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We study the pairwise concurrences, a measure of entanglement, of the ground states for the frustrated
Heisenberg ring to explore the relation between entanglement and quantum phase transition associated with the
momentum jump. The ground-state concurrences between any two sites are obtained analytically and numeri-
cally. It shows that the summation of all possible pairwise concurrences is an appropriate candidate to depict
the phase transition. We also investigate the role that the momentum takes in the jump of concurrence at the
critical points. We find that an abrupt momentum change results in the maximal concurrence difference of two
degenerate ground states.
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I. INTRODUCTION

A quantum system changes its ground-state properties in a
fundamental way when quantum phase transitions �QPTs�
occur at absolute zero �1�, which are induced by the change
of external parameters or coupling constants and are driven
by quantum fluctuations. In a finite system the discontinuity
of the ground-state energy is often used to characterize the
occurrence of QPTs for there is an energy-level crossing at
the critical point. We will show, in this paper, that such kind
of phase transition is usually accompanied by the change of
symmetry characterized by conservative quantities such as
the momentum which is the generator of translation. Our
investigations will relate to the quantum entanglement mea-
sured by the total concurrences �2�.

Actually, quantum critical points are governed by a di-
verging correlation length and there exists a very close rela-
tion between quantum correlation and quantum entangle-
ment, which is known as the resource that enables quantum
computation and communication. So exploring the role of
entanglement in a phase transition has attracted great atten-
tion from both the communities of quantum computation and
quantum statistics �3–14�. People have connected the theory
of critical phenomena with quantum information by explor-
ing the entangling resources of a system close to its quantum
critical point. They demonstrate, for a class of magnetic sys-
tems or the interacting quantum lattice spin systems at zero
temperature, that entanglement shows scaling behavior in the
vicinity of the transition point where the level crossing oc-
curs at degenerate ground states �15�.

From these studies we observe that the degeneracy of
ground states at the critical point may result in the uncer-
tainty of entanglement. This fact means the discontinuity of
concurrence in the vicinity of the phase-transition point.
Such sudden change of the concurrence as the variation of an

external parameter or coupling constant is vividly called the
jump of concurrence. However, the ground-state energy-level
crossing may not always result in a jump of a certain type of
concurrence, such as the next-nearest neighbor �NNN� or
other pairwise concurrences. On the other hand, this kind of
QPT must be accompanied by a change of a certain conser-
vative quantity, such as the momentum or the macroscopic
magnetization. This observation may provide us a different
way to find an appropriate definition of concurrence that just
characterizes the property of the quantum spin systems at the
critical point.

In this paper, we consider a frustrated Heisenberg ring
system which contains rich phases in the ground state. To
reveal the connection between the concurrence behavior and
the symmetries of the separated phases around the critical
point, we study the difference between the concurrences of
two degenerate ground states at the critical points. We find
that there does exist such a discontinuity of a conservative
physical quantity momentum �the generator of translation�
which results in the maximization of entanglement difference
of the two degenerate ground states.

The paper is organized as follows. In Sec. II, the numeri-
cal result for the concurrence behavior of a frustrated
Heisenberg ring around the critical points is given. It shows
that a single type of concurrence is not sufficient to depict a
QPT, while the summation of all types of concurrence may
be. In Sec. III, the exact results are employed to explain our
observation concluded in Sec. II. In Sec. IV, the role that
another conservative quantity—momentum—plays in the
concurrence jump is studied. The summary and some discus-
sions are given in Sec. V.

II. CONCURRENCE JUMPS IN QPTs

We start from a one-dimensional �1D� frustrated spin-1 /2
Heisenberg model with periodic boundary conditions, which
belongs to the Majumdar-Ghosh �MG� families of models
�16� �see Fig. 1�.

The Hamiltonian reads
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H = J0�
i=1

N

Si · Si+1 + J�
i=1

N

Si · Si+2, �1�

where N is even denoting the total number of the lattice sites,
Si is the spin operator at the ith site, and J0 �J� is the strength
of the NN �NNN� exchange interaction. For the periodic
boundary conditions, we have SN+1=S1. For arbitrary J0 and
J, the ground-state energy of Hamiltonian �1� can be for-
mally written as the function of the parameters J0 and J,

Eg�J0,J� = J0h0 + Jh , �2�

in terms of the NN correlation function

h0 = �
i

�g�Si · Si+1�g� �3�

and the NNN correlation function

h = �
i

�g�Si · Si+2�g� �4�

with respect to the ground state �g�.
Now we consider the behavior of ground-state energy as

the variation of parameters J and J0. For an infinite system,
the energy-level crossing should induce the discontinuity of
the derivative of ground-state energy

�Eg

�J0
= �g�

�H

�J0
�g� = h0, �5�

which is just the NN correlation function. Since there exists
an algebraic relationship between pairwise concurrence and
correlation function �17�

Cij =
1

2
max	0, �Gxx + Gyy� − Gzz − 1
 , �6�

where G��= �g��i
�� j

��g� ��=x ,y ,z� are correlation functions,
then according to Eq. �5� the energy-level crossing will lead
to the discontinuity of the NN concurrence. On the other
hand, one can also establish a similar relation between NNN
correlation function h and the discontinuity of �Eg /�J,

�Eg

�J
= �g�

�H

�J
�g� = h . �7�

Notice that, for nonzero J0, if the correlation h has a jump
due to the discontinuity of �Eg /�J, the other correlation func-
tion h0 must experience a jump at the same point J=Jc. Ac-
tually, at the energy-level crossing point the ground states are
degenerates, i.e.,

J0h0 + Jh = J0h0� + Jh�, �8�

where

h0� = �
i

�g��Si · Si+1�g�� ,

h� = �
i

�g��Si · Si+2�g�� �9�

are the corresponding correlations with respect to another
ground state �g��. No doubt, both the NN and NNN correla-
tion functions must be discontinuous or have jumps at criti-
cal point J=Jc. But the jump of one type of correlation may
not necessarily induce the jump of its corresponding concur-
rence. A natural question is, which type of concurrence, NN
or NNN, plays a major role in depicting the QPTs at the
critical points? To answer this question, we investigate the
frustrated spin-1 /2 Heisenberg ring numerically and analyti-
cally. In Fig. 2, the eigenenergies of the ground and first
excited state are plotted for the systems with size N=6, 8, 10,
and 12. A and B denote the two energy-level crossing points.

The reduced density matrix for two spins located at sites i
and j �18� has the form

�ij =�
vij 0 0 0

0 wij zij 0

0 zij wij 0

0 0 0 vij

� �10�

with respect to the standard basis vectors �↑ ↑ �, �↑ ↓ �, �↓ ↑ �,
and �↓ ↓ �. Correspondingly the concurrence can be calcu-
lated by

FIG. 1. �Color online� The schematic structure of a frustrated
spin-1 /2 Heisenberg ring. J0 denotes the nearest-neighbor coupling
constant, while J1 and J2 denote the next-nearest-neighbor coupling
constants between an even and odd number of sites, respectively. In
this paper we are only concerned with the simple case J1=J2=J.

FIG. 2. �Color online� The ground and first excited eigenener-
gies for the systems of the size N=6, 8, 10, and 12. A and B denote
the energy-level crossing points where the quantum phase transi-
tions occur. The critical point A is always at J=Jc=J0 /2, while the
position of point B depends on the size of the system.
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Cij = max	0,2��zij� − vij�
 .

Furthermore, for the ground state with vanishing total spin, it
can be connected to the isotropic correlation function ��i ·� j�
by �17�

Cij =
1

2
max	0,− ��i · � j� − 1
 . �11�

Analytical and numerical results show that the ground states
of the Hamiltonian �1� for the sizes we concern have spin
zero. Then the concurrences can be obtained directly from
the corresponding correlation functions. Now we define the
� type concurrence

C��� = �
i

N−1

Ci,i+�, �12�

where �=1,2 ,… ,N /2, and the total concurrence as the sum-
mation of all types of concurrences, i.e.,

CT = �
�

N/2

C���. �13�

It is obvious that CT shares the same property as the average
concurrence �19�. We also define the concurrence jump as
����= �CL

���−CR
���� ��T= �CTL−CTR�� denoting the � �total�

type concurrence difference between the two ground states at
the left �L : J=Jc−0+� and right �R : J=Jc+0+� side of the
critical points.

The conjectures of the relationship between entanglement
and QPTs in Refs. �1,14� tell us that the concurrence, a mea-
sure of entanglement, should be changed largely at the criti-
cal points. So we calculate concurrence at point B, for N
=8, 10, and 12 systems numerically. The corresponding con-
currence jumps ���� and �T are listed in Table I.

The big concurrence jumps ��1� for N=8, 10, 12 and ��2�

for N=8 match the energy-level crossing in Fig. 2, while the
rest concurrences show no special behavior at point B. It
indicates that, at the critical point, not all types of concur-
rence change largely. It shows that different types of concur-
rences show different behaviors around the critical points. It
seems that there exists no single preferable type of concur-
rence in characterizing the QPTs. A natural way to treat this
problem is to use the summation of all types of concurrence.
In the following section, we will investigate the critical be-

havior at point A . The results further demonstrate that the
total concurrence CT seems to be a good candidate to depict
the QPTs.

III. MOMENTUM JUMP IN QPTS CHARACTERIZED
BY ENTANGLEMENT

According to quantum mechanics, we can always find out
a conservative quantity to distinguish the two degenerate
ground states at the energy-level crossing point. In this sec-
tion we study the critical behaviors at the energy-level cross-
ing points A and B �Fig. 2�. We will show that these critical
points are just between the phases with momenta 0 and �.

In the case J=J0 /2, the exact ground states of the N site
system can be explicitly expressed as

��1� = �12��34� ¯ �N − 1 N� �14�

or

��2� = �23��45� ¯ �N1� �15�

which are the direct products of the resonant valence bond
�RVB� states �ij�= ��↑ ↓ �− �↓ ↑ �� /
2 of two spins located at
the lattice sites i and j �20�. Obversely, ��1� and ��2� are not
orthogonal except in the case of thermodynamical limit, but
their combinations ��1�− ��2� and ��1�+ ��2� are two or-
thogonal degenerate ground states.

Because the Hamiltonian is invariant under the transla-
tional transformation T, where T�↑ �i= �↑ �i+1, the common
eigenstates ���= ���S1 ,S2,… ,SN�� of H and T have momen-
tum

k =
2�n

N
� na, n = 1,2,…,N

which satisfies T���=exp�ina����. Actually as mentioned
above, at point J=J0 /2, one can construct the two degenerate
ground states as

��1� =
1


�1

���1� − ��2�� ,

��2� =
1


�2

���1� + ��2�� , �16�

with momentum k=0 and �, respectively. Here

�1 = ��1��1� + ��2��2� − 2 Re���1��2�� ,

�2 = ��1��1� + ��2��2� + 2 Re���1��2��

are the normalization factors.
We take a system of small size as an analytical illustration

for the momentum jump in QPT. For the system of N=6, the
ground states of the Hamiltonian can be obtained exactly in
the whole range of J as

��g� = ���1� �J 	 J0/2�

���2� + 
��e��/
�3 �J � J0/2� � �17�

corresponding to the eigenvalues

TABLE I. The jumps of the pairwise concurrences C��� and total
concurrence CT at the critical point B for the N=8, 10, and 12
systems. It implies that not all types of concurrence are appropriate
to depict the QPTs, while the total concurrence is an appropriate
one.

N 8 10 12

�=1 0.7660 1.2755 0.6228

�=2 1.8228 0 0

��2 0 0 0

Total 1.0568 1.2755 0.6288
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E1 = − 3�J0 + J�/2,

E2 = �
 − 5/2�J0 + �1/2 − 
�J , �18�

respectively. Here

�3 = 8
2 − 8
 + 20,


 =
J − 3J0 + 
9J2 − 18JJ0 + 13J0

2

2�J − J0�
, �19�

and

��e� =
1

2
2
��1 − T + T2 − T3 + T4 − T5��↑↑↑↓↓↓�

− �1 − T��↑↓↑↓↑↓�� , �20�

is the excited state of the Hamiltonian �1� for J=J0 with
eigenenergy 0 and momentum �. It is easy to find that there
is only one critical point at which the energy-level crossing
occurs. But for N�6, there is one more energy-level cross-
ing point at J�J0 /2 as illustrated in Fig. 2.

Based on the exact results, the two spin concurrences are
obtained as

C�1� = �− 4�
2 + 2
 − 2�/�3 �J 
 J0/2�
0 �J � J0/2� � �21�

and

C��� = �0 �J 
 J0/2�
0 �J � J0/2� � �� = 2,3� , �22�

which are plotted in Fig. 3.
It shows that the NN concurrence C�1� has a jump at the

critical point A, while other types of concurrences C��� ��
�1� do not have any special behavior. Obviously CT also has
a jump at the critical point, which is in agreement with the
observation presented in Sec. II. In the following section, we
will investigate the relations between various types of con-

currence jumps and a conservative quantity, momentum,
which has a jump for the QPTs.

IV. CONCURRENCE JUMP IN ASSOCIATION
WITH MOMENTUM JUMP IN QPT

From the above analysis, we know that the jumps of con-
currences C��� at the critical points may be induced by the
energy-level crossing or the discontinuity of the ground-state
energy as a function of the coupling constants. On the other
hand, at the energy-level crossing point, the ground states are
degenerate. Thus an arbitrary linear combination of two de-
generate ground states is also the ground state. If a certain
type of concurrence has a jump at the critical point, the cor-
responding concurrence of the combined ground state should
be uncertain. Meanwhile the difference of the concurrences
between the two orthogonal combined ground states should
also depend on the way of the combination. On the other
hand, as the energy-level crossing there must exist a conser-
vative quantity which also experiences a jump. Then the
phase separation can be also well described in association
with the jump of such a quantity. In this paper, this conser-
vative quantity is momentum which is the generator of trans-
lation. In general, one may say that the discontinuity of
�Eg /�J leads to the jump of concurrence at the critical
points, but on the other hand, one can also say that it is the
discontinuity of momentum of the ground state that leads to
the jump of concurrence at the critical point.

In order to investigate the role that the momentum plays
on the change of various types of concurrence C���, we re-
construct two degenerate ground states at the critical point A
as

��1� = cos
�

2
��1� + ei� sin

�

2
��2� ,

��2� = e−i� sin
�

2
��1� − cos

�

2
��2� , �23�

where �� �0,�� and �� �0,2��. For N-site systems �N
	6�, the pairwise concurrences of type � �total concurrence�
of the two degenerate ground states ��1� and ��2� are de-
noted as C1

��� and C2
��� �CT1 and CT2�, respectively. A straight-

forward calculation shows that C1
���=C2

���=0 for ��1, while
C1

�1� and C2
�1� are nonzero and depend on the parameters �

and �. Obviously, states ��1� and ��2� are no more the
eigenstates of momentum in the general case.

What we concern is the role the momentum plays on the
jump of the concurrence. For N�6 the difference between
C1

�1� and C2
�1� is

�C1
�1� − C2

�1�� = ��11 + �12 − �21 − �22� , �24�

where

�ij =
1

4
H�3Gij − 1��3Qij − 1� , �25�

Qij = 1 − 2�N
2 + �− �i�N�N

2 cos � + �− �i+j�N cos � sin � ,

�26�

FIG. 3. �Color online� Various types of concurrence as the func-
tion of J for N=6. The momenta of the ground state for J
J0 /2
and J�J0 /2 are � and 0 respectively. It shows that only the NN
type of concurrence possesses a jump around the critical point J
=J0 /2.
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�N � �4 − �N
2 �−1/2, �N � �1

2
�N/2−2

�27�

and

H�x� = �1 �x � 0�
0 �x 
 0� � �28�

is the Heaviside step function. In the following, we will
show that this difference reaches maxima at �=0,� for any
�� �0,2��.

Notice that 3Qij −1	0 always holds when �=� /2,
3� /2. Then Eq. �24� can be rewritten as

�C1
�1� − C2

�1�� = 3��N�N
2 cos �� . �29�

It is a monotonic function, which reaches its maxima at �
=0,�.

Now we prove that for any �, the inequality

�C1
�1� − C2

�1�� � 3��N�N
2 cos �� �30�

holds in all the range of �. It is convenient to consider the
problem in the range �,�� �0,� /2� without loss of general-
ity. Since the functions sin �, cos �, and cos � are positive in
this range, we can prove the above conclusion in the follow-
ing three cases.

Case 1:

3Q12 − 1 = A − 3�N cos � sin � � 0,

3Q21 − 1 = B − 3�N cos � sin � � 0; �31�

case 2:

3Q12 − 1 = A − 3�N cos � sin � 
 0,

3Q21 − 1 = B − 3�N cos � sin � � 0; �32�

case 3:

3Q12 − 1 = A − 3�N cos � sin � 
 0,

3Q21 − 1 = B − 3�N cos � sin � 
 0, �33�

where we have defined

A = 2 − 6�N
2 − 3�N�N

2 cos � � 0,

B = 2 − 6�N
2 + 3�N�N

2 cos � � 0,

B 	 A . �34�

For all the above three cases we have

3Q11 − 1 = A + 3�N cos � sin � � 0,

3Q22 − 1 = B + 3�N cos � sin � � 0. �35�

Actually, in case 1, we have

�C1
�1� − C2

�1�� = 3��N�N
2 cos �� .

In case 2, from Eq. �32� we have

�D� 
 �− 4�N�N
2 cos �� , �36�

where

D = −
2

3
− 3�N�N

2 cos � + �N cos � sin � + 2�N
2 . �37�

Then the concurrence difference is

�C1
�1� − C2

�1�� = ��11 − �21 − �22� =
3

4
�D� 
 3��N�N

2 cos �� .

�38�

Similarly, for case 3, we have

�C1
�1� − C2

�1�� =
3

2
��N�N

2 cos �� 
 3��N�N
2 cos �� . �39�

For the cases that � and � are taken in the rest ranges, a
similar proof as presented in Eqs. �31�–�39� can get the same
conclusion. So from Eqs. �29� and �30� we conclude that the
concurrence difference between C1

�1� and C2
�1� reaches the

maxima when �=0,� for any �.
In fact, for the cases N	8 within the special domain of

��0,� and any �, it always holds that 3Qij −1�0. Hence
we have

�C1
�1� − C2

�1�� = �3�N�N
2 �1 − �2� �� � 0�

3�N�N
2 �1 − �� − ��2� �� � �� � �40�

which reaches its maxima 3�N�N
2 at �=0,�. Here the two

combined states ��1� and ��2� are just the eigenstates of
momentum, i.e., the ground states at J=Jc±0+.

As illustration, in Fig. 4 the concurrence differences,
�C1

���−C2
���� as the functions of the parameters � and � are

plotted for N=6, 8, 12, and 16 systems.
It shows that there always exists a maximal concurrence

difference, or a maximal concurrence jump, at the points
where the two degenerate ground states are the eigenstates of
momentum with k=0,�. Furthermore, in the thermodynamic
limit, we have limN→��N=0 and limN→��N=1/2, and then
the maxima decays to zero exponentially. The results indi-

FIG. 4. �Color online� The NN concurrence difference of the
two reconstructed degenerate ground states for N=6, 8, 12, and 16.
Since all the rest types of concurrences are 0, the behavior of
�C1

�1�−C2
�1�� and �CT1−CT2� are the same. It shows that the total

concurrence difference reaches the maxima when �=0 or � for all
� and N, but the maxima decay exponentially with the size N of the
system.
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cate that the change of the momentum induces the maximal
jump of �C�1�� or �CT� at point A. So far, we cannot say which
type of concurrence is preferable to characterize the QPT;
from the following arguments, we will see that an anomalous
result for point B will give a final selection.

Now we turn to consider the situation at the critical point
B. In this case, the differences of concurrence �C1

���−C2
����

and �CT1−CT2� cannot be obtained analytically. The numeri-
cal method is employed to calculate the differences of vari-
ous types of concurrences. All types of concurrence differ-
ence as the functions of the parameters � and � are plotted in
Fig. 5.

In Fig. 5�a�, it shows that the pairwise concurrences of
NN and NNN for N=8 have jumps, while the rest have no
jumps. This result is different from that for the A point, in
which case there is no jump for NNN concurrence. Another

interesting result is that the difference �C1
�1�−C2

�1�� does not
reach the maxima when the corresponding two degenerate
states are the eigenstates of momentum. This anomalous phe-
nomenon indicates that the NN concurrence seems not to be
sufficient to characterize the QPT. However, Fig. 5�a� also
shows that the difference �CT1−CT2� still obeys the same rule
we obtained at point A. In Fig. 5�b� the corresponding results
for N=10 and 12 are plotted, which are similar to that of
point A. Thus all the results imply that the difference of total
concurrence reaches the maxima when two degenerate states
are the eigenstates of momentum. In other words, it is the
change of momentum that induces the jump of total concur-
rence. Based on all the results, we conclude that the total
concurrence is a good candidate to characterize the quantum
critical behavior for the frustrated spin-ring systems con-
cerned.

V. DISCUSSION

Summing up, in this paper we have shown how to estab-
lish the connection between the concurrence jump and the
change of ground-state momentum at the QPT critical point.
All types of pairwise concurrence are investigated analyti-
cally and numerically. The results for both critical points A
and B indicate that the difference of total concurrence
reaches the maxima when the two degenerate ground states
are just the eigenstates of momentum. It also reveals another
interesting relation between the correlation function and the
concurrence. As mentioned in Sec. II, the NN and NNN cor-
relation function must have a jump at the energy-level cross-
ing points, while the NN and NNN concurrences may not.
But when the total concurrence is considered, it must have a
jump at the critical points. However, the total correlation
function �ij�Si ·S j�g=1/2��S2−�iSi

2��g �where S=�iSi is the
total spin� has no jump at the critical points since the spins of
the ground states are zero.

Concerning the model for the case J1�J2 as illustrated in
Fig. 1, a straightforward calculation shows that the states
��1� and ��2� defined in Eq. �16� are still the degenerate
ground states of the Hamiltonian if J1+J2=J0. This means
that J1+J2=J0 is the boundary of different quantum phases
in the J1−J2 plane. Starting from this observation we can
extend our study to the more general case of J1�J2 to verify
the conclusion obtained in this paper. It will appear in a
successive paper.
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FIG. 5. �Color online� All types of concurrence differences of
the degenerate ground states for N=8 �a� and 10, 12 �b�. Notice that
the anomalous behavior in the N=8 case shows that only the total
concurrence difference reaches the maxima when �=0 or � for all
� and N.
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