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From the viewpoint of quasinormal modes, we describe a decoherence mechanism of charge qubit of
Josephson junctiongl) in a lossy microcavity, which can appear in a realistic experiment for quantum
computation based on a JJ qubit. We show that nonlinear coupling of a charge qubit to the quantum cavity field
can result in additional dissipation of the resonant mode due to the effective interaction between those non-
resonant modes and the resonant mode, which is induced by the charge qubit itself. We calculate the charac-
teristic time of the decoherence by making use of the system plus bath method.
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[. INTRODUCTION based quantum computing in large scale and the mechanism
of decoherence of JJ qubit is not very clear, especially in the
The superposition principle is most basically governingpresence of external field. The fluctuation of background
the quantum world1]. It is also the foundation of quantum charge is a well-known source of quantum decoher¢éhdg
information technology. The ideal coherent superpositiorbut it is not the unique one. For a real dc-SQUID, the fluc-
state can only be preserved in the quantum world isolatetuations of gate voltage and magnetic flux produced by the
from external influences. However, the influence of the surscreening current circulating around the dc-SQUID may also
rounding environment can never be blocked off completelycause additional quantum decoherence in the charge-qubit—
Now the coherence is an essential requirement for quanturcavity system. To bring out more clearly the physical mecha-
information and the decoherence will result in errors whichnism of nonlinear decoherence described in this paper, we
reduce the power of quantum computation and quantuncan avoid the effect of screening current in the physical case
communication or even destroys it. The quantum decohemf the dc-SQUID screening parametgg,=2LI1./®y<2/7
ence has become the biggest obstacle to implementation pf5]. HereL is the loop inductance of dc-SQUID amgdthe
quantum computation. In practice, we need a qubit with longritical current of Josephson junction afg flux quanta. To
decoherence time and a longer lifetime medium to implesimplify the analysis of our paper and demonstrate more
ment a quantum logic gate. To overcome quantum decoheclearly the physics of our nonlinear decoherence mechanism,
ence, one should know dynamic details theoretically and exwe do not consider fluctuations of the gate voltage and other
perimentally in various physical systems including all kindssources of decoherence. Most current investigations for inte-
of qubits. grating and manipulating various kinds of JJ qubits mainly
Recently in solid state based quantum computation, Joconcern the idealized cavity without damping. Naturally one
sephson junctiortJ) qubits (charge qubit, flux qubif2] or ~ can question what will happen if we place a qubit in a non-
their hybridizations have demonstrated large potential asideal cavity. That is our direct motivation for this paper. Here
candidates for scalable quantum computation. On the onwe will deal with quantized field in a lossy cavity with the
hand, the Rabi oscillation in a Cooper-pair b@harge qu- quasi-normal-mode approaEh7-20. In this treatment, cav-
bit) [3], the existence of two-qubit stat¢d] and the en- ity modes in a lossy cavity are divided into a single resonant
tanglement between a flux qubit and a superconductingnode and other nonresonant multimodes. Due to the nonlin-
guantum interference devi¢8QUID) [5] have been realized ear coupling of the charge qubit to the cavity field, the effec-
experimentally. Up to now, the decoherence time of a Jdive interaction between those nonresonant modes and the
qubit has been the order of &s [6]. On the other hand, to resonant mode causes an additional dissipation of the reso-
implement quantum computation, one should integrate mangant mode. This is just the mechanism of quantum decoher-
qubits to form a quantum coherent network. To this end, a&nce for the charge qubits in a lossy cavity.
longer lifetime medium is required to transfer quantum in- The paper is organized in the following sections. With the
formation among these qubits in the network. Some investigquasi-normal-mode approach, the model in Sec. Il describes
gations have shown that the quantized field in a microwave charge qubit interacting with a lossy cavity. In Sec. Ill, we
cavity, whose lifetime is of order 1 ms, might be a gooddemonstrate how the nonlinear coupling of a charge qubit to
candidate[7]. For this purpose, the integration of JJ qubit cavity field induces the effective interaction between reso-
and cavity QED has become a focus in exploring the JJ qubitant mode and nonresonant ones. In Sec. IV, we find that the
based quantum computing-13. nonlinear coupling leads to energy dissipation of resonant
In spite of these exciting advances, the relatively shorimode of cavity field which is linked to quantum decoherence
coherence time is still a problem in implementing the JJof a charge qubit in a lossy cavity in Sec. V.
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wherea'(a) and ajT(a]-) are the creatiorfannihilation) opera-

FIG. 1. Schematic of the charge qubit-cavity system. Supercontors corresponding to single resonant mode of frequancy
ducting microwave cavity with parametei®=2.55 mm andL and nonresonant modes of frequenaigsV (V)) the electro-

=0.5cm. magnetic mode volume corresponding to resonant mode and
nonresonant mode, respectively, dnthe length of the cav-
Il. MODEL: CHARGE QUBIT COUPLED ity. The constanM; in Eq. (1) is proportional to a Lorentzian
TO THE LOSSY CAVITY [19]
In this paper, we consider a single-mode quantum field in

a lossy cavity with frequencyw ~ 30 GHz (typically in the AZ
microwave domainand quality factorQ~ 10° coupled to a M. = 2 )
charge qubit, in which the charging energ§:~ 122 ueV ! v\?'
and the Josephson coupling eneifgy~ 34 ueV [14]. The \/(wj - w)’+ (‘)

charge qubit considered in this paper is a dc-SQUID consist-
ing of two identical Josephson junctions enclosed by a su
perconducting loop. It is located in a lossy cavity which is
produced by a semi-transparent mirror. A similar case is dis
cussed for quantum dissipation of semiconductor exciton in
lossy cavity[16]. In this paper, we can describe the magneti
field in a lossy cavity with the quasimode approati-2Q.

And we can divide cavity modes into two parts: a Smglelossy cavity contained only one quasimode

resonant mode and other nonresonant ones. : :
. . ; . The Hamiltonian for a charge qubitic-SQUID can be
In this case, the magnetic flux threading the dc-SQUID ISyritten as in Ref[21] ge qubl QUID

generated by magnetic fiel8=B.+B,, which consists of

external classical magnetic fieR}, and quantum cavity field 1 q>

B, [9]. To demonstrate the physics of our result, we do not H= 4EC<ng_ —>Uz‘ E; co<w—)gx, (3)
consider the effect of the screening current. Similarly the 2 Do

total magnetic flux threading dc-SQUID could be a sum of , ,
two parts d=d,+d,, where d,=[B,-dS is the external whereE. is the charging energy ar; the Josephson cou-

classical flux threading the dc-SQUIBP,=/B-dS the pling energy,Ec>E; for a charge qubit® is the magnetic

cavity-induced quantum flux through the dc-SQUID and sflux generated by controlled classical magnetic field and
the area bounded by the dc-SQUID. quantum cavity field andby=h/2e the flux quanta. As a

For an ideal cavity, we can describe a cavity field with aCONtrol parameter, the dimensionless gate charge
set of normal modes with different frequencies. Similarly as— CoVq/ 2€ is determined by the gate voltadg applied on
in a laser theony[18], we adopt a quasimode approach to the gate capacitandg,. Quasispin operators
describe the quantum cavity fie}, in terms of a discrete set
of quasimodes of the lossy cavity, each of whichsonant 0z= |O>q<0|q B |1>q<1|q"’x: |O>q<1|q+ |1>q<0|q
mode has a finite quality factoQ and there exist many
modes of the univers@onresonant modgsorresponding to
each quasimode. Then the quantum cavity figjdcould be
composed of resonant mode of cavity fi@d and nonreso-
nant modes of cavity fiel®,,, B;=B,+B,,. In this paper, we
assume that the lossy cavity of our interest contains only on

where v is the decay rate of a quasimode of cavity,the
bandwidth associated with the cavity wall transparency and
w the central frequency of the resonant mode of cavity. It is
Bbvious thatM; will acquire the maximum value when the
Cfrequency of nonresonant modgis very close to the central
frequency of the resonant mode In our investigation, the

are defined in the charge qubit ba§), and|1),).

In Fig. 1, the dc-SQUID is located at the position of the
antinode of standing wave field in cavity, i.e5L/2. Then
corresponding to the field decompositi@y=B,+B, the
magnetic flux®,=®+®d, enclosed by the dc-SQUID is
explicitly given by

quasimode.

Figure 1 shows that the dc-SQUID lies in tkez plane 12
and the direction of the quantum cavity field is perpendicular P, =- iS( ho ) (a-ah
to the plane, gV ’
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_ ho, V2 wL . IIl. MODE INTERACTION INDUCED BY NONLINEAR
D ==iS2 M| —15 | sin[ -1~ |(a-a). COUPLING TO A CAVITY
j 80VjC c2

As shown in Fig. 1, two spherical mirrors form a micro-
wave cavity[ 7] containing a single mode standing wave field
and an external classical magnetic field is also injected into

In a straightforward way, we derive the Hamiltonian of the
qubit-cavity system from Eq3),

1 ; the cavity. In this paper, the geometry of cavity is described
H=4Ec|ng=7 |0~ By coq .+ pgoy + fiwa'a by the parameters: the curvature radiRs2.55 mm, the
width between two mirror&=0.5 cm. By some straightfor-

+Ehwja;raj, (4 ~ward calculations, we get that the cavity fiel®
i =(hol V) ?=752x 101 T and ¢o=md,/Py=1.14
cf<105' In a low photon number cavity, we find thaj,

where ¢ and ¢, are phase and “phase operator” generate < ¢, thus there is only a weak polynomial nonlinearity in

by the fluxd, and ®,, respectively,

Eq. (4).
7D, To simplify the Hamiltonian in Eq.(4), we expand
¢ = o cog ¢+ ¢g) in terms of small quantityp, up to the second
0
order,

=—igpa-ah) —-i>, ¢(a —a 1
#a=Idolaa) §¢,< 3 co g + by = (1—5¢5>cos¢c— dosinge.  (6)
and
s/ 7 2 Obviouslyzvye can know that the se(;ond order _te
¢0=7T_< w ) , :(¢>r.+¢m) mclydes the term¢, ¢, which results in the
D\ gV A nonlinear coupling between resonant mode and nonresonant
modes of cavity field, on which the results of this paper is
7S ke \Y2 w: L based. The first order terg, is linearly dependent of, and
d’j:Mja(_J_) sm(— ELE) ¢nr» Which cannot lead to the coupling between resonant
0 mode and nonresonant ones. Therefore the nonlinear cou-
In the above discussions to achieve the simplified modepling in terms of 2~ ¢, ¢, Will induce energy dissipation
we have ignored the effect of the screening current. Howand quantum decoherence of the charge qubit in a lossy cav-
ever, if the inductance of the loop of dc-SQUID is not zero,ity simulataneously.
the screening current will induce the additional decoherence. To clearly demonstrate the effect of quantum decoherence
In presence of the screening current, we cannot neglect thef a charge qubit in a lossy cavity we tune the gate voltage
difference between the practical magnetic fibxthreading Vg such thatng=1/2 to eliminate the effect of background
the dc-SQUID and the external magnetic fld. It can be  charge fluctuation up to the linear order. Then the effective
determined by the following equatidi5] Hamiltonian corresponding to a standard quantum measure-
ment mode[22] reads

SOVj C2

T .
= + —
7t s d H = HOJ0)0] + H|2)(1, ™
where B,,=2LI./®, is usually called screening parameter
and ¢=7®/d, and ¢,=7d, /Dy This equation simply
shows that the total flu$b is the sum of the external flux and
the induced flux determined only Iy itself. If the screening
parameterB,, is small enough, we can approximately solve
this equation in a single value domain with the technique o
perturbation recursion up to the second order

which is diagonal with respect to eigenstates of quasispin
operatoray, |0)=|0)q+|1)q and|1)=[0)q=|1),.

As seen in Eq(6), the second order terr¢§~ by by TE-
sults in the interactiow(aj—af)(a—a’r) between single reso-
pant mode and other nonresonant ones, while the first order
term ¢, results in the forced terms- ah and(a —ajT) in the
above Hamiltonian. With the rotating wave approximation
(RWA), we can drop down the terms af® (a'® and

2
T ) a .
b=t E'Bm SNy + (E'Bm> sin ¢y cosgy.  (5) aja(afa’) in cog ¢+ pg) and get an effective Hamiltonian

Wheng,m/2<1, i.e.,Bn<2/m, we can ignore the effect of H® = HE + M + HE + N®), (8)
the screening current. But the additional nonlinear terms con-

taining (¢,)? at least should also induce the additional non-yhere

linear interaction between the resonant mode and the non-

resonant ones. _This is the furthgr result in the decoherence of H<Sk> =10Wata-igk(a—-ah),

a charge qubit in the lossy cavity. However, to clearly dem-

onstrate the physics of the central results of our paper, we

suppose3,,< 2/ and ignore the effect of the screening cur- HW=> g}k)(ajaT + a]Ta),
rent. Therefore we do not give much details for this problem. j
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HE' =2 iwjafa -2 g9 - a)
] J

and the parameters in the above equation can be explicitly

expressed as

(=D~
A

N®

(43E; cos¢, — E;cosdy),

_ k
CD 42 coses,

QW=+
T

(- ¥
0 =" doFs cos,

_ 1k
§(k) = %(ﬁOEJ sin ¢,

_1k
=

#Eysin ¢ (9)
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and|aj)bj defined with respect to annihilation operatbrand
ik
|a’>b e |a —Na

|aj>bj :e'xi“i|aj —)\j>aj. (12)

Obviously we can see that the effective Hamiltoni
in Eq. (10) describes a typical dissipative system of a single-
mode boson soaked in a bath of many bodseves have stud-
ied its wave function structure in detail23]). The well-

known solutions of Heisenberg equations for
HamiltonianH® is given in Ref.[23],

b®(t) =uM()b(0) + X v{(t)b;(0),
j

the

biM(t) = e7“ith;(0) + U (Hb(0) + X v{(t)b(0).

Whereb®(t) and b}l‘)(t) represent the time evolution of op-
eratorsb andb;. And we also get the solutions of Heisenberg
equations fora®(t) anda(t) representing the time evolu-

_ Kk . . . i ) ) .
for k=0, 1. HereH(S) describes a system with a forced oscil- tion of operatora and a; drlven by the HamiltoniaH® as

lator of frequencyQ®, Hg‘) describes a bath of many forced

oscillators of frequencyy;s, andHI(k) describes the coupling

of the resonant mode to nonresonant modes. The coupling

constantg](k) owns a Lorentz type factor, i.e.,
1

(K
9 y 2"
. — 2+ —_—
(a)] ) (2)

It means that the resonant mode of cavity field dominates the

strength of the interaction mostly.

IV. QUANTUM DISSIPATION OF RESONANT MODE OF
CAVITY FIELD

In this section, we study quantum dissipation of the reso-
nant mode of cavity field. In each component of the Hamil-
tonian in Eq.(8), H¥ can result in quantum dissipation of
the resonant mode. To solve the dynamic equation governed

by the effective HamiltoniarH®, we rewrite the above
Hamiltonian into the new form

H® =40%b'b + X hiwbb; + > gi¥(bjb" + blb) + ¢
j j

(10

by defining a new set of bosonic operatbts’) and bj(bj*),
which are the displacements of operataranda,

b=a+\, (11)

bj:aj+)\j.

a®(t) =b®(t) -\,

() =bM (1) -\, (13)

where

u(k)(t) — e—(y/z)te—i<n<k>+m(k>)t

i s k) k_ ) B
U(k)(t) _ g,(k)e o1 —¢@ i(QM+a0® i)y
j T H

W+ AQW - —i Y
2

K it 1 _ ami(QR+AQ M-t (vt
el -e e
TUCERE S 3
QW+ AQW - —i Y
2

K) (K) o—i 0
gl !

ojet) =~
009+ AQ® - o - i%

1 — g i(@M+20M-w)t-(y2)t

+A|,
Q(k)+AQ(k)—wj—i%/

A=t, whens=j,

A= e_i(ws_wj)t -1

W~ (1)j

whens # |, (14)

Here, ¢y is the constant. and); are dependent of the forced and AQ™® is frequency shift ofQ® corresponding to two

terms(a—a’) and(a—a) of the effective Hamiltoniat® in
Eq. (8).

For any coherent state), and |aj>aj defined with respect
to annihilation operatora anda;, we get coherent stafe),,

different HamiltoniansH®. In general,AQ® can be ab-
sorbed intoQ®, i.e., QW ~ QKW +AQX. If the forced terms
of the Hamiltonian in Eq(8) are absent, we will gea®(t)

=b®(t) anda(t)=b(1).
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Here we calculate the time evolution of the mean photon |[W(t)) = U(t)|W(0)) = Cy|0) @ |0 @(t)) + C1|1) ® |D(1)),
number of the resonant mode of cavity field corresponding to 17)
two different HamiltoniansH®¥. When we assume that the
initial state of all modes of cavity field is prepared in Fock where U®(t)=exp(—-iH®t) are evolution operators for the
state [n,{n;})a=|M,®[{n;})a, the mean photon number of effective Hamiltoniang4™ and
resonant mode correspondingHi is calculated as Wi — 1 1K)

le™() = U] a{a}a (18

n®(t) = @91 () =e"n+FO\{NLILY, (15 Then we can obtain time evolution of density matrix for the
qubit-cavity system

where the time dependent const&uk ,\;,n;,t) is dependent
of A, A; andn; and the time dependent temrexp(—t) char- p(t) =[O Xg()| (19
acterizing the quantum dissipation induced by nonresonani,q calculate the reduced density matrix of the qubit
modes. Thus we can know that the time evolution of the
mean number of the resonant madl(t) is the sum of two  p(t) = CoCol0X0] + C1C4|1)(1| + (¢ P(1)| V(1)) C1Co|0)(1]
parts: (1) quantum dissipatiom exp(—yt) induced by non- +He (20)
resonant modeg?2) the constant(\,{\;},{n;},t) generated
by the first order termp, and mean number of nonresonant As a measure of the coherence of quantum sy$@5p the

modesn;. decoherence factor of charge qubit can be calculated as
Through some simple calculations, we find that the con- 1/ (D] (0

stant F(\,{\;},{n;},t) will approach zero when the forced D(t) = K™ Ol W)]. 2D

terms vanish and the initial state of the bationresonant For any coherent state, we have

mode$ in vacuum staté{n;})=|{0;}). Then we get the same B + .
results of Ref[24] that the time evolution of mean photon |a)y = exab'(0) = a'b(0)]|0).
number of resonant mode is Obviously we can see that

n(k)(t) =ne N, (]_6) U(k)(t)|ou{0j}>b =0.
) Formally, we can define

It means that vacuum fluctuation of nonresonant modes leads © © Wt
to quantum dissipation of resonant mode when the forced O™(t) = U™ ()OO U™(t)
terms of operatora and a; are absent. In other words, the ¢, any operatoO® corresponding t® and get the time
nonlinear coupling directly causes quantum dissipation of th%ependent equation
resonant mode in a lossy cavity.

In contrast to the model of single boson interacting with a do™(t)

_irAK
bath of many bosons, the constdith ,\j,n;,t) provides the d I[O™(1). Hil- (22)
different effect that the mean number of resonant mode of . . ot ®
cavity field does not approach zero when titre %. So we have A¥(1)=URHbOUY(H) and A"(D)

=UM(t)b;(0)U™MT(t). By substituting + into Heisenberg
equation withi, we can get the solutions of E(R2)
V. DECOHERENCE INDUCED BY DISSIPATION OF THE

RESONANT MODE AR (1) =u®" ()b(0) + X v (1)b;(0),
j

Technically the process of quantum decoherence is
described by the time evolution of the reduced density matrix Koy — ot K)* K)*
of the coupled qubit-cavity system. To analyze it, we can AJ( v=¢ 7by(0) u} " (0b(0) +§ UJ(S) (b(0).
calculate reduced density matrix for the time evolution of the
charge qubit. The pure decoherence process means that theTo demonstrate the effect of quantum dissipation of reso-
off diagonal elements of the reduced density matrix of thehant mode induced by nonresonant modes on decoherence of
qubit vanish, while the diagonal elements remain unchangegeharge qubit, here we do not consider the effect of the forced
in an ideal case. terms and sek=0 andA\;=0.

Now if the initial state of cavity field is in coherent state, In the above section, we have known that the vacuum
i.e., the resonant mode of cavity field is in a coherent statéluctuation induced by the nonresonant modes can result in
|y and other nonresonant modes of cavity field in coherenguantum dissipation of the resonant mode. So we assume
state|{aj}>, the initial state of the total qubit-cavity system that the initial state of nonresonant modes is in vacuum state

can be written as |{Oj}>b=|{0j}>a and initial state of resonant mode coherent
state|a),=|a),. And time evolution of decoherence factor of
[W(0)) = (Col0) + Co|1)) @ |ev{ay})a the charge qubit is

= (a2 ® - 'O Przoi Mo - o 2]
Then we can easily get the time evolution of the wave func- D()=e Y : S
tion for the qubit-cavity system With commutation relatiofA®(t), A®T(t)]=1, we have
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FIG. 2. Decoherence factd(t) in Eq. (27) as a function of
time t with the value ofa=2.

U O + X o =1. (249)
]
According to Eq.(18), we have
(1)) =|au® (1), ® TTj v} (O), . (25)
And the decoherence factor in E@3) becomes
D(t) = el (P12 u® muOm+uPou® v)
w gla?2zi[vf" v %0+ Vv ] (26)

From the above results in E) and Eq.(14), we know
that the termv}l) (t)v]@(t) is proportional to ¢¢j~ by
which is a 4th order term of nonlinear expansion in Ej.

PHYSICAL REVIEW A71, 032302(2009

decay rate of decoherentes proportional to the mean pho-
ton number of resonant mode|? and decay rate of quan-
tum dissipation of resonant modgs y|a/|?.

VI. CONCLUSIONS

Before concluding this paper, we would like to note the
influence of the fluctuations of gate chamgaround 1/2.

We notice that the classical fluctuation of gate voltage is not
the unique source of decoherence. The most recent investi-
gations have demonstrated thaf hbise is due to the back-
ground charge fluctuation, which also plays an important role
in the decoherence of a charge quii#,26,27. Maybe there
also exists some unknown source of decoherence. For sim-
plicity we deal with the decoherence of a charge qubit by
considering that such fluctuations can indeed occur in a real
dc-SQUID, but may be ignored so as to bring out more
clearly the mechanism. Our investigation only emphasizes
the role that nonlinear coupling plays in the decoherence of a
charge qubit in some cases.

In this paper, we have discovered the phenomenon of
quantum decoherence of a charge qubit in a lossy cavity,
where we adopt the quasimode approach to deal with a lossy
cavity. We find that the nonlinear coupling between the
charge qubit and the cavity field can induce the interaction
between resonant mode and nonresonant modes of cavity
field. Based on this observation, we achieve a model for this
decoherence mechanism that a forced oscilldtesonant
mode interacts with a bath of many forced oscillatgren-
resonant modgs The decoherence factor is calculated to
demonstrate an oscillating decay of quantum coherence of a
charge qubit in the lossy cavity. In addition, we have shown

Then we can omit it in the calculation of the decoherencghat vacuum fluctuation provided by these nonresonant

factor and get
D(t) = elePae " cog@PVraa®-00-2000) (97

Figure 2 shows that the decoherence faddgt) will de-

modes can cause the quantum dissipation of the resonant
mode. Consequently, the quantum dissipation of the resonant
mode directly results in quantum decoherence of the charge
qubit. This analysis describes the source of quantum deco-
herence for a charge qubit in the lossy cavity.

crease in the oscillating decay form. In the above equation,

the term exp-t) represents quantum dissipation induced by
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