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We study a quantum information storage scheme based on an atomic ensemble with near(also exact)
three-photon resonance electromagnetically induced transparency(EIT). Each 4-level-atom is coupled to two
classical control fields and a quantum probe field. Quantum information is adiabatically stored in the associated
dark polariton manifold. An intrinsic nontrivial topological structure is discovered in our quantum memory
implemented through the symmetric collective atomic excitations with a hidden SUs3d dynamical symmetry.
By adiabatically changing the Rabi frequencies of two classical control fields, the quantum state can be
retrieved up to a non-Abelian holonomy and thus decoded from the final state in a purely geometric way.
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I. INTRODUCTION

Quantum information storage is a physical process to en-
code the state of a quantum system into the state of another
system referred to as a quantum memory[1]. Compared to
the original quantum system the quantum memory should
possess a large decoherence time for effective storing of
quantum information. Moreover, the original state of the
quantum system should be retrievable from the encoding
quantum memory state. By means of quantum memory one
can transport the quantum information from place to place
within the decoherence time. Recently, an ensemble of
L-type atoms has been proposed[2–4] as a candidate for
practical quantum memory. The idea is to store and transfer
the quantum information contained in photonic states by the
collective atomic excitations. This approach is based on the
phenomenon of electromagnetically induced transparency
(EIT) [5]. Some experiments[6,7] have already demon-
strated the central principle of this technique, namely, the
reduction of the group velocity of light.

Most recently a system with quasispin wave collective
excitations of manyL-type atoms fixed in “atomic crystal”
has been considered as a candidate for a robust quantum
memory[8]. A hidden dynamical symmetry of such a system
is discovered and it is observed that in certain cases[9] the
quantum state can be retrieved up to a non-Abelian Berry
phase, i.e., a non-Abelian holonomy[10–15]. This observa-
tion extends the concept of quantum information storage.
Quantum information storage of photonic states with this
topological character can be implemented in an atomic en-
semble with off-resonance EIT. In such a case the stored
state can be decoded in a purely geometric way. However,
this non-Abelian holonomy is in some sense trivial due to the
fact that the quantum storage space splits into an orthogonal
sum of invariant one dimensional subspaces.

In this work, we shall describe a quantum information
storage protocol based on a truly non-Abelian holonomy. To
this aim we will consider an ensemble ofN 4-level-atoms
[13,14], where two meta-stable states are coupled to the ex-
cited state by two classical control fields respectively while
the ground state is coupled to the excited state by a quantum
probe field. In the largeN limit with low excitation, a three-
excitons system is formed by the symmetric collective exci-
tations from the ground states up to the excited state plus the
two virtual excitations from the two metastable states to the
excited state. It is easy to prove that these three collective
excitations indeed behave as three bosons in the largeN limit
with low excitation. Intertwining between the excited state
and two metastable ones, the collective operators generate an
SUs3d algebra. Based on the spectrum generating algebra
theory [16] associated with thisSUs3d, we construct the de-
generate eigenstates of the three-mode exciton-photon sys-
tem. In particular the collective manifold of dark states can
be shown to split into dynamically invariant higher-
dimensional subspaces. Using these degenerate eigenstates
as a quantum memory, quantum information storage of pho-
tonic states can be implemented up to a non-Abelian ho-
lonomy.

II. THE MODEL

Our system consists ofN identical 4-level atoms[13,14],
where all the atoms are coupled to two single-mode classical
control fields and a quantum probe field as shown in Fig. 1.
The atomic levels are labeled as the ground stateubl, the
excited stateual, and the meta-stable statesukl sk=1,2d. The
atomic transitionual→ ubl, with energy level differencevab
=va−vb, is coupled to the probe field of frequencyv
s=vab−Dpd with the coupling coefficientg; and the atomic
transition ual→ ukl sk=1,2d, with energy level difference
vak, is driven by the classical control field of frequencynk
s=vak−Dkd with Rabi-frequencyVkstd.

In the present work we consider the case ofdk s=Dk

−Dpd being very small, that is, those three fields have almost
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the same detuning with respect to the upper levelual. In view
of the physical intuition, each metastable state with its rel-
evant control field would constitute a near two-photon reso-
nance EIT if another metastable state and its relevant control
field do not exist. With the case of two-photon resonance EIT
[17–19] (where the control and probe fields have the same
detuning) in mind, we would refer to our case ofDp.Dk as
a near “3-photon resonance” EIT.

Under the rotating wave approximation the interaction
Hamiltonian can be written asslet "=1d [8]

HI = DpS+ gÎNaA† + V1expfif1stdgT+
s1d + V2expfif2stdgT+

s2d

+ H.c., s1d

where

S= o
j=1

N

saa
s jd, A =

1
ÎN

o
j=1

N

sba
s jd,

T−
skd = o

j=1

N

ska
s jd,T+

skd = sT−
skdd†, k = 1,2 s2d

are symmetrized collective atomic operators. Heresmn
s jd

= uml j jknu denotes the flip operator of thej th atom from state
unl j to uml j sm ,n=a,b,1 ,2d; a† anda the creation and anni-
hilation operators of quantum probe field respectively; and
fkstd=dkt. The coupling coefficientsg andV1,2 are real and
assumed to be identical for different atoms in the ensemble.
A similar effective Hamiltonian was given in Ref.[8] for the
case of an “atomic crystal,” in terms of quasi-spin-wave type
collective atomic operators and a hidden dynamical symme-
try was discovered there. The symmetrized operators(2) are

just a special instance of the quasi-spin-wave operators dis-
cussed in[8].

Let us first consider a similar dynamical symmetry in the
low excitation regime of the atomic ensemble where most of
N atoms stay in the ground stateubl andN→`. It is obvious
thatT−

skd andT+
skd sk=1,2d generate two mutually commuting

SUs2d subalgebras ofSUs3d [20]. To form a closed algebra
containingSUs3d and hA,A†j, we need to introduce two ad-
ditional collective operators

Ck =
1

ÎN
o
j=1

N

sbk
s jd,k = 1,2 s3d

along with their Hermitian conjugates. These operators have
the nonvanishing commutation relations

Ck = fA,T+
skdg, fCk,T−

skdg = Ask = 1,2d. s4d

As a special case of quasispin wave excitation with zero
varying phases, the above three mode symmetrized excita-
tions defined byA and C1,2 behave as three independent
bosons. Indeed one can check that the operators(3), in the
large N limit with low excitation, satisfy the bosonic com-
mutation relations[20]. The commutation relations between
theSUs3d algebra and the Heisenberg-Weyl algebrah gener-
ated byA, A†, Ck, andCk

† imply that the dynamical symmetry
of evolution governed byHI can be described by the semi-

direct product algebraSUs3d^̄h.

III. THE DARK STATES

Based on the above hidden dynamical symmetry of the
interaction Hamiltonian, we can introduce a dark-state polar-
iton operator

D = a cosu − C sin u, s5d

where

C = C1expfif1stdgcosk + C2expfif2stdgsink s6d

is a coherent mixing of two collective atomic excitationsC1
andC2, and

k = arctan
V2

V1
, u = arctan

gÎN

V
, V = ÎV1

2 + V2
2. s7d

In terms of a new operator

T+ = T+
s1dexpfif1stdgcosk + T+

s2dexpfif2stdgsink, s8d

we can then rewrite the interaction Hamiltonian as

HI = DpS+ gÎNaA† + VT+ + H.c. s9d

SincefC,T−g=A and fA,T+g=C, one can readily verify that

fD,HIg = 0. s10d

To generate the full eigenspace ofHI with zero eigenvalue,
i.e., the dark-polariton manifold, we need consider another
dark-state polariton operator complementary toD:

E = C2expfif2stdgcosk − C1expfif1stdgsink. s11d

It is worthwhile to point out thatE satisfies the bosonic com-
mutation relation as well and it is independent ofD since

FIG. 1. Four-level atom interacting with a quantum probe field
(with coupling constantg, frequencyv, and the detuningDp) and
two classic control fields(with frequencynk, coupling Rabi fre-
quencyVk, and the detuningDk=vak−nk, k=1,2). Whendk s=Dk

−Dpd are very tiny, the system satisfies the near 3-photon resonance
EIT condition.
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fE,E†g = 1, fE,D†g = 0. s12d

Moreover, we havefE,HIg=0 by construction. Our instanta-
neous quantum storage subspaceVstd is given by the linear
span of the following family of instantaneous dark states,
i.e., the eigenstates ofHIstd with vanishing eigenvalues

uDm,nstdl =
1

Îm ! n!
D†mE†nu0l, s13d

where u0l= u0lp ^ ubl;u0lp ^ ub,b, . . . ,bl represents the
ground state of the total coupled system with each atom be-
ing in the ground stateubl and the quantum probe field being
in the vacuum stateu0lp. It is easy to prove that any other
dark-state polariton operator can be expressed as a linear
combination ofD andE.

IV. NON-ABELIAN HOLONOMY

Now we study the geometric quantum information storage
in the dark-state spaceVstd which is constructed by the
above zero-eigenvalue dark states(13).

It is noticed that one can introduce the so-called bright-
state polariton operator:

B = a sinu + C cosu, s14d

which can be used to generate eigenstates involving the ex-
cited stateual. Of course, the states obtained by applyingB
are not absolutely dark since the excited state can spontane-
ously decay. However, as shown in Ref.[8], under the adia-
batic manipulations, these states will not get coupled to the
above constructed dark states(13). The adiabatic condition is
here given by[21,22]

gÎNxk

sÎg2N + V2d3
! 1, xk = uVku,Vdk s15d

for k=1,2. So thedark-state spaceVstd can be considered as
a reliable storage one.

Let us consider a state vector

uFstdl = o
m,n

cmnstduDm,nstdl s16d

belonging toVstd. A straightforward calculation gives the
matrix equation[21,22] for the coefficientscmnstd:

]tCstd = K stdCstd, s17d

where the vectorCstd of coefficients and the connection ma-
trix K std are respectively defined by

Cstd = fc00std,c01std, . . . ;c10std,c11std, . . .gT s18d

and

K stdm,m8,n,n8 = − kDm8,n8stdu] tDm,nstdl s19d

sm,m8 ,n,n8=0,1,2, . . .d. The quantum storage spaceVstd is,
in the considered limit, an infinite dimensional one. Thus in
general it is difficult to write down the relevant connection
matrix K std explicitly. On the other hand, the adiabatic quan-

tum evolution inVstd can be reduced, i.e., this space splits
into dynamically invariant finite-dimensional sectors. Let us
explain this point now.

We first observe that the following dynamical commuta-
tion relations hold:

fDDstd: = fD,]tD
†g = − i sin2usd1cos2k + d2sin2kd,

fEDstd: = fE,]tD
†g = − k̇ sinu + isd2 − d1dsinu cosk sink,

fDEstd: = fD,]tE
†g = f− fEDstdg* ,

fEEstd: = fE,]tE
†g = − isd1 sin2k + d2 cos2kd. s20d

Using these relations forl8ùmù0 andl ùnù0, we obtain

kDl8−m,mstdu]tDl−n,nstdl = dl8,ldm,nfsl − mdfDDstd + mfEEstdg

+ dl8,ldm,n−1
Îsm+ 1dsl − mdfDEstd

+ dl8,ldm,n+1
Îmsl − m+ 1dfEDstd.

s21d

Now it is clear fromdl8,l in this expression that the total
spaceVstd can be decomposed into a direct sum of sub-
spaces:

Vstd = % l=0
` Vlstd, s22d

where

Vlstd = spanhuDl−m,mstdlum= 0,1, . . . ,l s23d

has dimensionsl +1d. Notice that eachVlstd is an invariant
subspace under the adiabatic manipulation, i.e., if the initial
state is given as

uFls0dl P Vls0d, s24d

then at timet the state will be

uFlstdl = o
m

cm
sldstduDl−m,mstdl P Vlstd. s25d

The restricted dynamics inVlstd is governed by the reduced
dynamic equation

]tClstd = K lstdClstd, s26d

where the subcoefficient vectorClstd and the reduced con-
nection matrixK lstd are respectively given by

Clstd = fc0
sldstd,c1

sldstd, . . . ,cl
sldstdgT, s27d

and

K lstd = f− kDl−m,mstdu]tDl−n,nstdlm,n=0,1,2,. . .,l . s28d

The solution

Clstd = W lstdCls0d s29d

formally determines the non-Abelian holonomy
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W lstd = T expfE K lstddtg, s30d

whereT is the time-ordering operator. This non-Abelian ho-
lonomy is nondiagonal and thus can mix different instanta-
neous eigenstatesuDl−m,mstdlsm=0, . . . ,ld inducing in this
way a truly non-Abelian gauge structure.

V. GEOMETRIC QUANTUM MEMORY BASED
ON THE SIMPLIFIED MODEL

In the following discussion, we consider the simplified
model related to the above system as shown in Fig. 1:d1,2
;0. Such a system has only two controllable parameters
V1,2 and can be readily realized experimentally. Mathemati-
cally the subconnection can be simplified as

K lstd = f− kDl−m,mstdu] tDl−n,nstdlgm,n=0,1,. . .,l ; k̇ sinuK l
s0d,

s31d

whereK l
s0d is a constant matrix whosesm,nd entry is

dm,n−1
Îsm+ 1dsl − md − dm,n+1

Îmsl − m+ 1d. s32d

In this simplified case the time-ordering becomes irrelevant
and the non-Abelian holonomy can be explicitly computed.
In fact we have

W lstd = expffstdK l
s0dg, s33d

where

fstd =E k̇ sinudt. s34d

By noticing thatK l
s0d is proportional tosE†D−H.c.d restricted

Vlstd, we find that this non-Abelian holonomy can be rather
easily cast in a diagonal form by introducing a new instan-
taneous basis. Let us introduce the new set of dark-state po-
lariton operators

D8 =
1
Î2

siD + Ed, E8 =
1
Î2

s− iD + Ed, s35d

and the associated dark states

uDl−n,n8 stdl =
D8†l−nE8†n

Îsl − nd ! n!
u0l. s36d

A straightforward calculation then gives a diagonal connec-
tion matrix

K l8std = − ik̇ sinu diag sl,l − 2, . . . ,−ld s37d

and the corresponding holonomy

W l8std = diag se−ilfstd,e−isl−2dfstd, . . . ,eilfstdd. s38d

Generally in the EIT-based quantum information storage
protocol, the Rabi frequenciesV1,2 of the two classical con-
trol fields are initially set to a very large value compared to
gÎN and then decreased independently and adiabatically
(e.g., as shown in Fig. 2). Thus ust=0d→0 and Ds0d→a.

The initial stateuFs0dl=ol c0
slds0dullp ^ ubl can be written as

uFs0dl ; o
l,m

cm8
slds0duDl−m,m8 s0dl s39d

relative to the new basisuDl−m,m8 stdl with the coefficients

cm8
slds0d =

s− 1dl−mÎl!c0
slds0d

siÎ2dlÎm ! sl − md!
. s40d

Under the adiabatic evolution, the state at timet is given as

uFstdl = o
l,m

cm8
sldstduDl−m,m8 stdl, s41d

where

cm8
sldstd = exp f− isl − 2mdfstdgcm8

slds0d. s42d

When V1,2 become negligible compared togÎN at time t,
ustd→p /2 andDstd→−C1cosk−C2sink. This means that
the quantum information, initially encoded in photonic
states, has been transferred and written to atomic collective
excitations. This accomplishes the quantum information stor-
age protocol.

In order to recover the stored information one needs to
drive adiabatically the system parametersV1,2 along a cyclic
evolution such that at timeT the conditionV1,2@gÎN is
satisfied in order to guaranteeusTd→0 (see Fig. 2). At the
intermediate timestP s0,Td quantum information is encoded
in a combination of photonic and atomic collective excita-
tions. In general, if one wants to recover exactly the initial
state after that the adiabatic loop has been completed, she has
to perform a unitary transformation to get rid of the effect of
the non-Abelian Berry phase factor. In particular, for a cyclic
evolution of the parametersV1,2 if

fsTd =E
0

T

k̇ sinudt ;R sinudk = 2jp s43d

(j is an integer), it then follows thatcm
8sldsTd=cm

8slds0d. In this
case the system state at the final timeT coincides with the
initial stateuFs0dl.

VI. CONCLUSION

We are now in the position to make a few comments on
the relations between the results presented in this paper and
the general holonomic approach to quantum information pro-

FIG. 2. Cyclic evolution of the parametersV1,2. At time t=t,
V1,2!gÎN; at time t=0 or t=T, V1,2@gÎN.
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cessing[12,14]. In that approach the information is encoded
in degenerate eigenstates of a parametric family of Hamilto-
nians, and in the generic case the universal quantum compu-
tation [23] can be achieved by resorting to the non-Abelian
holonomies only[12]. By regarding the nontrivial holonomy
one gets after an adiabatic loop as a designed quantum state
transformation, rather than something one wants to get rid of,
it should be then evident that the EIT-based scheme here
discussed represents an instance of such general strategy. For
example the one exciton spaceV1 can encode onequbit:
u0l : =E8†u0l , u1l : =D8†u0l. In this language the transforma-
tion (38) is nothing but a diagonal phaseshift[23]. In order to
get the nondiagonal single-qubit operations one would have
to relax the conditiond1=d2=0. Encoding many-qubit states
and enacting a controllable geometric coupling between
them—as required for realizing the universal
computations—along with the robustness of the scheme
against the various sources of errors is a more complex prob-
lem that calls for further investigations.

In conclusion, we have presented a generalized version of
quantum information storage by allowing the quantum state

to be retrieved up to an input-independent non-Abelian ho-
lonomy. Such a non-Abelian holonomy is independent of
both the state to be stored and some dynamic details control
of interaction. Thus, to decode the ideal input state, we only
need consider the geometry of the parameter space deter-
mined by the change of parameters. We also showed the
physical process of the geometric quantum storage of photon
information with the help of the symmetric collective exci-
tations of the EIT-based 4-level-atom ensemble in the sim-
plified case by adiabatically controlling the classical Rabi
frequencies.
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