA��� is also a
GWP around k0 in the k space. Then for GWP with small k0
it will evolve into a GWP,

���t��� = A2�
j

ei��j,t�e−���2/2��j − Nc�2
�j�� �22�

with the spreading width

�� = �/�1 + 4�4J2t2, �23�

centered at Nc=NA+2Jk0t, where A2 is the normalization fac-
tor, and

��j,t� = k0j + 2Jt − Jk0
2t + Jt�j − Nc�2�2��2 �24�

is the time-dependent phase, i.e., the momentum of the mov-
ing GWP. Such kind of wave packet spreads while its center
is still moving. Since all the wave functions satisfy the peri-
odic boundary condition �N+ j�= �j�, at a certain instant t,
there is an overlap between the head and tail parts of the
wave packet and then the quantum interference phenomenon
occurs. In other words, when the GWP spreads over the cir-
cumference of the ring, we need to consider the virtual su-
perposition of the “head” and “tail.”

Since the widely spreading GWP can wind the ring many
times, the virtual superposition can be considered as the
renormalized wave function

��j��vs�t�� � =
1

��vs
��j ± lN���t���, �25�

where

�vs = �
j

���j��vs�t����2

is a normalization factor. For small t=��, one can only take
the summation over l=0,1 as an approximation, which re-
sults in spatial interference fringe

���j��vs���� � ��2 =
1

��vs

���j���������2

� �1 + c2 + 2c cos�Kj + �0�� �26�

with the effective wave vector

K = 2NJ�2��2�� �27�

and initial phase

�0 = K�N/2 − Nc� + k0N . �28�

Here, ���j ���������2 and

FIG. 4. �Color online� The self-interference �a� and quantum
revival �c� phenomena of the GWPs obtained by numerical simula-
tion. �b� Plots of the self-interference fringe for 100-site ring ob-
tained by numerical simulation �solid line� and theoretical analysis
�circle� at t0=��=90/J. �d� Plots of the autocorrelation functions,
�A�t��, for the zero-momentum GWPs with �=0.1 in 100-site ring
�circle� and chain �solid line� systems. The unit of time t is 100/J in
�a�, �c�, and 1000/J in �d�.
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c = exp�− ��2N�j − Nc + N/2�� �29�

only provide the modulation to the fringe. The spatial period

� = �2�

K
� = � �

NJ�2��2��
� �30�

characterizes the interference fringe.
In Fig. 4�b�, the interference fringe at ��=90/J obtained

by numerical simulation and the analytical approximate re-
sult are plotted. It shows that the theoretical analysis is in
agreement with the result of numerical simulation.

Now we consider the special case of zero-momentum
GWPs moving along a lattice without magnetic field. In this
case, although the dispersion relation for such kind of GWPs
is nonlinear, the quantum revival is still possible since the k2

dispersion also meets the condition of SMS �3,18�. To dem-
onstrate this numerical simulation for the time evolution of a
GWP with �=0.1, a ring of 100 sites is performed and the
density probability of the GWP as the function of the posi-
tion i and time t �in the unit of 100/J� are plotted in Fig. 4�c�.
It shows that revival occurs after the GWP spreads. Accord-
ing to the theory of SMS, the revival time is �=2� /�E in the
general cases, where �E is the greatest common divisor of
energy-level spacing between any two eigenstates. Then in
the general case, we have

� =
2

�J
�N + 1�2 �31�

for the chain while �=N2 / �2�J� for the ring. Now we con-
sider a special case, in which the initial zero-momentum
GWP is centered at the middle of the chain. Obviously, the
parity of the GWP with respect to the reflection symmetry is
even. Thus expansion coefficients of the GWP for all the
eigenstates with odd parity are all zero, which means that the
effective levels driving the GWP are only the half set. Thus
this fact results in a particular revival time

� =
1

4�J
�N + 1�2. �32�

To verify the above analysis, the autocorrelation functions
are also calculated for the initial zero-momentum GWPs
with �=0.1 and NA= �N+1� /2 in the ring of 100 sites and
chain. The results are plotted in Fig. 4�d�, which shows that
the revival time is well in agreement with the analytical es-
timation.

V. WAVE PACKET DYNAMICS IN THE OPEN CHAIN

In this section, we consider the dynamics of a GWP in an
open chain in the absence of external field. The single-
particle spectrum is


k = − v cos k �33�

where v=2J, and the corresponding eigenvectors are

��k,�� = ak,�
† �0� = �

j=1

N � 2

N + 1
sin�kj��j��, �34�

where

k =
�l

N + 1
�l = 1,…,N� �35�

can be regarded as a pseudomomentum. Nevertheless, The
GWP ����k0 ,NA�� located at NA with momentum k0�� /2 at
t=0 will also evolve into

��k,��t�� = ��k,��k0,NA + vt�� . �36�

Since all the eigenvectors satisfy the open boundary condi-
tion, we have

��k,��k0,NA + vt�� = − ��k,��k0,2N + 2 − NA − vt�� �37�

for NA+vt�N. It indicates that the wave packet reflects at
the boundaries with “�-phase shift.” Then the wave packet
bounds back and forth along the chain as illustrated in Fig.
5�a� schematically.

Similarly, under the transformation

eik0j�j�� → �j��, �38�

the propagation of a moving GWP with k0=2�� /N is
equivalent to that of a zero-momentum GWP in the system
with extra phase exp�i2�� /N� on the hopping term. Numeri-
cal simulation for the time evolution of a GWP with �=0.1
and k0=� /2 in a chain of N=100 is plotted in Fig. 5�b�. The
autocorrelation functions �A�t�� are also calculated for �
=0.1, 0.3 and k0=2�� /N, �=20, 25, 33, which are plotted
in Figs. 3�c� and 3�d�. It shows that a GWP with small � and
momentum k0=��2n+1� /2 can be transferred along the
chain without spreading approximately. From the autocorre-
lation functions for rings and chains, it is easy to find that the
period of the revivals of GWP in a ring is approximately the
half of that in a chain. This is in agreement with the analyti-
cal results that the period is �= �N+1� /J for the chain and

FIG. 5. �Color online� �a� The schematic illustration for the time
evolution of a GWP in a chain. The � shift occurs at the boundary.
�b� Numerical simulation of the time evolution of a moving GWP
with �=0.1 and k0=2�� /N=� /2 in the 100-site chain. The unit of
time t is 100/J.
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�=N / �2J� for the ring. Comparing the revival times for
GWPs with linear and nonlinear dispersion relation, we have
the conclusion that the former is suitable for implementing
the fast QIT in the solid.

VI. SUMMARY

In summary, the quantum transmission of a Bloch electron
in the one-dimensional lattice is studied by theoretical analy-
sis and numerical simulation. It is found that a zero-
momentum GWP can be transferred without spreading ap-
proximately if an optimal magnetic flux is applied. This
feature can be employed to perform the high-fidelity QIT
encoded in the polarization of the Bloch electrons. Mean-

while, beyond such optimal range of the field, the time evo-
lution of the GWP is also investigated in the nonlinear dis-
persion regime. The interesting quantum coherence effects
found in this paper, such as the wave packet revivals and
self-interference, can motivate a feasible protocol based on
the practical systems to implement the perfect QIT of Bloch
electrons controlled by the external magnetic field.
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