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We study the quantum-state transfer �QST� of a class of tight-bonding Bloch electron systems with mirror
symmetry by considering the mode entanglement. Some rigorous results are obtained to reveal the intrinsic
relationship between the fidelity of QST and the mirror mode concurrence �MMC�, which is defined to measure
the mode entanglement with a certain spatial symmetry and is just the overlap of a proper wave function with
its mirror image. A complementarity is discovered as the maximum fidelity is accompanied by a minimum of
the MMC. At the instant that is just half of the characteristic time required to accomplish a perfect QST, the
MMC can reach its maximum value of 1. A large class of perfect QST models with a certain spectral structure
is discovered to support our analytical results.
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I. INTRODUCTION

Quantum entanglement is a fascinating feature of quan-
tum theory of many-body systems �1�. The concurrence �2�,
as a widely used measure of pairwise entanglement defined
for spin–1/2 systems, has been intensively investigated.
Through various concurrences defined by different authors,
people have explored the relations between entanglement
and some physical observables such as energy and momen-
tum, etc. �3,4�, as well as the relations between entanglement
and some physical phenomena, such as quantum correlation
�5� and quantum phase transitions, etc. �4,6–8�.

On the other hand, people have proposed many protocols
for quantum-state transfer �QST� recently �9–13�. In these
schemes based on quantum spin systems, almost without any
spatial or dynamical control over the interactions among qu-
bits, the quantum state can be transferred with high fidelity
through a quantum channel, or quantum data bus, which is
necessary for scalable quantum computations based on real-
istic silicon devices. The physical process of QST through a
quantum spin system can be understood as a dynamical per-
mutation or translation preserving the initial shape of a quan-
tum state, which can be realized as a specific evolution of the
total quantum spin system from an initial wave function lo-
calized around a single site of the lattice to a distant one. The
basic feature of QST is characterized by fidelity, which is
usually the overlap of the identical image of an initial state
with its transferred counterpart.

This paper will be devoted to understanding the intrinsic
relation between quantum entanglement and QST for the en-
gineered quantum spin chains, or quantitatively, between
concurrence and fidelity. Some rigorous results are obtained
to reveal the essential relationship between these two fasci-
nating issues for the tight-bonding Bloch electrons. Actually,
the QST from one location to another can be considered as
perfect if the fidelity can reach its maximum value 1 at some

instants. Literally, the perfect QST is a dynamic process
starting from an initially factorized state �product state� to a
finally factorized state through a middle process with the
superposition of factorized states. Since a superposition of
single-particle states of Bloch electrons can be understood as
a mode entanglement �14�, the studies of QST can be natu-
rally referred to the various phenomena of quantum en-
tanglement.

Motivated by arguments about the entanglement concur-
rence and the quantum correlations �2,14�, we first define the
mirror mode concurrence �MMC� C�t� to characterize the
mode entanglement of a wave packet in Bloch electron sys-
tems with mirror symmetry. It will be proved that the MMC
is no less than the overlap of the wave packet at time t with
its mirror image. By quantitatively comparing the MMC with
the time-dependent fidelity F�t� of QST, a complementary
relation is discovered as the increase of F�t� is accompanied
by a decrease of C�t� �and vice versa�. In particular, at the
instant � /2, where � is the characteristic time to accomplish
a perfect QST with F���=1, the MMC can reach its maxi-
mum

C��/2� = max�C�t�� = 1. �1�

An engineered Bloch electron model with a certain spectrum
structure, which admits perfect QST, is discovered and used
to demonstrate this complementary relation through numeri-
cal simulations.

II. ONE-DIMENSIONAL BLOCH ELECTRON SYSTEM
WITH MIRROR SYMMETRY

We consider a one-dimensional Bloch electron system in
an engineered crystal lattice of N sites with mirror symmetry
with respect to the center of the lattice. The model Hamil-
tonian with tight-bonding approximation is written as

H = �
j=1

N−1

Jjaj
†aj+1 + H.c. �2�

in terms of the fermion creation �annihilation� operator
aj

†�aj�, where the site-dependent coupling constants Jj are
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real. The single-particle space is spanned by N basis vectors

�1� = �1,0,0,…,0,0� ,

�2� = �0,1,0,…,0,0� ,

]

�N� = �0,0,0,…,0,1�

�3�

where �n1 ,n2 ,… ,nN� �nj =0,1� denotes the Fock state of fer-
mion systems. Then the reflection operator R is defined as
R�j�= �N+1− j�. Obviously, the mirror symmetry of �R ,H�
=0 means that Jj =JN−j.

We describe the localized electron state around the lth site
as a superposition ��l�=� jcj�j� with the summation over the
small domain containing the site l. This assumption means
that ��l� is a wave packet around the site l. If l� denotes
another site far from the site l, we can approximately assume
the vanishing overlap ��l ��l��	0 for two wave packets ��l�
and ��l��. With this assumption the perfect QST is described
as the dynamic process that the initial state ��l� can evolve
exactly into its mirror image. Mathematically, the time evo-
lution operator U�t�=exp�−iHt� becomes the reflection op-
erator R at the instant �, i.e., U���=R. We define the fidelity
as

Fj�t� = 
�R� j�U�t��� j�
 = 
�� j�R†U�t��� j�
 . �4�

A perfect QST can be depicted by the maximized fidelity
Fj���=1.

Now we can intuitively recognize that QST phenomenon
is associated with the mode entanglement. In the terminology
of mode entanglement, the single-electron state

�E� = ��1� + ��N� � ��1,0,…,0� + ��0,0,…,1� �5�

can be regarded as an entangled state if the single fermion at
the first site and Nth site can be probed in principle �14�. In
this sense ��l� can be viewed as an N-component entangle-
ment. The perfect QST from �1� to �N� through the middle
state ���t��=U�t��1� can be understood as a dynamic process
starts from a localized �unentangled� state �1� to another lo-
calized state �N� through the entangled state ���t��.

III. MIRROR MODE CONCURRENCE AS THE
FINGERPRINT OF PERFECT QST

Actually a QST is a process, during which mode entangle-
ment is generated first and then destroyed. To quantitatively
characterize this dynamic feature, we define the mirror mode
concurrence

C�t� = �
j=1

N/2

Cj,N+1−j �6�

with respect to a pure state, evolved from a localized initial
wave packet ���t��=U�t����0��. Here each term Cj,N+1−j in
the summation concerns two separated sites, the site j and its
mirror image l=N+1− j, and is defined by the pairwise mode
concurrence �14�

Cjl = 2 max�0, �Zjl� − �Xjl
+Xjl

−� , �7�

constructed in terms of the correlation functions

Zjl = �aj
†al�, Xjl

+ = �n̂jn̂l� , �8�

and

Xjl
− = ��1 − n̂j��1 − n̂l�� , �9�

where the average � � is defined with respect to the pure state
���t��.

The physical significance is twofold and explicitly reveals
the close relationship between the mode entanglement and
the dispersion of the wave packet in time evolution. First we
notice that Zjl and Xjl

− are the nonzero elements of the two-
mode reduced density matrix �14�

� jl = trN−2����t�����t��� =

Xjl

+

Y jl
+ Zjl

*

Zjl Y jl
−

Xjl
−
� �10�

for a system conserving total particle number, where trN−2
means tracing over the variables except for the two on the
sites j and l=N+1− j. In the single-particle subspace we
have Xjl

+ =0 and thus

C�t� = �
j=1

N

�Zj,N+1−j� . �11�

It is obvious that MMC is a generalization of the usual en-
tanglement measure—concurrence—and thus characterizes
the quantum entanglement in some sense.

Second, the MMC defined above has a geometric inter-
pretation for the dynamic dispersion of the wave packet. We
rewrite the MMC as

C�t� = �
j=1

N

���j,t�����N + 1 − j,t�� �12�

where ��j , t�= �j���t��. It is easy to show that

C�t� � ��
j=1

N

���t��j��j�R���t��� = 
���t��R���t��
 �13�

where we have used RR†=R†R=1. The above equation
clearly implies that C�t� is no less than the overlap integral of
the state ���t�� with its mirror image. In particular, for a large
class of states ���t��=� j=1

N cj�j� listed in two situations as fol-
lows, C�t� is exactly equal to the overlap integral. �i� The
electronic wave function is completely localized in a finite
domain D= �1,N /2� with no overlap with its mirror image
�N /2 ,N�. In this case, the MMC vanishes exactly. �ii� The
coefficients of each pair of mirror-symmetric nonzero com-
ponents in ���t�� have the same or opposite signs.

For a perfect QST accomplished at the instant t=�, the
evolution operator U��� becomes the reflection operator R
and ���0�� evolves exactly into its mirror image R���0��.
Since the initial wave packet ���0�� is usually a very local-
ized wave function, the wave function ������=R���0�� and
its mirror image ���0�� almost do not overlap with each other
�see the illustration in Fig. 1�. Thus we have
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C��� = C�0� � 
���0��R���0��
 	 0. �14�

Therefore, at t=�, the MMC C��� almost vanishes when the
fidelity F�t� reaches its maximum �F���=1�.

From the above argument we see that there exists a quite
interesting relationship between entanglement and fidelity.
We provide a model more universal than the QST model in
Ref. �10�. Their mode is a mapping to the collective spin
system with SU �2� dynamic symmetry �by Jj =J0�j�N− j�
more concretely�, but our model only requires a much
smaller mirror symmetry �Jj =JN−j more generally � and thus
has much wider applications. In fact we have shown many
examples in Ref. �12� as well as in the following discussions.
Further arguments about the complementarity relationship
between entanglement and fidelity will also be presented in
such a general framework.

IV. MAXIMAL MODE ENTANGLEMENT

The above analysis has confirmed our intuition about the
complementary relation between the fidelity of QST and the
MMC of mode entanglement. As for the other feature of this
complementary relation, we need to consider when the MMC
can reach its maximum.

Obviously there exists the inequality

C�t� �
1

2�
j=1

N

����j,t��2 + ���N + 1 − j,t��2� = 1, �15�

which takes the equals sign only when the wave function
evolves into its mirror image, i.e.,

���j,t�� = ���N + 1 − j,t�� �16�

at some instants t. This means that C�t� will reach its maxi-
mum max�C�t��=1 at the instants when Eq. �16� holds.

In order to determine the time when C�t� reaches its maxi-
mum, we need to solve Eq. �16� for time t. To this end we
use a time-independent real symmetric matrix W to diagonal-
ize the Hamiltonian H or the evolution operator U�t� as
WU†�t�WT=A�t�, where A�t� is a diagonal matrix. With these
notations, the above equation �16� can be transformed into


��W�A�t��Wj�
 = 
��W�Q�t��Wj�
 , �17�

where

��W� = W���0�� ,

�Wj� = W�j� ,

Q�t� = WU†�t�U���WT. �18�

We notice that, in general, �Wj�=W�j�. ��W� and �Wj� are real
for a real initial state ���0��. Then the solutions to Eq. �17�
are sufficiently given by Q�t�=A†�t� or Q�t�=A�t�, of which
the nontrivial one is just t=� /2. Indeed, since ���A���
= ���A��� for any two real vectors ��� and ���, we have


��W�Q�t��Wj�
 = 
��W�A†�t��Wj�


= 
�Wj�A†�t���W��

= ���W�A�t��Wj�
 . �19�

Therefore, the solution t=� /2 is obviously given by Q�t�
=A†�t� or

U†�t�U��� = U�t� . �20�

We summarize the above argument as a proposition: If
F�t� reach its maximum 1 at the instant t=�, then at time t
=� /2 ,C�� /2�=1. In the Appendix, we will prove its inverse
proposition: if C�t� reach its maximum 1 at the instant t
=� /2, then at time t=� , F���=1. Furthermore, we can gen-
eralize these conclusions for the more general situation even
with a higher-dimensional Hamiltonian �also see the Appen-
dix�.

The solution t=� /2 to Eq. �17� indicates that the time
required to form the maximal mode entanglement is just half
of the time needed to implement the perfect QST. Further-
more we can prove that, for a real vector ���0��, the MMC
C�t� is symmetric with respect to both t=� /2 and t=�,
namely,

C� �

2
− t� = C� �

2
+ t� ,

C�� − t� = C�� + t� . �21�

Actually, for the second equation in Eqs. �21� we have

C�� ± t� = �
j=1

N


���0��U±�t�R†�j�

���0��U±�t��j�
 , �22�

where U�t�+=U†�t� and U�t�−=U�t�. Obviously the second
equation in Eqs. �21� holds since we have


���0��U�t�V�j�
 = 
���0��U†�t�V�j�
 �23�

for V=1,R†. Also, the first equation in Eqs. �21� will give a
similar proof.

Numerical methods are now employed to give a demon-
stration of the above analytical results. We concern a class of
schemes that admit perfect QST, which are presented in Ref.
�11�. The couplings of the Hamiltonian H are given such that

Jj = J0
��j + � jk��N − j + � jk� �24�

where � j =1− �−1� j ,k=0, 1, 2, …, and J0 is a constant. This
model possesses a commensurate structure of energy spec-

FIG. 1. �Color online� Illustration of the mirror mode concur-
rence C�t� at t=�. C��� is just the integral of the wave function
R���0�� with its mirror image when ���0�� satisfies either of the two
situations �i� and �ii�.
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trum that is matched with the corresponding parity. We dem-
onstrate the exact numerical results of the models with N
=4 and k=0,4 in Figs. 2�a� and 2�b�. Actually, when k=0
�Fig. 2�a��, the model is just the one proposed in Ref. �10�.
We have used the localized initial wave packet as ��1,2�0��
=c1�1�+c2�2�, where c1=5/6 ,c2=�11/36. From Figs. 2�a�
and 2�b� we can observe that C�0�=C���=0,C�� /2�=1, and
C�t� is symmetric with respect to t=� ,� /2. These results are
in agreement with our analytical results. It also implies the
complementary relation between MMC and fidelity, for in-
side the range from t=� /2 to 3� /2, the increase of F�t� is
accompanied by a decrease of C�t� �and vice versa�.

It is pointed out that our results about MMC C�t� at t
=� /2 are based on the condition that the initial wave packet
���0�� is real except for a global phase. One may be inter-
ested in the situation when c1 and c2 are not real for ��1,2�0��.
For this situation, e.g., c1= �1+ i� /2 ,c2=1/5+ i�23/50, the
numerical calculation shows that C�t� is not just symmetric
with respect to t=� /2 ,C�� /2��1,max�C�t�� is very close,
yet not equal to 1 and C�� /2��max�C�t�� �see Figs. 2�c� and
2�d��.

V. PERFECT QST OF BLOCH ELECTRONS IN AN
ENGINEERED LATTICE

Based on the above recognitions about the relation be-
tween a perfect QST and mode entanglement, we can con-
struct various lattice models with mirror symmetry to
achieve perfect QST. Furthermore we can characterize these
QSTs with the MMC. Actually, a large class of models for
QST have been discovered by us most recently �11� by gen-
eralizing the spin model in Ref. �10�.

Now we further generalize the perfect QST model to a
much larger class. The Hamiltonian is given in Eq. �2� with
the engineered coupling constants

Jj = J0
��j + 	 j��N − j + 	 j� , �25�

where

	 j = �1 − �− 1� j�l/�2m + 1� �26�

for the given m , l�0, 1, 2, 3, … We notice that it will return
to the previous models in Refs. �10,11� when m=0.

Numerical analysis shows that the above Hamiltonian
possesses a commensurate structure of energy spectrum by
an experiential formula


n = NnE0 − �N + 1�J0, �27�

where the energy unit is

E0 =
2J0

2m + 1
, �28�

Nn=n�2m+1�− l for n=1,2 ,… ,N /2, and Nn=n�2m+1�+ l
for n=N /2+1,… ,N. Numerical results show that the above
experiential formula �27� still holds when N=3000. It can be
checked that the energy spectrum is matched with the corre-
sponding parity �the eigenvalue of R� as

pn = �− 1�Nnexp�i��m +
1

2
�N + 1��� . �29�

The corresponding eigenstates ��n�=� j=1
N cj�n��j� can be de-

termined by the matrix equation H��n�=
n��n�.
According to Refs. �11,12�, the characteristic time to per-

form a perfect QST is �=� /E0, provided that l / �2m+1� is an
irreducible fraction. Now we can show that, at t=�, the time
evolution operator

U�t� = �
n

exp�− i
nt���n���n� �30�

is just the mirror reflection operator R by neglecting a global
phase, namely,

U��� = �
n

�− 1�Nn��n���n� = �− 1�lR . �31�

Thus, the present model admits perfect QSTs when

	 j = �1 − �− 1� j�l/�2m + 1� . �32�

In order to verify the prediction about the relation be-
tween the MMC and fidelity, a numerical analysis is carried
out for the present QST model. We investigate the four-site
case with m=1 and l=2. The real initial wave packet is also
��1,2�0��. Detail behaviors of the MMC and fidelity between
the instants t=0 and t=2� are shown in Fig. 3. We notice, in
Fig. 3, that C�t�=0, 1, 0, for t=0,� /2 ,� respectively and C�t�
is symmetric with respect to t=� ,� /2. Obviously, it is in
agreement with our prediction.

VI. SUMMARY

In summary we have defined the mirror mode concur-
rence to describe how a perfect quantum-state transfer can be
achieved for a large class of lattice models of fermion sys-
tems with mirror symmetry. By investigating the property of
MMC of these perfect QST models, a complementary rela-
tion between the MMC and fidelity is revealed. Actually our
definition of MMC is just a part of total concurrence �4,15�.

FIG. 2. �Color online� Plots of C�t� and F�t� of the states ���t��
evolve from real ��a� and �b�� and complex ��c� and �d�� initial wave
packets ��1,2�0��. The evolutions of ���t�� in �a� and �c� ��b� and �d��
are driven by the four-site Hamiltonian with k=0�k=4�. For �a� and
�b�, F���=1 and C�� /2�=1, while for �c� and �d�, F���=1 and
max�C�t�� ,C�� /2��1.
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However, when the symmetry of our systems is taken into
consideration, MMC is a better measurement in characteriz-
ing the process of a perfect QST. A class of QST models is
discovered to support our observations. Therefore, a perfect
QST can now be understood as a process of establishing an
entanglement and then destroying it at the correlated instants.
Finally we remark that our main results are valid in other
perfect QST models with general symmetries such as trans-
lation, rotation, etc. It is very interesting to further investi-
gate the QST vs entanglement relation based on solid state
systems with the symmetries described by point groups or
the crystallographic space groups.
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APPENDIX: A GENERAL PROOF FOR
COMPLEMENTARITY F„�…=1ÙC„� /2…=1

We have proved that the MMC C�t� will reach its maxi-
mum 1 at the instant t=� /2 where � is the instant, at which
the fidelity F�t� reaches its maximum F���=1. We now prove
the inverse proposition: If C�t� reaches its maximum 1 at the
instant t=� /2, then at time t=� ,F���=1, namely, we have a
theorem in a sufficient and necessary statement

F��� = 1 ⇔ C��/2� . �A1�

In this appendix, we will prove the above theorem for a
general model even for higher-dimensional fermion systems
with a Hamiltonian,

H = �
i�j

N

Jijai
†aj , �A2�

on the one-particle Fock space spanned by N basis vectors
��j�� , j=1,2 ,3 ,… ,N. Suppose the Hamiltonian has a sym-
metry S and �S ,H�=0, and the basis vectors can be decom-
posed into two subspaces ��nj� � j=1,2 ,3 ,… ,N /2� and
��mj� � j=1,2 ,3 ,… ,N /2� such that

S�nj� = �mj�, S�mj� = �nj� , �A3�

then perfect QST requires that at a certain instant t
=� ,U���=exp�−iH��=S. This case of Eq. �A2� is just a gen-
eralization of the situation of mirror symmetry Hamiltonian.

Through the definition of total concurrence

C�t� = �
j

N/2

Cnj,mj
= �

j

N/2

2
���t��anj

† amj
���t��
 , �A4�

we can first prove the proposition from F���=1 to C�� /2�
=1.

As for an initial state ���0��, the fidelity of a state ���t��
=U�t����0�� reads as

F�t� = 
�S��0��U�t����0��
 = 
���0��S+U�t����0��
 ,
�A5�

and a perfect QST at t=� can be depicted by the maximized
fidelity F���=1 when

U��/2�U��/2� = U��� = S

satisfies Eq. �A2�. We calculate the total concurrence of
���t�� as

C�t� = �
j

N/2

2
���0��U+�t�anj

† amj
U�t����0��


= �
j=1

N/2

2
���0��U+�t��nj��mj�SS+U�t����0��


= �
j=1

N/2

2
���0��U+�t��nj����nj�U+�t����0��
 . �A6�

Then at the instant t=� /2

C��/2� = �
j=1

N/2

2
���0��U+��/2��nj����nj�U+��/2����0��
 .

�A7�

For real ���0�� we have 
���0��U+�� /2��nj�

= 
�nj�U+�� /2����0��
 and then

C��/2� = �
j=1

N/2

2
���0��U+��/2��nj�
2 = 1. �A8�

Thus we have

max�C�t�� = C��/2� = 1. �A9�

Now we prove the proposition from C�� /2�=1 to F���
=1. According to Eq. �A5�, if we require C�� /2�
=max�C�t��=1 at some instant t=� /2, then


���0��U+��/2��nj�
 = 
�mj�U��/2����0��
 . �A10�

Therefore we have

FIG. 3. �Color online� Plots of C�t� and F�t� of the state ���t��
=U�t���1,2�0�� for the Hamiltonian with N=4,m=1, and l=2. It
shows that C�0�=C���=0,C�� /2�=1, and C�t� is symmetric with
respect to t=� ,� /2.

QUANTUM-STATE TRANSFER CHARACTERIZED BY… PHYSICAL REVIEW A 72, 062329 �2005�

062329-5




���0��U+��/2��nj�
 = 
�mj�U��/2����0��
 ,

or


���0��U+��/2��nj�
 = 
���0��U+��/2��mj�
 ,

or


���0��U+��/2��nj�
 = 
���0��U+��/2�S�nj�


This means U+�� /2�S=U+�� /2� or U+�� /2�S=U�� /2�. It has
a trivial solution S=1 and an approved nontrivial solution

S=U���. With the nontrivial solution S=U���, there will be a
perfect QST, i.e.,

F��� = 
�S��0��U������0��
 = 
���0��S+U������0��
 = 1.

�A11�

As is stands, we have verified the theorem F���
=1⇔C�� /2� in a general situation.
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