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We explore the physical mechanism to coherently transfer the quantum information of spin by connecting
two spins to an isotropic antiferromagnetic spin ladder system as data bus. Due to a large spin gap existing in
such a perfect medium, the effective Hamiltonian of the two connected spins can be archived as that of
Heisenberg type, which possesses a ground state with maximal entanglement. We show that the effective
coupling strength is inversely proportional to the distance of the two spins and thus the quantum information
can be transferred between the two spins separated by a longer distance, i.e., the characteristic time of
quantum-state transferring linearly depends on the distance.

DOI: 10.1103/PhysRevA.71.022301 PACS numberssd: 03.67.Hk, 03.67.Pp, 03.65.2w, 05.50.1q

Transferring a quantum state from a quantum bit to an-
other is not only the central task in the quantum communi-
cation but also is often required in scalable quantum comput-
ing based on the quantum networkf1g. In the latter, one
should connect different quantum predeceasing units in dif-
ferent locations with a medium called data bus. The typical
examples of quantum state transfer is the quantum storage
based on various physical systemsf2,3g, such as the qua-
sispin wave excitationsf4g. For the solid-state based quan-
tum computing at the large scale, it is very crucial to have a
solid system serving as such quantum data bus, which can
provide us with a quantum channel for quantum communi-
cation f5g. Most recently the simple spin chain, a typical
solid-state system, is considered as a coherent data bus
f6–8g. The quantum transmission of state is achieved by
placing two spins at the two ends of the chain. These
schemes may admit an efficient state transfer of any quantum
state in a fixed period of time of the state evolution, but the
crucial problem is the dependence of transferring efficiency
on communication distance. Usually the efficiency is in-
versely proportional to square or higher-order power of the
distance of the two spins, and thus such quantum-state trans-
mission can only work efficiently in a much shorter distance.

The aim of this paper is to solve this short-distance trans-
fer problem by replacing the simple spin chain with an iso-
tropic antiferromagnetic spin ladder. Because this kind of
spin ladder possesses a finite spin gap, an effective Heisen-
berg interaction can be induced in the stable ground-state
channel to achieve the maximally entangled states that
implement a faster quantum states transfer of two spin qubits
attached to this spin ladder system. Actually, when the spin
gap is sufficiently large comparing to the coupling strength
between two spin qubits and the spin ladder, the perturbation
method can be performed. Analytical and numerical results
show that the spin ladder system is a perfect medium through
which the interaction between two distant spins can be

mapped to an approximate Heisenberg-type coupling with a
coupling constant inversely proportional to the distance be-
tween the two separated spins.

It is well known that there are two ways to transfer quan-
tum information: one can first use the channel to share en-
tanglement with separated Alice and Bob and then use this
entanglement for teleportationf9g, or directly transmit a state
through a quantum data bus. For the latter it seems that the
long-distance entanglement is not necessary to interface dif-
ferent kinds of physical systems but it will be shown in this
paper that there hides an effective entanglement intrinsically.
In this sense a quantum state transmission can be generally
understood through such quantum entanglement.

We sketch our idea with the model illustrated in Fig. 1.
The whole quantum system we consider here consists of two
qubits sA and Bd and as23Nd-site two-leg spin ladder. In
practice, this system can be realized by the engineered array
of quantum dotsf10g. The total Hamiltonian

H = HM + Hq s1d

contains two parts, the medium Hamiltonian
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FIG. 1. Two qubitsA andB connect to as23Nd-site spin ladder.
The ground state ofH with a-type connectionfFig. 1sadg is singlet
stripletd when N is evensoddd, while for b-type connectionfFig.
1sbdg, one should have the opposite result.
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HM = J o
ki j l'

SW i ·SW j + Jo
ki j li

SWi ·SW j s2d

describing the spin-1/2 Heisenberg spin ladder consisting of
two coupled chains, and the coupling Hamiltonian

Hq = J0SWA ·SWL + J0SWB ·SWR s3d

describing the connections between qubitsA, B, and the lad-
der. In the termHM, i denotes a lattice site on which one
electron sits,ki j l ' denotes nearest-neighbor sites on the
same rung,ki j l i denotes nearest neighbors on either leg of
the ladder. In termHq, L andR denote the sites connecting to
the qubitsA andB at the ends of the ladder. There are two

types of the connection betweenSWAsSWBd and the ladder, which
are illustrated in Fig. 1. According to the Lieb’s theorem
f13g, the spin of the ground state ofH with the connection of
type a is zero soned when N is even soddd, while for the
connection of typeb, one should have an opposite result. For
the two-leg spin ladderHM, analytical analysis and numeri-
cal results have shown that the ground state and the first
excited state of the spin ladder have spin 0 and 1, respec-
tively f11,12g. It is also shown that there exists a finite spin
gap

D = E1
M − Eg

M , J/2 s4d

between the ground state and the first excited statessee the
Fig. 2d. This fact has been verified by experimentsf11g and is
very crucial for our present investigation.

Thus, it can be concluded that the medium can be robustly
frozen in its ground state to induce the effective Hamiltonian

Heff = JeffSWA ·SWB s5d

between the two end qubits. With the effective coupling con-
stantJef f to be calculated in the following, this Hamiltonian
depicts the direct exchange coupling between two separated
qubits. As the famous Bell states,Heff has singlets and trip-
lets eigenstates u j ,mlAB: u0,0l=1/Î2su↑ lAu↓ lB− u↓ lAu↑ lBd
and u1,1l= u↑ lAu↑ lB, u1,−1l= u↓ lAu↓ lB, u1,0l
=1/Î2su↑ lAu↓ lB+ u↓ lAu↑ lBd, which can be used as the chan-

nel to share entanglement for a perfect quantum communi-
cation in a longer distance.

The above central conclusion can be proved both with the
analytical and numerical methods as follows. To deduce the
above effective Hamiltonian we utilize the Fröhlich transfor-
mation, whose original approach was used successfully for
the superconductivity BCS theory. As a second-order pertur-
bation, the effective HamiltonianHeff>HM + 1

2fHq,Sg can be
achieved approximately by a unitary operatorU=exph−Sj,
where anti-Hermitian operatorS obeysHq+fHM ,Sg=0. Let
uml and Em are the eigenvectors and eigenvalues ofHM
=HsJ0=0d, respectively.

From the explicit expressions for the elementsSmn
=sHqdmn/ sEm−End, smÞnd, Smm=0, the matrix elements of
effective Hamiltonian can be achieved approximately as

knuHeffuml > Emdmn+ o
kÞm

sHqdnksHqdkm

2sEk − Emd
− o

kÞn

sHqdnksHqdkm

2sEn − Ekd
.

s6d

We useucglM sucalMd andEg sEad to denote groundsex-
citedd states ofHM and the corresponding eigenvalues. The
zero-order eigenstatesuml can then be written as in a joint
way

u j ,mlg = u j ,mlAB ^ ucglM,uca
jmsszdl = u j ,mlAB ^ ucalM .

s7d

Here, we have considered thatz-componentSz=SM
z +SA

z +SB
z

of total spin is conserved with respect to the connection
HamiltonianHq. SinceSM

z andSM
2 conserves with respect to

HM we can labelucglM as ucgssM ,sM
z ,dlM, and thensz=m

+sM
z can characterize the noncoupling spin stateuca

jmsszdl.
When the connections between two qubits and the me-

dium switch off, i.e.,J0=0, the degenerate ground states ofH
are justu j ,mlg with the degenerate energyEg and spin 0, 1,
respectively, which is illustrated in Fig. 2sad. When the con-
nections between the two qubits and the medium switch on,
the degenerate states with spin 0, 1 should split as illustrated
in Figs. 2sbd and 2scd. In the case withJ0!J at lower tem-
peraturekT,J/2, the medium can be frozen in its ground
state and then we have the effective Hamiltonian

Heff > o
j8,m8,j ,m,sz

ugk j ,muHquca
j8m8sszdlu2

Eg − Ea

u j ,mlggk j ,mu

= Jeff . Diag.S1

4
,
1

4
,
1

4
,−

3

4
D + «, s8d

where

Jeff = o
a

J0
2fLsadR*sad + RsadL*sadg

Eg − Ea

, s9d

« = o
a

3J0
2fuLsadu2 + uRsadu2g

4sEg − Ead
.

This just proves the above effective Heisenberg Hamiltonian
s5d. Here, the matrix elements of interactionKsad

FIG. 2. Schematic illustration of the energy levels of the system.
sad When the connections between two qubits and the medium
switch off sJ0=0d the ground states are degenerate.sbd and scd
When J0 switches on, the ground statessd and the first excited
statessd are either singlet or triplet. This is approximately equivalent
to that of two coupled spins.
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=MkcguSK
z ucas1,0dlM sK=S,Ld can be calculated only for the

variables of data bus medium. We also remark that because
Sz andS2 are conserved forHq, off-diagonal elements in the
above effective Hamiltonian vanish.

In temporal summary, we have shown that at lower tem-
peraturekT,J/2, H can be mapped to the effective Hamil-
tonians5d, which seemingly depicts the direct exchange cou-
pling between two separated qubits. Notice that the coupling
strength has the formJeff,gsLdJ0

2/J, wheregsLd is a func-
tion of L=N+1, the distance between the two qubits are
concerned. Here we take theN=2 case as an example. Ac-
cording to Eq.s11d one can getJeff=−1

4J0
2/J and 1

3J0
2/J when

A and B connect the plaquette diagonally and adjacently,
respectively. This result is in agreement to the theorem
f13,14g about the ground state and the numerical result when
J0@J. In the general case, the behaviorgsLd vs L is very
crucial for quantum information sinceL / uJeffu determines the
characteristic time of quantum-state transfer between the two
qubitsA andB. In order to investigate the profile ofgsLd, a
numerical calculation is performed for the systemsL=4, 5,
6, 7, 8, and 10, withJ=10, 20, 40, andJ0=1. The spin gap
between the ground statessd and first excited statessd are cal-
culated, which corresponds to the magnitude ofJeff. The nu-
merical result is plotted in Fig. 3, which indicates thatJeff
,1/sLJd. It implies that the characteristic time of quantum-
state transfer linearly depends on the distance and then guar-
antees the possibility to realize the entanglement of two
separated qubits in practice.

In order to verify the validity of the effective Hamiltonian
Heff, we need to compare the eigenstates ofHeff with those
reduced states from the eigenstates of the total system. In
general the eigenstates ofH can be written formally as

ucl = o
jm

cjmu j ,mlAB ^ ub jmlM , s10d

wherehub jmlMj is a set of vectors of the data bus, which is
not necessarily orthogonal. Then we have the condition
o jmucjmuM

2 kb jmub jmlM =1 for normalization of ucl. In this
sense the practical description of theA-B subsystem of two

qubits can only be given by the reduced density matrix,

rAB = TrMsuclkcud = o
jm

ucjmu2u j ,mlABk j ,mu

+ o
j8m8Þ jm

cj8m8
* cjmMkb j8m8ub jmlMu j ,mlABk j8,m8u,

s11d

whereTrM means the trace over the variables of the medium.
By a straightforward calculation we have

uc11u2 = uc1−1u2 = kcus 1
4 + SA

z ·SB
zducl,

uc00u2 = kcus 1
4 − SWA ·SWBducl, s12d

uc10u2 = 1 − 2uc11u2 − uc00u2.

Now we need a criterion to judge how close the practical
reduced eigenstate by the above reduced density matrixs11d
to the pure state for the effective two sites couplingHeff. As
we noticed, it has the singlet and triplet eigenstatesu j ,mlAB
in the subspace spanned byu0,0lAB with Sz=SA

z +SB
z =0, we

have uc11u2= uc10u2= uc1−1u2=0, uc00u2=1; for triplet eigenstate
u1,0lAB, we haveuc11u2= uc1−1u2= uc00u2=0, uc10u2=1. With the
practical HamiltonianH, the values ofucjmu2, i =1,2,3,4 are
numerically calculated for the ground stateucgl and first ex-
cited stateuc1l of finite systemsL=4, 5, 6, 7, 8, and 10 with
J=10, 20, and 40,sJ0=1d in Sz=0 subspace, which are listed
in Tables Isad, Isbd, and Iscd. It shows that, at lower tempera-
ture, the realistic interaction leads to the results aboutucjmu2,
which are very close to that described byHeff, even ifJ is not
so large in comparison withJ0.

We remark that the above tables reflect all the facts dis-
tinguishing the difference between the results about the en-
tanglement of two end qubits generated byHeff and H.
Though we have ignored the considerations for the off-
diagonal terms in the reduced density matrix, the calculation
of the feudalityFsu j ,mld; ·Mk j ,murABu j ,mlM = ucjmu2 further
confirms our observation that the effective Heisenberg-type
interaction of two end qubits can approximate the realistic
Hamiltonian very well. Then we can transfer the quantum
information between two ends of thes23Nd-site two-leg
spin ladder that can be regarded as the channel to share en-
tanglement with separated Alice and Bob. Physically, this is
just due to a large spin gap existing in such a perfect me-
dium, whose ground state can induce a maximal entangle-
ment of the two end qubits. We also pointed out that our
analysis is applicable for other types of medium systems as
data buses, which possess a finite spin gap. SinceL / uJeffu
determines the characteristic time of quantum state transfer
between the two qubits, the dependence ofJeff upon L be-
comes important and relies on the appropriate choice of the
medium.

In conclusion, we have presented and studied in detail a
protocol to achieve the entangled states and fast quantum
state transfer of two spin qubits by connecting two spins to a
medium which possesses a spin gap. A perturbation method,
the Fröhlich transformation, shows that the interaction be-
tween the two spins can be mapped to the Heisenberg-type

FIG. 3. The spin gaps obtained by numerical method for the
systemsL=4, 5, 6, 7, 8, and 10, withJ=10, 20, 40, andJ0=1 are
plotted, which is corresponding to the magnitude ofJeff. It indicates
that Jeff,1/sLJd.
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coupling. Numerical results show that the isotropic antifer-
romagnetic spin ladder system is a perfect medium through
which the interaction between two separated spins is very
close to the Heisenberg-type coupling with a coupling con-
stant inversely proportional to the distance even if the spin
gap is not so large comparing to the couplings between the
input and output spins with the medium.
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TABLE I. The diagonal elements of reduced density matrix, which provide a criteria for the validity ofHeff, are calculated numerically
for the ground state and first excited state of finite system systemsL=4, 5, 6, 7, 8, and 10. The results forJ=10, 20, and 40,sJ0=1d are listed
in sad, sbd, andscd respectively. It shows that, at lower temperature, the result based the realistic interaction is very close to that byHeff.

States j m L 4 5 6 7 8 10

sad uc00u2 4.2310−4 5.9310−4 7.4310−4 8.7310−4 9.7310−4 1.2310−3

ucgl 1 0 uc10u2 0.9952 0.9954 0.9954 0.9955 0.9956 0.9956

uc11u2 2.2310−3 2.0310−3 1.9310−3 1.8310−3 1.7310−3 1.6310−3

uc1−1u2 2.2310−3 2.0310−3 1.9310−3 1.8310−3 1.7310−3 1.6310−3

uc00u2 0.9989 0.9984 0.9979 0.9975 0.9971 0.9966

uc1l 0 0 uc10u2 3.7310−4 5.2310−4 7.0310−4 8.4310−4 1.0310−3 1.2310−3

uc11u2 3.7310−4 5.4310−4 7.0310−4 8.3310−4 9.3310−4 1.1310−3

uc1−1u2 3.7310−4 5.4310−4 7.0310−4 8.3310−4 9.3310−4 1.1310−3

sbd uc00u2 9.7310−5 1.4310−4 1.8310−4 2.1310−4 2.3310−4 3.7310−4

ucgl 1 0 uc10u2 0.9989 0.9989 0.9989 0.9989 0.9990 0.9989

uc11u2 5.3310−4 4.8310−4 4.7310−4 4.4310−4 4.0310−4 3.8310−4

uc1−1u2 5.3310−4 4.8310−4 4.7310−4 4.4310−4 4.0310−4 3.8310−4

uc00u2 0.9997 0.9996 0.9995 0.9994 0.9993 0.9991

uc1l 0 0 uc10u2 9.1310−5 1.4310−4 1.7310−4 2.0310−4 2.7310−4 3.7310−4

uc11u2 9.1310−5 1.3310−4 1.7310−4 2.0310−4 2.1310−4 2.7310−4

uc1−1u2 9.1310−5 1.3310−4 1.7310−4 2.0310−4 2.1310−4 2.7310−4

scd uc00u2 2.3310−5 3.3310−5 4.2310−5 5.0310−5 5.7310−5 1.8310−4

ucgl 1 0 uc10u2 0.9997 0.9997 0.9997 0.9997 0.9998 0.9996

uc11u2 1.3310−4 1.2310−4 1.1310−4 1.1310−4 8.8310−5 9.3310−5

uc1−1u2 1.3310−4 1.2310−4 1.1310−4 1.1310−4 8.8310−5 9.3310−5

uc00u2 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997

uc1l 0 0 uc10u2 2.5310−5 3.5310−5 4.6310−5 1.0310−4 1.2310−4 1.7310−4

uc11u2 2.3310−5 3.3310−5 4.2310−5 5.0310−5 4.2310−5 6.5310−5

uc1−1u2 2.3310−5 3.3310−5 4.2310−5 5.0310−5 4.2310−5 6.5310−5
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