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From the viewpoint of quasinormal modes, we describe a decoherence mechanism of charge qubit of
Josephson junctionssJJd in a lossy microcavity, which can appear in a realistic experiment for quantum
computation based on a JJ qubit. We show that nonlinear coupling of a charge qubit to the quantum cavity field
can result in additional dissipation of the resonant mode due to the effective interaction between those non-
resonant modes and the resonant mode, which is induced by the charge qubit itself. We calculate the charac-
teristic time of the decoherence by making use of the system plus bath method.
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I. INTRODUCTION

The superposition principle is most basically governing
the quantum worldf1g. It is also the foundation of quantum
information technology. The ideal coherent superposition
state can only be preserved in the quantum world isolated
from external influences. However, the influence of the sur-
rounding environment can never be blocked off completely.
Now the coherence is an essential requirement for quantum
information and the decoherence will result in errors which
reduce the power of quantum computation and quantum
communication or even destroys it. The quantum decoher-
ence has become the biggest obstacle to implementation of
quantum computation. In practice, we need a qubit with long
decoherence time and a longer lifetime medium to imple-
ment a quantum logic gate. To overcome quantum decoher-
ence, one should know dynamic details theoretically and ex-
perimentally in various physical systems including all kinds
of qubits.

Recently in solid state based quantum computation, Jo-
sephson junctionsJJd qubits scharge qubit, flux qubitf2g or
their hybridizationsd have demonstrated large potential as
candidates for scalable quantum computation. On the one
hand, the Rabi oscillation in a Cooper-pair boxscharge qu-
bitd f3g, the existence of two-qubit statesf4g and the en-
tanglement between a flux qubit and a superconducting
quantum interference devicesSQUIDd f5g have been realized
experimentally. Up to now, the decoherence time of a JJ
qubit has been the order of 5ms f6g. On the other hand, to
implement quantum computation, one should integrate many
qubits to form a quantum coherent network. To this end, a
longer lifetime medium is required to transfer quantum in-
formation among these qubits in the network. Some investi-
gations have shown that the quantized field in a microwave
cavity, whose lifetime is of order 1 ms, might be a good
candidatef7g. For this purpose, the integration of JJ qubit
and cavity QED has become a focus in exploring the JJ qubit
based quantum computingf8–13g.

In spite of these exciting advances, the relatively short
coherence time is still a problem in implementing the JJ

based quantum computing in large scale and the mechanism
of decoherence of JJ qubit is not very clear, especially in the
presence of external field. The fluctuation of background
charge is a well-known source of quantum decoherencef14g,
but it is not the unique one. For a real dc-SQUID, the fluc-
tuations of gate voltage and magnetic flux produced by the
screening current circulating around the dc-SQUID may also
cause additional quantum decoherence in the charge-qubit–
cavity system. To bring out more clearly the physical mecha-
nism of nonlinear decoherence described in this paper, we
can avoid the effect of screening current in the physical case
of the dc-SQUID screening parameterbm=2LIc/F0ø2/p
f15g. HereL is the loop inductance of dc-SQUID andIc the
critical current of Josephson junction andF0 flux quanta. To
simplify the analysis of our paper and demonstrate more
clearly the physics of our nonlinear decoherence mechanism,
we do not consider fluctuations of the gate voltage and other
sources of decoherence. Most current investigations for inte-
grating and manipulating various kinds of JJ qubits mainly
concern the idealized cavity without damping. Naturally one
can question what will happen if we place a qubit in a non-
ideal cavity. That is our direct motivation for this paper. Here
we will deal with quantized field in a lossy cavity with the
quasi-normal-mode approachf17–20g. In this treatment, cav-
ity modes in a lossy cavity are divided into a single resonant
mode and other nonresonant multimodes. Due to the nonlin-
ear coupling of the charge qubit to the cavity field, the effec-
tive interaction between those nonresonant modes and the
resonant mode causes an additional dissipation of the reso-
nant mode. This is just the mechanism of quantum decoher-
ence for the charge qubits in a lossy cavity.

The paper is organized in the following sections. With the
quasi-normal-mode approach, the model in Sec. II describes
a charge qubit interacting with a lossy cavity. In Sec. III, we
demonstrate how the nonlinear coupling of a charge qubit to
cavity field induces the effective interaction between reso-
nant mode and nonresonant ones. In Sec. IV, we find that the
nonlinear coupling leads to energy dissipation of resonant
mode of cavity field which is linked to quantum decoherence
of a charge qubit in a lossy cavity in Sec. V.
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II. MODEL: CHARGE QUBIT COUPLED
TO THE LOSSY CAVITY

In this paper, we consider a single-mode quantum field in
a lossy cavity with frequencyv,30 GHz stypically in the
microwave domaind and quality factorQ,106 coupled to a
charge qubit, in which the charging energyEC,122 meV
and the Josephson coupling energyEJ,34 meV f14g. The
charge qubit considered in this paper is a dc-SQUID consist-
ing of two identical Josephson junctions enclosed by a su-
perconducting loop. It is located in a lossy cavity which is
produced by a semi-transparent mirror. A similar case is dis-
cussed for quantum dissipation of semiconductor exciton in a
lossy cavityf16g. In this paper, we can describe the magnetic
field in a lossy cavity with the quasimode approachf17–20g.
And we can divide cavity modes into two parts: a single
resonant mode and other nonresonant ones.

In this case, the magnetic flux threading the dc-SQUID is
generated by magnetic fieldB=Bc+Bq, which consists of
external classical magnetic fieldBc and quantum cavity field
Bq f9g. To demonstrate the physics of our result, we do not
consider the effect of the screening current. Similarly the
total magnetic flux threading dc-SQUID could be a sum of
two parts F=Fc+Fq, where Fc=eBc·dS is the external
classical flux threading the dc-SQUID,Fq=eBq·dS the
cavity-induced quantum flux through the dc-SQUID and S
the area bounded by the dc-SQUID.

For an ideal cavity, we can describe a cavity field with a
set of normal modes with different frequencies. Similarly as
in a laser theoryf18g, we adopt a quasimode approach to
describe the quantum cavity fieldBq in terms of a discrete set
of quasimodes of the lossy cavity, each of whichsresonant
moded has a finite quality factorQ and there exist many
modes of the universesnonresonant modesd corresponding to
each quasimode. Then the quantum cavity fieldBq could be
composed of resonant mode of cavity fieldBr and nonreso-
nant modes of cavity fieldBnr, Bq=Br +Bnr. In this paper, we
assume that the lossy cavity of our interest contains only one
quasimode.

Figure 1 shows that the dc-SQUID lies in thex-z plane
and the direction of the quantum cavity field is perpendicular
to the plane,

Bq,yszd = Brszd + Bnrszd

and

Brszd = − iS "v

«0Vc2D1/2

sinSv

c
zDsa − a†d,

Bnrszd = − io
j

MjS "v j

«0Vjc
2D1/2

sinSv j

c
sz− LdDsaj − aj

†d,

s1d

wherea†sad andaj
†sajd are the creationsannihilationd opera-

tors corresponding to single resonant mode of frequencyv
and nonresonant modes of frequenciesv j, V sVjd the electro-
magnetic mode volume corresponding to resonant mode and
nonresonant mode, respectively, andL the length of the cav-
ity. The constantMj in Eq. s1d is proportional to a Lorentzian
f19g

Mj =

L
g

2

Îsv j − vd2 + Sg

2
D2

, s2d

whereg is the decay rate of a quasimode of cavity,L the
bandwidth associated with the cavity wall transparency and
v the central frequency of the resonant mode of cavity. It is
obvious thatMj will acquire the maximum value when the
frequency of nonresonant modev j is very close to the central
frequency of the resonant modev. In our investigation, the
lossy cavity contained only one quasimode.

The Hamiltonian for a charge qubitsdc-SQUIDd can be
written as in Ref.f21g,

H = 4ECSng −
1

2
Dsz − EJ cosSp

F

F0
Dsx, s3d

whereEC is the charging energy andEJ the Josephson cou-
pling energy,EC@EJ for a charge qubit.F is the magnetic
flux generated by controlled classical magnetic field and
quantum cavity field andF0=h/2e the flux quanta. As a
control parameter, the dimensionless gate chargeng
=CgVg/2e is determined by the gate voltageVg applied on
the gate capacitanceCg. Quasispin operators

sz = u0lqk0uq − u1lqk1uq,sx = u0lqk1uq + u1lqk0uq

are defined in the charge qubit basissu0lq and u1lqd.
In Fig. 1, the dc-SQUID is located at the position of the

antinode of standing wave field in cavity, i.e.,z=L /2. Then
corresponding to the field decompositionBq=Br +Bnr the
magnetic fluxFq=Fr +Fnr enclosed by the dc-SQUID is
explicitly given by

Fr = − iSS "v

«0Vc2D1/2

sa − a†d,

FIG. 1. Schematic of the charge qubit-cavity system. Supercon-
ducting microwave cavity with parametersR=2.55 mm andL
=0.5 cm.
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Fnr = − iSo
j

MjS "v j

«0Vjc
2D1/2

sinS−
v j

c

L

2
Dsaj − aj

†d.

In a straightforward way, we derive the Hamiltonian of the
qubit-cavity system from Eq.s3d,

H = 4ECSng −
1

2
Dsz − EJ cossfc + fqdsx + "va†a

+ o
j

"v jaj
†aj , s4d

wherefc and fq are phase and “phase operator” generated
by the fluxFc andFq, respectively,

fc =
pFc

F0
,

fq = − if0sa − a†d − io
j

f jsaj − aj
†d

and

f0 =
pS

F0
S "v

«0Vc2D1/2

,

f j = Mj
pS

F0
S "v j

«0Vjc
2D1/2

sinS−
v j

c

L

2
D .

In the above discussions to achieve the simplified model
we have ignored the effect of the screening current. How-
ever, if the inductance of the loop of dc-SQUID is not zero,
the screening current will induce the additional decoherence.
In presence of the screening current, we cannot neglect the
difference between the practical magnetic fluxF threading
the dc-SQUID and the external magnetic fluxFx. It can be
determined by the following equationf15g

f = fx +
p

2
bm sinf,

where bm=2LIc/F0 is usually called screening parameter
and f=pF /F0 and fx=pFx/F0. This equation simply
shows that the total fluxF is the sum of the external flux and
the induced flux determined only byF itself. If the screening
parameterbm is small enough, we can approximately solve
this equation in a single value domain with the technique of
perturbation recursion up to the second order

f = fx +
p

2
bm sinfx + Sp

2
bmD2

sinfx cosfx. s5d

Whenbmp /2!1, i.e.,bm!2/p, we can ignore the effect of
the screening current. But the additional nonlinear terms con-
taining sfxd2 at least should also induce the additional non-
linear interaction between the resonant mode and the non-
resonant ones. This is the further result in the decoherence of
a charge qubit in the lossy cavity. However, to clearly dem-
onstrate the physics of the central results of our paper, we
supposebm!2/p and ignore the effect of the screening cur-
rent. Therefore we do not give much details for this problem.

III. MODE INTERACTION INDUCED BY NONLINEAR
COUPLING TO A CAVITY

As shown in Fig. 1, two spherical mirrors form a micro-
wave cavityf7g containing a single mode standing wave field
and an external classical magnetic field is also injected into
the cavity. In this paper, the geometry of cavity is described
by the parameters: the curvature radiusR=2.55 mm, the
width between two mirrorsL=0.5 cm. By some straightfor-
ward calculations, we get that the cavity fieldB
=s"v /e0Vc2d1/2=7.52310−11 T and f0=pFq/F0=1.14
310−5. In a low photon number cavity, we find thatfq
!fc, thus there is only a weak polynomial nonlinearity in
Eq. s4d.

To simplify the Hamiltonian in Eq.s4d, we expand
cossfc+fqd in terms of small quantityfq up to the second
order,

cossfc + fqd = S1 −
1

2
fq

2Dcosfc − fq sinfc. s6d

Obviously we can know that the second order termfq
2

=sfr +fnrd2 includes the termfrfnr which results in the
nonlinear coupling between resonant mode and nonresonant
modes of cavity field, on which the results of this paper is
based. The first order termfq is linearly dependent offr and
fnr, which cannot lead to the coupling between resonant
mode and nonresonant ones. Therefore the nonlinear cou-
pling in terms offq

2,frfnr will induce energy dissipation
and quantum decoherence of the charge qubit in a lossy cav-
ity simulataneously.

To clearly demonstrate the effect of quantum decoherence
of a charge qubit in a lossy cavity we tune the gate voltage
Vg such thatng=1/2 to eliminate the effect of background
charge fluctuation up to the linear order. Then the effective
Hamiltonian corresponding to a standard quantum measure-
ment modelf22g reads

H = Hs0du0lk0u + Hs1du1lk1u, s7d

which is diagonal with respect to eigenstates of quasispin
operatorsx, u0l= u0lq+ u1lq and u1l= u0lq− u1lq.

As seen in Eq.s6d, the second order termfq
2,frfnr re-

sults in the interaction,saj −aj
†dsa−a†d between single reso-

nant mode and other nonresonant ones, while the first order
termfq results in the forced termssa−a†d andsaj −aj

†d in the
above Hamiltonian. With the rotating wave approximation
sRWAd, we can drop down the terms ofa2 sa†2d and
ajasaj

†a†d in cossfc+fqd and get an effective Hamiltonian

Hskd = Hs
skd + HI

skd + HB
skd + Nskd, s8d

where

Hs
skd = "Vskda†a − ijskdsa − a†d,

HI
skd = o

j

gj
skdsaja

† + aj
†ad,
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HB
skd = o

j

"v jaj
†aj − io

j

j j
skdsaj − aj

†d

and the parameters in the above equation can be explicitly
expressed as

Nskd =
s− 1dk

"
sf0

2EJ cosfc − EJ cosfcd,

Vskd = v +
s− 1dk

"
f0

2EJ cosfc,

gj
skd =

s− 1dk

"
f jf0EJ cosfc,

jskd =
s− 1dk

"
f0EJ sinfc,

j j
skd =

s− 1dk

"
f jEJ sinfc s9d

for k=0,1.HereHs
skd describes a system with a forced oscil-

lator of frequencyVskd, HB
skd describes a bath of many forced

oscillators of frequencyv js, andHI
skd describes the coupling

of the resonant mode to nonresonant modes. The coupling
constantgj

skd owns a Lorentz type factor, i.e.,

gj
skd ,

1

Îsv j − vd2 + Sg

2
D2

.

It means that the resonant mode of cavity field dominates the
strength of the interaction mostly.

IV. QUANTUM DISSIPATION OF RESONANT MODE OF
CAVITY FIELD

In this section, we study quantum dissipation of the reso-
nant mode of cavity field. In each component of the Hamil-
tonian in Eq.s8d, Hskd can result in quantum dissipation of
the resonant mode. To solve the dynamic equation governed
by the effective HamiltonianHskd, we rewrite the above
Hamiltonian into the new form

Hskd = "Vskdb†b + o
j

"v jbj
†bj + o

j

gj
skdsbjb

† + bj
†bd + wk

s10d

by defining a new set of bosonic operatorsbsb†d andbjsbj
†d,

which are the displacements of operatorsa andaj,

b = a + l, s11d

bj = aj + l j .

Here,wk is the constant,l andl j are dependent of the forced
termssa−a†d andsa−a†d of the effective HamiltonianHskd in
Eq. s8d.

For any coherent stateuala and ua jlaj
defined with respect

to annihilation operatorsa andaj, we get coherent stateualb

andua jlbj
defined with respect to annihilation operatorsb and

bj,

ualb = e−la*
ua − lla,

ua jlbj
= e−l ja j

*
ua j − l jlaj

. s12d

Obviously we can see that the effective HamiltonianHskd

in Eq. s10d describes a typical dissipative system of a single-
mode boson soaked in a bath of many bosonsswe have stud-
ied its wave function structure in detailsf23gd. The well-
known solutions of Heisenberg equations for the
HamiltonianHskd is given in Ref.f23g,

bskdstd = uskdstdbs0d + o
j

v j
skdstdbjs0d,

bj
skdstd = e−iv j tbjs0d + uj

skdstdbs0d + o
s

v j ,s
skdstdbss0d.

Wherebskdstd andbj
skdstd represent the time evolution of op-

eratorsb andbj. And we also get the solutions of Heisenberg
equations foraskdstd and aj

skdstd representing the time evolu-
tion of operatora andaj driven by the HamiltonianHskd as

askdstd = bskdstd − l,

aj
skdstd = bj

skdstd − l j , s13d

where

uskdstd = e−sg/2dte−isVskd+DVskddt,

v j
skdstd = −

gj
skde−iv j ts1 − e−isVskd+DVskd−v jdte−sg/2dtd

Vskd + DVskd − v j − i
g

2

,

uj
skdstd = −

gj
skde−iv j ts1 − e−isVskd+DVskd−v jdte−sg/2dtd

Vskd + DVskd − v j − i
g

2

,

v j ,s
skdstd = −

gj
skdgs

skde−iv j t

Vskd + DVskd − vs − i
g

2

311 − e−isVskd+DVskd−v jdte−sg/2dt

Vskd + DVskd − v j − i
g

2

+ L2 ,

L = t, whens= j ,

L =
e−isvs−v jdt − 1

vs − v j
, whensÞ j , s14d

and DVskd is frequency shift ofVskd corresponding to two
different HamiltoniansHskd. In general,DVskd can be ab-
sorbed intoVskd, i.e., Vskd,Vskd+DVskd. If the forced terms
of the Hamiltonian in Eq.s8d are absent, we will getaskdstd
=bskdstd andaj

skdstd=bj
skdstd.
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Here we calculate the time evolution of the mean photon
number of the resonant mode of cavity field corresponding to
two different HamiltoniansHskd. When we assume that the
initial state of all modes of cavity field is prepared in Fock
state un,hnjjla= unla ^ uhnjjla, the mean photon number of
resonant mode corresponding toHk is calculated as

nskdstd = kaskd†stdaskdstdl = e−gtn + Fsl,hl jj,hnjj,td, s15d

where the time dependent constantFsl ,l j ,nj ,td is dependent
of l, l j andnj and the time dependent termn exps−gtd char-
acterizing the quantum dissipation induced by nonresonant
modes. Thus we can know that the time evolution of the
mean number of the resonant modenskdstd is the sum of two
parts: s1d quantum dissipationn exps−gtd induced by non-
resonant modes;s2d the constantFsl ,hl jj ,hnjj ,td generated
by the first order termfq and mean number of nonresonant
modesnj.

Through some simple calculations, we find that the con-
stant Fsl ,hl jj ,hnjj ,td will approach zero when the forced
terms vanish and the initial state of the bathsnonresonant
modesd in vacuum stateuhnjjl= uh0jjl. Then we get the same
results of Ref.f24g that the time evolution of mean photon
number of resonant mode is

nskdstd = ne−gt. s16d

It means that vacuum fluctuation of nonresonant modes leads
to quantum dissipation of resonant mode when the forced
terms of operatorsa and aj are absent. In other words, the
nonlinear coupling directly causes quantum dissipation of the
resonant mode in a lossy cavity.

In contrast to the model of single boson interacting with a
bath of many bosons, the constantFsl ,l j ,nj ,td provides the
different effect that the mean number of resonant mode of
cavity field does not approach zero when timet→`.

V. DECOHERENCE INDUCED BY DISSIPATION OF THE
RESONANT MODE

Technically the process of quantum decoherence is
described by the time evolution of the reduced density matrix
of the coupled qubit-cavity system. To analyze it, we can
calculate reduced density matrix for the time evolution of the
charge qubit. The pure decoherence process means that the
off diagonal elements of the reduced density matrix of the
qubit vanish, while the diagonal elements remain unchanged
in an ideal case.

Now if the initial state of cavity field is in coherent state,
i.e., the resonant mode of cavity field is in a coherent state
ual and other nonresonant modes of cavity field in coherent
stateuha jjl, the initial state of the total qubit-cavity system
can be written as

uCs0dl = sC0u0l + C1u1ld ^ ua,ha jjla.

Then we can easily get the time evolution of the wave func-
tion for the qubit-cavity system

uCstdl = UstduCs0dl = C0u0l ^ uws0dstdl + C1u1l ^ uws1dstdl,

s17d

where Uskdstd=exps−iH skdtd are evolution operators for the
effective HamiltoniansHskd and

uwskdstdl = Uskdstdua,ha jjla. s18d

Then we can obtain time evolution of density matrix for the
qubit-cavity system

rstd = ucstdlkcstdu s19d

and calculate the reduced density matrix of the qubit

rsstd = C0
*C0u0lk0u + C1

*C1u1lk1u + kws1dstduws0dstdlC1
*C0u0lk1u

+ H.c. s20d

As a measure of the coherence of quantum systemf25g, the
decoherence factor of charge qubit can be calculated as

Dstd = ukws1dstduws0dstdlu. s21d

For any coherent state, we have

ualb = expfab†s0d − a*bs0dgu0lb.

Obviously we can see that

Uskdstdu0,h0jjlb = 0.

Formally, we can define

Oskdstd = UskdstdOs0dUskd†std

for any operatorOskd corresponding toHskd and get the time
dependent equation

dOskdstd
dt

= ifOskdstd,Hkg. s22d

So we have Askdstd=Uskdstdbs0dUskd†std and Aj
skdstd

=Uskdstdbjs0dUskd†std. By substituting −i into Heisenberg
equation withi, we can get the solutions of Eq.s22d

Askdstd = uskd*stdbs0d + o
j

v j
skd*stdbjs0d,

Aj
skdstd = eiv j tbjs0d + uj

skd*stdbs0d + o
s

v j ,s
skd*stdbss0d.

To demonstrate the effect of quantum dissipation of reso-
nant mode induced by nonresonant modes on decoherence of
charge qubit, here we do not consider the effect of the forced
terms and setl=0 andl j =0.

In the above section, we have known that the vacuum
fluctuation induced by the nonresonant modes can result in
quantum dissipation of the resonant mode. So we assume
that the initial state of nonresonant modes is in vacuum state
uh0jjlb= uh0jjla and initial state of resonant mode coherent
stateualb= uala. And time evolution of decoherence factor of
the charge qubit is

Dstd = e−suau2/2dfuus1dstd − us0dstdu2+o j uv j
s1dstd − v j

s0dstdu2g. s23d

With commutation relationfAskdstd ,Askd†stdg=1, we have
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uuskdstdu2 + o
j

uv j
skdstdu2 = 1. s24d

According to Eq.s18d, we have

uwkstdl = uauskdstdlb ^ P juav j
skdstdlbj

. s25d

And the decoherence factor in Eq.s23d becomes

Dstd = e−uau2+suau2/2dfus1d* stdus0dstd+us1dstdus0d* stdg

3 esuau2/2do jfv j
s1d* stdv j

s0dstd+v j
s1dstdv j

s0d* stdg. s26d

From the above results in Eq.s9d and Eq.s14d, we know
that the termv j

s1d*stdv j
s0dstd is proportional to f j

2f0
2,f0

4

which is a 4th order term of nonlinear expansion in Eq.s6d.
Then we can omit it in the calculation of the decoherence
factor and get

Dstd = e−uau2„1−e−gt cosfsVs1d+DVs1d−Vs0d−DVs0ddtg…. s27d

Figure 2 shows that the decoherence factorDstd will de-
crease in the oscillating decay form. In the above equation,
the term exps−gtd represents quantum dissipation induced by
the nonresonant modes. Therefore we obtain the central re-
sult of this paper that quantum dissipation of the resonant
mode induced by the nonresonant modes directly results in
quantum decoherence of the charge qubit in the lossy cavity.
At long times, the decoherence factorDstd=exps−uau2d is
determined by the mean photon numberuau2. At short times,
the decoherence factor becomesDstd=exps−Gtd. Where the

decay rate of decoherenceG is proportional to the mean pho-
ton number of resonant modeuau2 and decay rateg of quan-
tum dissipation of resonant mode,G=guau2.

VI. CONCLUSIONS

Before concluding this paper, we would like to note the
influence of the fluctuations of gate chargeng around 1/2.
We notice that the classical fluctuation of gate voltage is not
the unique source of decoherence. The most recent investi-
gations have demonstrated that 1/f noise is due to the back-
ground charge fluctuation, which also plays an important role
in the decoherence of a charge qubitf14,26,27g. Maybe there
also exists some unknown source of decoherence. For sim-
plicity we deal with the decoherence of a charge qubit by
considering that such fluctuations can indeed occur in a real
dc-SQUID, but may be ignored so as to bring out more
clearly the mechanism. Our investigation only emphasizes
the role that nonlinear coupling plays in the decoherence of a
charge qubit in some cases.

In this paper, we have discovered the phenomenon of
quantum decoherence of a charge qubit in a lossy cavity,
where we adopt the quasimode approach to deal with a lossy
cavity. We find that the nonlinear coupling between the
charge qubit and the cavity field can induce the interaction
between resonant mode and nonresonant modes of cavity
field. Based on this observation, we achieve a model for this
decoherence mechanism that a forced oscillatorsresonant
moded interacts with a bath of many forced oscillatorssnon-
resonant modesd. The decoherence factor is calculated to
demonstrate an oscillating decay of quantum coherence of a
charge qubit in the lossy cavity. In addition, we have shown
that vacuum fluctuation provided by these nonresonant
modes can cause the quantum dissipation of the resonant
mode. Consequently, the quantum dissipation of the resonant
mode directly results in quantum decoherence of the charge
qubit. This analysis describes the source of quantum deco-
herence for a charge qubit in the lossy cavity.
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