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Non-Abelian geometric quantum memory with an atomic ensemble
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We study a quantum information storage scheme based on an atomic ensemble withls®axact
three-photon resonance electromagnetically induced transpafhicy Each 4-level-atom is coupled to two
classical control fields and a quantum probe field. Quantum information is adiabatically stored in the associated
dark polariton manifold. An intrinsic nontrivial topological structure is discovered in our quantum memory
implemented through the symmetric collective atomic excitations with a hidd€B) Rlynamical symmetry.

By adiabatically changing the Rabi frequencies of two classical control fields, the quantum state can be
retrieved up to a non-Abelian holonomy and thus decoded from the final state in a purely geometric way.
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I. INTRODUCTION In this work, we shall describe a quantum information

. . . , storage protocol based on a truly non-Abelian holonomy. To
Quantum information storage is a physical process to efgis aim we will consider an ensemble bf 4-level-atoms

code the state of a quantum system into the state of anothﬁ[&llﬂi where two meta-stable states are coupled to the ex-
system referred to as a quantum memfity Compared 10 jteq state by two classical control fields respectively while
the original quantum system the quantum memory shoulghe ground state is coupled to the excited state by a quantum
possess a large decoherence time for effective storing ope field. In the largél limit with low excitation, a three-
quantum information. Moreover, the original state of theeycitons system is formed by the symmetric collective exci-
quantum system should be retrievable from the encodinggions from the ground states up to the excited state plus the
quantum memory state. By means of quantum memory Onyq virtual excitations from the two metastable states to the
can transport the quantum information from place to plac&ycited state. It is easy to prove that these three collective
within the decoherence time. Recently, an ensemble ofycitations indeed behave as three bosons in the Miigeit
A-type atoms has been proposgt-4] as a candidate for iih jow excitation. Intertwining between the excited state
practical quantum memory. The idea is to store and transfes,q o metastable ones, the collective operators generate an
the quantum information contained in photonic states by th%U(3) algebra. Based on the spectrum generating algebra
collective atomic excitations. This approach is based on thﬂweory[lG] associated with thiSU(3), we construct the de-

phenomenon of eIectrqmagneticaIIy induced tranSparenCéenerate eigenstates of the three-mode exciton-photon sys-
(EIT) [5]. Some experiment$6,7] have already demon- tem. In particular the collective manifold of dark states can

strated the central principle of this technique, namely, thebe shown to split into dynamically invariant higher-

reduction of the group velocity of light. dimensional subspaces. Using these degenerate eigenstates

N{O?t recefntly a sxstem tW'th (f]_uafj's_p'f] ¥vav_e CO”‘?(C},',V as a guantum memory, quantum information storage of pho-
excitations o m_any\- ype atoms Tixed in “atomic crystal” y,nic states can be implemented up to a non-Abelian ho-
has been considered as a candidate for a robust quant omy.

memory[8]. A hidden dynamical symmetry of such a system
is discovered and it is observed that in certain c49gshe
guantum state can be retrieved up to a non-Abelian Berry
phase, i.e., a non-Abelian holonon$0-13. This observa- Our system consists & identical 4-level atom§13,14,
tion extends the concept of quantum information storagewhere all the atoms are coupled to two single-mode classical
Quantum information storage of photonic states with thiscontrol fields and a quantum probe field as shown in Fig. 1.
topological character can be implemented in an atomic enfhe atomic levels are labeled as the ground sfiaethe
semble with off-resonance EIT. In such a case the storedxcited statéa), and the meta-stable statés (k=1,2). The
state can be decoded in a purely geometric way. Howevegtomic transitiona) — |b), with energy level difference,,
this non-Abelian holonomy is in some sense trivial due to the=,_—«,, is coupled to the probe field of frequenay
fact tha§ the quantum storage space splits into an orthogon@{wab_Ap) with the coupling coefficienty; and the atomic
sum of invariant one dimensional subspaces. transition |a)— |k) (k=1,2), with energy level difference
Wy 1S driven by the classical control field of frequengy
(Fwa—Ay) with Rabi-frequency),(t).
*Electronic address: suncp@itp.ac.cn; homepage: http:// In the present work we consider the case &f(=Ay
www.itp.ac.crifsuncp —Ap) being very small, that is, those three fields have almost
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|a) just a special instance of the quasi-spin-wave operators dis-
—_ cussed in8j.
IA Let us first consider a similar dynamical symmetry in the
} ___________ "l low excitation regime of the atomic ensemble where most of
A Y- 3, N atoms stay in the ground stdt® andN— c. It is obvious
f """ f that T andTik) (k=1,2 generate two mutually commuting
SU(2) subalgebras o8U(3) [20]. To form a closed algebra
Qv Q,,v, containingSU(3) and{A,A'}, we need to introduce two ad-
ditional collective operators
(0]
g LN
C=— > ol k=1,2 (3
VN j=1
12) along with their Hermitian conjugates. These operators have
the nonvanishing commutation relations

C=[AT¥], [C,T¥]=AK=1,2). (4)

As a special case of quasispin wave excitation with zero
|b> varying phases, the above three mode symmetrized excita-
tions defined byA and C; , behave as three independent
FIG. 1. Four-level atom interacting with a quantum probe field hosons. Indeed one can check that the opera®)rsn the
(with coupling constang, frequencyw, and the detuningy,) and  |arge N [imit with low excitation, satisfy the bosonic com-
two classic control fieldgwith frequency,, coupling Rabi fre-  mytation relationg20]. The commutation relations between
quency{l,, and the detuning\=wa— 1, k=1,2). When§c (=Ax  the SU(3) algebra and the Heisenberg-Weyl algebrgener-
Eﬁ_p)csgedi\t/i((e)rr)]/ tiny, the system satisfies the near 3-photon resonance 4 byA,_ N Ce, andCl imply that the dyn_amical Symmetry
' of evolution governed by, can be described by the semi-

the same detuning with respect to the upper légajelin view direct product algebr§U3)@h.

of the physical intuition, each metastable state with its rel- Ill. THE DARK STATES
evant control field would constitute a near two-photon reso- Based the ab hidden d ical v of th
nance EIT if another metastable state and its relevant control 22S€0 On theé above hidden dynamical symmetry or the
field do not exist. With the case of two-photon resonance gphteraction Hamiltonian, we can introduce a dark-state polar-
[17-19 (where the control and probe fields have the samdton operator

detuning in mind, we would refer to our case &f,=A, as D=acosf-C sin 6, (5)

a near “3-photon resonance” EIT

Under the rotating wave approximation the interactionWhere

Hamiltonian can be written adet 2=1) [8] C=Ciexdig(t)]cosk + Coexdig,(t)]sin (6)
Hi = 4,5+ gVNaA + Qexdi b ()]TE + Quexdid,()]T?  is a coherent mixing of two collective atomic excitatioBs
+Hec. 1) andC,, and
Q N ———

where k=arctan2, f=arctam, Q= VOZ+ Q3. (7)

N 1 N O Q

S=> gl A= _NE o), In terms of a new operator
j=1 VNj=1

T.= Tﬁrl)exp{i P1(t)]cosk + Tﬂz)exp[i do(t)]sink,  (8)

N . . . . .
we can then rewrite the interaction Hamiltonian as

TO=> ol TW=(TY)T, k=12 (2) —
j=1 H,=A,S+gV/NaA +QT, +H.c. 9

are symmetrized collective atomic operators. Hef@y Since[C,T_]=A and[A,T,]=C, one can readily verify that
=|w);j{v| denotes the flip operator of théh atom from state [DH]=0 (10)
|v); to |w); (n,v=a,b,1,2); a' anda the creation and anni- T
hilation operators of quantum probe field respectively; andlo generate the full eigenspace laf with zero eigenvalue,

& ()=t The coupling coefficientg and(}; , are real and i.e., the dark-polariton manifold, we need consider another
assumed to be identical for different atoms in the ensembledark-state polariton operator complementarnpbto

A similar effective Hamiltonian was given in Rd8] for the _ ; ; ;

case of an “atomic crystal,” in termsgof quasi—se}[oir]w—wave type E=Coexligz(D]cosk~ Crexlidy®sink. (11
collective atomic operators and a hidden dynamical symmek} is worthwhile to point out thakE satisfies the bosonic com-
try was discovered there. The symmetrized opera@ysre  mutation relation as well and it is independent»&ince
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[E,E']=1, [E,D']=0. (12 tum evolution inV(t) can be reduced, i.e., this space splits

. . into dynamically invariant finite-dimensional sectors. Let us
Moreover, we havéE,H,;]=0 by construction. Our instanta- explain this point now.

neous quantum storage subspat® is given by the linear We first observe that the following dynamical commuta-
span of the following family of instantaneous dark statesgjon relations hold:
i.e., the eigenstates &f|(t) with vanishing eigenvalues

fop(t): =[D, D] = —i sirfA(5,c0Sk + 8,5irfk),

Do) = ———D™EM0), 13
ym!n! fep(t): =[E, D] = - k sin 6+i(8, - 8,)sin 6 cosk sin k,

where |0)=]0),®[b)=[0),®|b,b,...,b) represents the
ground state of the total coupled system with each atom be- foe(t): =[D,4E =[- fep®)],
ing in the ground statb) and the quantum probe field being
in the vacuum stat¢0),,. It is easy to prove that any other fee(t): = [E, ET = —i(8, sirk + &, cok) (20)
dark-state polariton operator can be expressed as a linear EEVT T ! 2 '
combination ofD andE. Using these relations fdf =m=0 andl=n=0, we obtain

(Drr—mm®OlDy-nal1)) = 8/ Ol (1 = M) fpp(t) + Mige(t)]

IV. NON-ABELIAN HOLONOMY + 5|’,|5m,n—1\“"(m+ (- m)fpe(®)
Now we study the geometric quantum information storage

in the dark-state spac®(t) which is constructed by the

above zero-eigenvalue dark stafés). (21

It is noticed that one can introduce the so-called bright- o ) ) )
state polariton operator: Now it is clear from g, in this expression that the total

spaceV(t) can be decomposed into a direct sum of sub-
B=asin#+ Ccosé, (14)  spaces:

+ ‘SI’,Iém,n+l\“”m(| -m+ 1)fED(t)-

which can be used to generate eigenstates involving the ex- = a” Wit 29
cited statda). Of course, the states obtained by applyi®ig VO = @1-U (), (22)
are not absolutely dark since the excited state can spontanghere

ously decay. However, as shown in RE], under the adia-

batic manipulations, these states will not get coupled to the V\(t) = spaff|Djmm(t))m=10,1, ... | (23
above constructed dark stat@$). The adiabatic condition is , , ) ) ) )
here given by[21,22 has dimensior(I+1). Notice that each/(t) is an invariant

subspace under the adiabatic manipulation, i.e., if the initial

’ gw N X <1, %= 04,06, (15 state is given as
(VgN+ 2 [©,(0)) € W(0), (24)
for k=1,2. So thalark-state spacg(t) can be considered as
a reliable storage one.

Let us consider a state vector

D) =2 Cf)|Dima(t)) (16)

then at timet the state will be

|®(1) = 2 cHOID (D) € V(D). (25)

The restricted dynamics i (t) is governed by the reduced

belonging toV(t). A straightforward calculation gives the dynamic equation
matrix equatior[21,22 for the coefficientc,,(t):

=K 17 -
HC OC(), (17 where the subcoefficient vect@(t) and the reduced con-
where the vecto€(t) of coefficients and the connection ma- nection matrixK,(t) are respectively given by
trix K(t) are respectively defined by

C(t) =[coot),Cor(t), ... iC1o(t),Cqa(t),..]" (18)

GCi(t) =K () Cy(1), (26)

C®=[c§®,c, ... O, (27

and

(19) K I(t) = [_ <D|—m,m(t)|atDI—n,n(t»m,n:O,l,Z,. e (28)

and
K (t)m,m’,n,n’ == <Dm’,n’(t)|atDm,n(t)>

(m,m’,n,n"=0,1,2,..). The quantum storage spar§) is,
in the considered limit, an infinite dimensional one. Thus in C,(t) = W,()C,(0) (29)
general it is difficult to write down the relevant connection

matrix K (t) explicitly. On the other hand, the adiabatic quan-formally determines the non-Abelian holonomy

The solution
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w
W) =T exd f K, (t)dt], (30) we or
whereT is the time-ordering operator. This non-Abelian ho-
lonomy is nondiagonal and thus can mix different instanta-
neous eigenstatefd|_,,(t))(m=0, ... ]) inducing in this
way a truly non-Abelian gauge structure.
0 Q/gIN
V. GEOMETRIC QUANTUM MEMORY BASED FIG. 2. Cyclic evolution of the parametef¥; ,. At time t=r,
ON THE SIMPLIFIED MODEL Qg 2<9\N at timet=0 ort=T, »>gVN.

In the following discussion, we consider the simplified N < .
model related to the above system as shown in Figs;}: The initial statef®(0))==, ¢, (0)]1),® |b) can be written as

=0. Such a system has only two controllable parameters _ 0 ,
Q, , and can be readily realized experimentally. Mathemati- [©(0) =2 ¢ (O)[Dy-rmm(0)) (39)
cally the subconnection can be simplified as

Ki(t) =[- <Dl—m,m(t)|‘9tDI—n,n(t)>]m,n=0,1,...| = k sin 6K |<O), _
(- 1)"™Ic(0)

(3D '00) = .
e (0 (iV2)'Vm! (1 - m)! “0

relative to the new basi®|_, .(t)) with the coefficients

WhereK(O) is a constant matrix whosen,n) entry is S
Under the adiabatic evolution, the state at titris given as

5mn 1V (m+ Dl -m)- mn+1\ m(l -m+1). (32

D(1)) = > ¢l (1), 41
In this simplified case the time-ordering becomes irrelevant ) % m (0[D; mm(V) 4D
and the non-Abelian holonomy can be explicitly computed.
In fact we have where
W, (1) = exd $(OK (@], (33) c () = exp[=i(1 - 2m) (1) ey (0). 42
where When Q, , become negligible compared gx‘ﬂ at time 7,

6(7) — /2 andD(7) —-C,cosk—C,sin k. This means that
. the quantum information, initially encoded in photonic
(1) = J 4 Sin 6dt. (34) stateg, has been transferred and zvritten to atomicpcollective
excitations. This accomplishes the quantum information stor-
By noticing thatk |(0) is proportional tad E'D—H.c) restricted age protocol.
V1), we find that this non-Abelian holonomy can be rather |n order to recover the stored information one needs to
easily cast in a diagonal form by introducing a new instan-drive adiabatically the system parameté¥s, along a CyC|IC
taneous basis. Let us introduce the new set of dark-state p@yolution such that at timg@ the condition(); ,>gVN is

lariton operators satisfied in order to guarante#T)—0 (see Fig. 2 At the
1 1 intermediate timese (0,T) quantum information is encoded
D'=—=(D+E), E'=—%=(-iD+E), (35 in a combination of photonic and atomic collective excita-
V2 V2 tions. In general, if one wants to recover exactly the initial
and the associated dark states state after that the adiabatic loop has been completed, she has

to perform a unitary transformation to get rid of the effect of

D ()= D' f=ng’tn |O) (36) the non-Abelian Berry phase factor. In particular, for a cyclic
I=nn NI evolution of the paramete@, , if
. . . . T
ﬁoitrrilgtf:itj(orward calculation then gives a diagonal connec- &) :f wsin mtzag sin 6k = 2jm 43)
0
Ki(t)=-iksingdiag(l,l -2, ...,-I) (37 (jis an integey, it then follows thatc/"(T)=c’"(0). In this
and the corresponding holonomy case the system state at the final timeoincides with the

, initial state|®(0)).
W/ (t) = diag (e7!#V g (=240 gl (3g)

Generally in the EIT-based quantum information storage
protocol, the Rabi frequencig?, , of the two classical con-
trol fields are initially set to a very large value compared to We are now in the position to make a few comments on
gVN and then decreased independently and adiabaticallhe relations between the results presented in this paper and
(e.g., as shown in Fig.)2Thus (t=0)—0 andD(0)—a.  the general holonomic approach to quantum information pro-

VI. CONCLUSION
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cessing[12,14. In that approach the information is encodedto be retrieved up to an input-independent non-Abelian ho-
in degenerate eigenstates of a parametric family of Hamiltolonomy. Such a non-Abelian holonomy is independent of
nians, and in the generic case the universal quantum compbeth the state to be stored and some dynamic details control
tation [23] can be achieved by resorting to the non-Abelianof interaction. Thus, to decode the ideal input state, we only
holonomies only{12]. By regarding the nontrivial holonomy need consider the geometry of the parameter space deter-
one gets after an adiabatic loop as a designed quantum staténed by the change of parameters. We also showed the
transformation, rather than something one wants to get rid ofphysical process of the geometric quantum storage of photon
it should be then evident that the EIT-based scheme henaformation with the help of the symmetric collective exci-
discussed represents an instance of such general strategy. Eations of the ElT-based 4-level-atom ensemble in the sim-
example the one exciton spadg can encode oneubit plified case by adiabatically controlling the classical Rabi
|0y: =E’10),|1): =D’"]0). In this language the transforma- frequencies.
tion (38) is nothing but a diagonal phasesh8]. In order to
get the nondiagonal single-qubit operations one would have ACKNOWLEDGMENTS
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