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Nonadiabatic effects of atomic motion inside a highR optical cavity
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We revisit the topic of atomic center of mass motion of a three level atom Raman coupled strongly to an
external laser field and the quantum field of a h@toptical cavity. We focus on the motion related nonadia-
batic effects of the atomic internal dynamics and provide a quantitative answer to the validity regime for the
application of the motional insensitive dark state as recently suggested by Duan, Kuzmich, and[Rinysle
Rev. A 67, 032305(2003)].
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[. INTRODUCTION Wherezo=7rwgl)\ is the Rayleigh range. Unless each indi-
&/idual atomic motion is localized to much less than the reso-
nant wavelength\, i.e., in the so-called Lamb-Dicke limit
LDL), this position dependent uncertainty of coupling
rengthg(r) generally spoils the quantum coherence, and
prevents high fidelity quantum logic operations. This chal-

The development of quantum information science an
technology carries the potential of revolutionary impact on
many aspects of our society, as evidenced already by t
applications in quantum cryptography, quantum communica:

tion, and rud|meqtary quantum computing. Among th(_a _phys'1enging limit is not so-far under complete experimental con-
cal systems being investigated, high-optical cavities | it is especially problematic for optical cavity QED sys-
coupled with trapped atomic qubits represent a paradigm fofams.
this burgeoning field. In addition to their demonstrated abili-  Recently, two independent groups,5] have noticed an
ties for controllediand coherentquantum dynamics of both jnteresting scenario where the above undesirable position de-
atomic and/or cavity photonic qubits, cavity quantum elec-pendence ofy(f) can be largely overcome with the use of a
tron diffraction(QED) systems are unique because they repso-called dark state, when the classical Raman laser field is
resent a prototype enabling technology for the coherent inassumed to have the same spatial dependence as the quantum
terconversion of quantum information encoded in materiafield g(). For a large class of quantum computing protocols
qubits or flying photonic qubits for propagation to far away based on atomic cavity QED, the building block consists of a
places. three levelA-type atom of stable ground statigg) and|g;)
Despite much effort and spectacular advances from sewthat couple to an excited staf@. Such an arrangement al-
eral groups in recent yeaf&—3], high fidelity deterministic lows for a coherent mapping of an atomic quiit|go)
logic operations even at the level of two qubits remain elu-+g|g,)) into the photonic coherence of the cavity. In the
sive in cavity QED based systems. Among the factors asnost publicized version as originally suggesféd it is as-
commonly attributed to being significant road blocks, thesumed that a classical laser field and the quantum cavity field
localization of atomic motional wave packet is perhaps theestablishes a two-photon matched Raman resonance between
most demanding. In nearly all quantum computing protocoldg,) < |e) and|go) < |€). By denoting the Rabi frequency of
of atoms coupled to a higQ- cavity field, it is essential to the classical laser field &, the dipole coupling in the in-
reach the so-called strong coupling limit, where the cohereneraction picture can be summarized as
coupling of an atom with the near resonant cavity mgde
musri bg much larger than both the cavity decay g(enged Ho =~ fil[eXe] + AiQle)d| + figledgole + H.c..  (2)
side and the atomic spontaneous emission raté.e., §  wherec is the annihilation operator for the near resonant
>k andg> y. Sinceg’ is inversely proportional to the mode cavity photon mode used for Raman coupliffdg. 1), and
volume of the cavity, it typically points to small cavities in the common detuningkzwrwegl:w—wego- Both atomic
the Fabry-Perot arrangement, where the cavity mode is thaind cavity decayéy or ) are omitted in this study allowing
of a standing wave given by us to concentrate on the investigation of nonadiabatic effects
9(F) = gox(), due to atomic motion within t_he coherent atom-qavity dy-
namics. Thus generally speaking, our model requires the to-

W 2 tal operation time to be much less thanyldr 1/k. It is easy
x(F) = —Oexp[- p ]sin(kz), (1)  to check that the following “dark state”
(2) WA(2)
with p=\x2+y? the transverségpolan coordinate measured D)= —V,W(glgpw—ﬂlgo, 1), (3

from the cylindrically symmetric cavity axis along thzedi-
rection. The typical geometries have the mode waift) s an eigenstate of the Hamiltonian E8) with a zero eigen-
=wg\1+7°/7; much larger than the cavity wavelength  value, wherel0)c and|1)c denote the Fock state of O or 1
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f \ A travelling distance. Nonadiabatic effects will arise if atoms
| e) were to travel far enough to cross nodal planeg(@f (as we
will see later this contradicts the discussion of a better satis-
fied adiabatic condition near nodal points as in R&f). The
ideal operation of the motional insensitive protocol would
require the use of trapped atoms, i.e., with atoms confined
Q near regions of maximai(r) [5] by an external force inde-
pendent of the cavity or Raman field. The trap must be strong
enough to limit the atomic motion due to an amplitude
smaller than half the cavity wavelengkii2, such that nodal
crossing can be completely avoided.
|g0> Another motivation for this study is the desire to under-
stand nodal crossing dynamics in general for the Raman con-

figuration when the trapping provided by an extra higher

|gl> order cavity mode is absent as in earlier experimggis
where either the resonant cavity field or an external laser

FIG. 1. lllustration of the Raman coupling. field provided confinement of atongsot in the dark state

Based on the dressed energy levels of an atom coupled to
cavity photons, respectively. It is dark, or, immune to atomicboth fields, we find that the dynamics of an atom crossing a
spontaneous emission because it contains no atomic excitegdal plane can be effectively described in terms of the cel-
state. By engineering a counterintuitive pulse sequence as &brated Landau-Zener thedidO]. Yet, a somewhat puzzling
the STIRAP(stimulated Raman adiabatic passaged as-  situation arises according to Landau-Zener theory which pre-
sume the atom + cavity system to adiabatically follow thefers to have a larger velocity, during the crossing in order
above dark state, it leads to a highly efficient protocol forto maintain in the initial(dark) state. Consistent with the
converting the atomic qubit state into a photonic superposipaper of Duaret al. [5], the motional state insensitive pro-
tion according tq6—8] tocol works only in the limit when the atoms are trapped by
yet an additional mechanism such that its motion is limited
(algo) + Blgy) ® [0)c — g ® (¢f0) + BL)c. (4 to a variation ofg(F) within approximately a factor of 2. On
When atomic motion is considered, the position depen{h€ Other hand, a large velocity tends to cause large ampli-
dence ofg(f) generally leads to a loss of coherence due tgUde motions, thus against the localization of the Lamb-
the potential entanglement between the motion and thEICke limit. We thus.f'md it interesting to study the relevant
atomic internal state as well as the cavity photon state. Th andau-Zener transitions in prder to shed light on the mo-
idea of the motional insensitive protocpd,5], assumes a Uonal effects of atoms in cavity QED.

classical laser field that has the same dependenagias | tTTr']S papgrlls forganlfeéj as ':jOI.Il?W‘:" Itn Sec. i, \t/ve formu-
Following the notation of Duaret al. [5], this assumption ate the model of our study and Hustrale parameter regimes
amounts to of interest to current experimental efforts. Sections Il and IV

are devoted, respectively, to the study of the nonadiabatic
Q(F,1) = Qg(t) x(7) = rogoc(t) x(F). (5) !evel crossing in terms of a Landau-Zene_r traqsition_dynam-
ics and the comparison between numerical simulations and
A simple arrangement involves choosing the pump and théhe approximate analytic Landau-Zener state transition for-
cavity transitiongg,) < |e) and|gg)«<|e) to correspond the mulas. We have developed an interesting analytic mapping
left and right circular polarized component of the same cav{in the absence of an external tjapf the atomic motion
ity mode. A more flexible setup would involve the use of athrough a nodal point into a Landau-Zener level crossing
different cavity mode such that near the cavity centér) dynamics. Within each of the above sections, we will study
for the two modes remain almost matched as the two modegarious limiting cases, mainly focusing on a simple model
differ very little in their respective wavelengtfig]. that involves a one-dimensional motion along the cavity axis
The aim of this paper is to study in detail nonadiabatic[11,12. Finally we summarize and attempt to make some
effects of the above motion insensitive protocol. As was als@eneral conclusions in Sec. V. The appendixes contain sev-
noted in Ref.[5], it clearly becomes difficult to maintain eral technical points that may be useful for related studies.
adiabaticity when the atomic Raman coupling is too weak to
affect the transfer, particularly near regions of sniif)
values. Furthermore, an atom remaining in the dark state
essentially experiences no light force from the combined In the descriptions to follow, we will assume both fields to
fields of both the cavity mode and the external laser. Thide on resonance and take the atomic detuding. For the
arguably leads to an upper limit on the atomic kinetic energymore general situation as shown in Appendix A with a non-
the durationT for the STIRAP is determined by atomic in- zero but constanA #0 (position independent we find it
ternal state dynamics. Thus for an atom with a velocity of  simply leads to formally identical results as discussed here
during the STIRAP, it will move a distance,T if it is to for A=0 (see Appendix A When necessary, an external trap,
remain in the dark state. A largey, leads simply to a large assumed to be internal state independent is assumed to be

II. FORMULATION
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A B, = =(B) £ [e,0)),
V2

4
2]

i b

e
B)= m“@loﬁb roc(t)|gs, 0}, (8)

where€?=g"
S Before writing down the Schrédinger equation, we absorb
/ the phase factors due to the adiabatic evolution along each of
g the abovetime-dependenteigenstates,

Dresged state energy (arb. unit)
o o

0 2 4 . 6 8 10 L
V(t)= 2 Cyt)e o= n), 9
FIG. 2. Dressed energies of the coupled atom + cavity system at n=0,+,~
a particular radial location along the cavity axi&t a fixed timet) where we have used the shorthand notatlorm:et) for the

Co - e—iJ’oE+(t’)dt’/h<D|B+>C+ _ —ifBE_(t’)dt’/h<D|'B_>C_,
available and centered around the maximung@j to con-

_fine atomic motion to Within the order of one-half the stand- C+ —_ e+if})E+(t’)dt’/ﬁ<B+|D>C0
ing wave wavelength as in Rgb]. .
The Hamiltonian for atomic internal degrees of freedom -e—ifB[E—ﬂ’>—E+<t’)]dt’/ﬁ<|3+|B_)c_,

(on resonancé\ =0) can be written as a@3 matrix [5] in

the basis{|e,0>,|go, 1>,|91,0>}, C =- if})E_(t')dt'/ﬁ<B_|D>C0_ —ifB[EJ,(t’)—E_(t’)]dt’/h(B_"B+>C+.
0 g Q (10

H=#lg 0 0 (6) We now assume that(t) is a real parameter, which leads

Q00 to

Within the semiclassical approximation for the atomic mo- (B.[B-) = §<B|B> =0,

tion, the center of mass motion is described@y2M with

M the atomic mass ang the atomic momentum. While for 1 E o)

. . . . B a
slow atoms, we may wish to include the associated forces (D|B.) = —r<D|B>:°— (12)

due to the atomic interaction with the spatially dependent v v’5(1+|r0a(t)|2)
laser(cavity) fields. We will first consider the simple case of . . R
predetermined atomic motion as it corresponds to atoms DENOUNGE.=xe, we end up with the simplified form of
staying in the dark state, i.e., we simply assume that atomi q.(10),

motion is not affected. We will also comparatively address Co=—gl f},s(t')dt'/hK(t)C PN st(t’)dt’/hK(t)C

the case of a trapped harmonic atom motion. We defer the 0 " -
inclusion of atomic dipole forces to a future investigation.

: . . i ~ i fhe(t)dt et
With these assumptions, we find the three eigenvalues C, = MoK (1),

E,=0, C_= e o i (pycy, (12)
with
E. = £ x{r(H]gov1 +[rea(t)|?, () road(t) _

) K(t) = —= 5 =(D|By). (13
whereE, depends ori. Here, we have usefl=rqa(t)g, |g| V2[1 +|ra(t)[?]
=[x[r(V]gol, and \|g|*+|Q[*=|x[r(t)1gol V1 +rea(t)]%. We These equations can be numerically integrated using stan-
note thatE,>E. when x[r(t)]go>0, and E,<E. when  gard algorithms to investigate nonadiabatic level crossings.
x[r(t)]go<0. Before attempting an analytical understanding of the level

Figure 2 shows the atomic dressed state ene(@)edong  crossing dynamics near the nodes of the cavity mode func-
the cavity axis at a given radial locatiq=0) for a fixed  tion y(F) in the next section, we first consider here typical
time t when the external laser is turned on. For an atom tqegimes of system parameters.
cross a nodal plane, it must be initially within a distance
reachable within the duration of the external pump pul&g A. Parameters
with its initial velocity. We will use Cs as a prototype atom for the estimation of

In addition to dark staté3), the two other eigenstates are various atomic parameters. The resonant transition between
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the 6S,,, and 6P, (unclear spin =7/2), occurs at around trap from a higher order cavity mode. Of course, these esti-
A=852.35(nm),Aw=1.455(eV), and excited state lifetime mates are valid only for atomic motion near the bottom of
(1/9)=30.70(ns), or y=(27)5.18(MHz). The recoil fre- the trap. For significantly higher atomic energies, as for in-
quency of resonant transition is abouir=%k?/(2M)  stance in the recent experimefi], where atomic kinetic
=2.07(kHz), corresponding to a temperature of 0.19&),  energy is of the order d27)20 (MHz), or about one-half of
or a recoil velocity of 0.352(cm/9. The wavelength of the actual potential barriers at abo(®7)50 (MHz), and
Arort=936 (nm) used for the dipole trapping of atoms in about 40(Aw,) and 7500(%w,), simple harmonic motion
Ref. [5] corresponds to a higher order cavity field. cannot be assumed.

The vacuum Rabi coupling between the cavity field and Within the regimes of these parameters, atomic center of
the atom isgy=(27)50 (MHz) as in the recent CalTech ex- mass motion is well approximated by classical dynamics in a
periment[1]. For order of magnitude estimates, the ratjo conservative potential. We can also estimate the maximal

=0 /[ga(t)] can be taken as unity. velocity of these atoms when trapped in the above single
According to Sec. Il A of Ref[5], we take the adiabatic Well potential,
parameteix(t) as a Gaussian functlon2 %Mng(hk/M)Z: A0(iw,) ~ %MvﬁM(hk/MF: 7500w,
=T
al(t) = ag expl - (tTO)} , (14) (19
w

where we have expressed velocities in atomic recoil units.
with the total protocol for state transfer being approximatedlhus we find

as T=2T,. The amplitudeqy is assumed to be 30 and the 20(MHZ)
: ¢ - : [ 7
width t, is assumed to b&,/3. For the efﬁ_m_ent operation of Vo~ Vot = \10 000 = 10Qug) ~ 35(cm/s.
the quantum state transfer protocol utilizing the dark state WR

adiabatic passage, the excited state atomic lifetirhéy es- (20)
sentially sets the time scale, for this reason we taje
~1/y, or Ty~ 10/7. This leads to the assumption of atomic velocities with the

Assuming that atoms are trapped inside a single well ofollowing choices for numerical simulationg;,~1 (m/s)
the standing wave cavity field, or of the wells of the dressed~0.03G\ ) (10 times more kinetic energyyv,~0.35m/s),
energyE.(r), we can estimate the oscillation frequency in-and v,~0.1(m/s) (10 times less kinetic energyWith T,
side according to ~ 10/, the respective distances that a typical atom travels
during the state transfer protocols become 0.03+0r8),
dox(p,z— N4) = gq exp[ }sin(kz— wl2) which is a significant fraction ok/4, one-half the distance
W2( - \4) between the nearest nodal planes. It is important to empha-
2 kz size that in this limit which corresponds to the recent experi-
=goe p[— 2—} {2 SII‘]2< ) 1} ment[1], atomic kinetic energy is much higher than its single
(z-N4) photon recoil energy, and the atom’s motional quantum state
M(kz)2 } is much higher than the ground state of each trapped well.

~ Jo exp[— woll 2 ~ 1 (159 This lends strong support to our assumption of using a con-
stant(predeterminedatomic trajectory in studying the level

near the axis center where the well is deepest, which givesrossing dynamics. When an additional cavity field is used to

the strongest axial oscillation and radial oscillation accordingonfine atoms, optical dipole force is the reason for atoms to

to turn around at classical turning points.
}ngzz - }ﬁgokzzz, (16) B. Qualitative picture of the failure of adiabaticity
2 2 To maintain adiabaticity during atomic motion, the system
must satisfy{13]
M=o b 17) (n(]ajm)
2 w2) cog| <L (21)
t) - t
i.e., we obtain o0~ EnlV)
T P for all adiabatic energy levels. The above notation applies to
w;=\29o(7ik/2M), a general time dependent Hamiltonikift) with eigenfunc-
tions |m(t)) and eigenvalue€,(t). The time derivative of
Z\Mkw( 5 (18) |[m(t)) should be calculated according to
R
Given the additional enhancement dug}@) in E,, and use am(t)) = % ﬁlm(t» (22

the estimated parameters as outlined above, we then take

w,~ (27)500 (kHz), and assume a fundamental cavity modewith R; the ith parameter.

waist ofw(0) =30\, we end up withw,~ (27)2.65 (kHz), of In the problem considered here, there are four parameters:
the same orders of magnitude as in Réf of the optical «,X,y, andz Similar to Ref.[5], we take the spatial mode
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FIG. 3. The time dependent dressed state enefgjgswith the FIG. 4. The functionf(t) of Eq. (27).
time dependent pulse shap€t) as in Eq.(14). We have used(t)
=vt with the speed of the atom being=0.14\y) =4(m/9). a(t) is ‘ K(t) f(t)
assumed to begin increasing at tibyed when the atom is located at — | = , (26)
the peak of the cavity field whelsin(k2)|=1. E.(t)| |[sin(k2)|
with
functions to be identical as in E@5). It is easy to see that .
the dark state Eq3) |D) as well as the other two eigenstates f(t)= | — a(t) (27)
V201 +|a(tP12|

1 1
B.) = —————=(g|go, 1) + 0|01, 0)) + —=[e,0), (23
|B.) 2\,gz+92(9|90> 191,0)) \,ZI ), (23)

In Fig. 4, we have graphed the functid(t).
The two prominent features as in Fig. 4 at times of 3.3/
only depends on the parameteand has nothing to do with  and 16.7# correspond to the instants when the Gaussian
r. So the numerator of Eq21) is independent of the atomic shaped pulse gives rise to the largest shape changes. Appar-
speedr. On the other hand, two of the three eigenvalues ently, (t) is significant at=3.3/y andt=16.7/y. From Eq.

E = +2+02 (24) (26), we note if the atomic position is near a nodal plane

== V0 : when |sin(k2)| is small, |K(t)/E.(t)| becomes large and the
do depend on. Thus the denominator of Eq21) depends adiabatic condition(25) can become severely violated at
on the position of the atom Assuming that the time evolu- these instants. This adiabatic breakdown is less seriotis at
tion of a(t) is uncorrelated with atomic motiafgt), the value  =16.7/y when the internal state transfer protocol is almost
of Eq. (21) may become large, especially in the regionscompleted, but detrimental &t 3.3/, near the beginning of
where|E,(t) - E(t)| < [(n(t)|a]m(t))|. the process.
Two regions require special attentiqd) the nodal planes

perpendicular to the cavity axis due to the standing wave lll. LANDAU-ZENER TRANSITIONS
term sinkz) =0; and(2) the region away from the cavity axis

due o Zthe exponentially damped ~Gaussian €My, of the adiabatic approximation can potentially fail near a
exf-p* »*(2)]. In this study, we focus on the level crossing o4 plane wherg(7)=0. In this section, we hope to ana-
dynamics, which happens mainly in the first region defineqy .oy investigate the transition from the dark state to

above. For the_ latest experiments, as in ReisZ]_whe(e bright states when the atom goes across a nodal plane.
atoms are localized to a single well along the cavity axis, we

may expect reduced nonadiabaticity because no actual level
crossing occurs.

Before attempting a comprehensive understanding of the We first deal with the one-dimensional case of atomic
problem, we will first discuss the qualitative picture of how motion along the cavity axis. Assuming
adiabatic following is violated during the atomic motion in

As was shown from the previous discussions, the applica-

A. One-dimensional motion along the cavity axis

this section. For simplicity, we will model the atomic motion x(7) = sin(ka), (28)
as being simple one dimensional. From E#3), the adia- and take the atomic motion accordingzevt, our problem
batic condition Eq(21) is just is to solve Eq(12), with the initial conditions
K(t) [Co(-u)| =1,
<1, 25
‘ E.0) (29
C.(-u)=0. (29

where|E.(t)| =|x[r(t)]|goy1+|rea(t)|? as defined before. We

see thatE,(t) becomes sufficiently smalsee Fig. 3when  More specifically, we in fact only wish to solve f¢€y(u)?

the atom is near the nodal plane (=0, where the con- and|C.(u)|? after one nodal crossing.

dition Eq. (25) is easily violated. As the lowest order approximation, we assuw® and
After elementary substitutions, we find K(t) to be constants in the domakze [-u,u] and we also
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assume that the energyt)/#f=sin(k2)go\1+|a(t)|> can be 1
approximated as a linear function of tinigee Appendix B do(-w) = (= ')E'
in this domain ‘

e()/h = kotgoy1 +|a(t)]?, (30) c.(-u)=0. (39
wherev is a constant atomic speed along the cavity axis. Nonadiabatic effect induced transitions mainly occur within

this domain, adiabatic condition ER1) is well satisfied. In

i the end, as we will see later, our result is independent of the

C. = ie()Cy/t + glos I G

@ choice ofu. Sincee(t) is a linear function ot, this problem
o e is exactly the same one as discussed in the original Zener’s
=i e(t)C.lh — eloeIarliK paper[10]. At the edge of the domaikze [-u,u],|K|<|¢|
Sifte(t)dt T i Le(tdt T and the initial conditions can be adiabatically maintained to
><(e ° KC, +eo KC‘) the domain(—c0, =), just as Zener has done. Noting the nor-
=ie(t)C./h - K2C, - €/ et)dt f2c (31  malization condition
Using |dol* + |co* = 3, (40)
C =g fgs(wdtr/ﬁKCO: o fgg(t/)dtr/ﬁch (32) and using Zener’s solutiofiL0], we find that
—U) = i , 1 2K?2
andC.(-u)=0, we find |do(0)[2= Zexpl - 2m——— |, (41)
t 2 [kugoV1 +|af?
C. = f g2 f})s(t”)df’/h'c+(t,)dtr — o2 fge(t")df’/ﬁc+ which leads to
-u
1 1 h(t)
t it g C mz:__d 002:—[1—6X[<—2 >:|,
+2i f e 2l0e")dt Mg (t)C, (t')dt 1. (33) IC. )] 2 o) 2 Tkogy|
- (42)
Substituting Eq(33) into (31), we find with
d—zc+ = ie(t)Clh - 2K°C, 2K? (1)
dt? h(t) = 5= L (43
t Vit[al® (V1+]|df?)
+ 2iK2J Qe g (1) O (t)dt [ (34) This constitutes the main result of our paper. We note the
-u dark state probability after crossing a node becomes
The last term is rapidly oscillating and within the lowest 5 ) h(t)
order approximation, it can be neglecteste Appendix ¢ P=1-[Cy()|*~[C_(=)|*=exp| - 217“(1) ) (44)
Then the equations o, andC, become %

5 To our knowledge, this result has not been derived before. As
d—2C+: ie(t)C,/h — 2K°C, (35)  We will show in the following through extensive compari-
dt sons with detailed numerical simulations, this result com-

pletely captures the physics of population transfer due to

and . . A

nonadiabatic level crossing induced by the center of mass

C. = @l o (36) motion of the Lambda-type 3-level atom coupled to two laser

* o fields. It leads to the conclusion that the larger the atomic

Using the transformation speedv, is, the more reasonable it is to adopt the approxi-

1 mation of takinga(t) andK(t) as constants and neglect the

do=(-i)-=C,, term 2K2[' exp2i f:,s(t”)dt"/h]s(t’)C+(t’)dt’/ﬁ. Further-
\ more as we shall see in the next section, even in the limit of

a smallv,, the transition probability44) as given by the
C+:e—ifgs(t’)dt’/hc+, (37) analytic Landau-Zener method also compares well with re-
sults from numerical simulations.
we find that Eq(35) is equivalent to a problem described by

an effective Hamiltonian as below B. Three-dimensional motion of atoms

d (do) 0 - \rEﬁK do In the limit as considered presently when atomic motion

i “\_.H ' (38) is predetermined, a full three dimensional center of mass
dt\c, V2hK & . . .

motion of the atom can be discussed without much further

with the initial condition complications. Essentially, it is the component of the atomic

+
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FIG. 5. The functiorh(t). v o

FIG. 6. The dark state survival probabili® after crossing a
velocity along the cavity axis direction that is involved in the nodal plane when the atomic motion corresponds to a constant
level crossing dynamics, motion in the orthogonal directionsspeed along the cavity axis. The solid line comes from the numeri-
only causes the crossing to be at different radial locationsgal simulation of the nodal crossing dynamics by solving Efj8)

thus different level spacing characteristics. for Cj(t), while the dashed line is the prediction of our approximate
analytic result Eq(44) from the Landau-Zener theory.

small enough, e.g., when<0.01(\y)=0.28(m/9),P re-
mains essentially unity. This is because with this speed, the

In this section, we investigate the dark state survival probatom cannot arrive at the nearest node before the state trans-
ability by comparing the analytic result44) under the fer protocol is completed. Wherv is increased to
Landau-Zener approximation with numerical solutions of0.017\y)=0.47(m/s), the first smallP valley shows up,

Eq. (12). corresponding to the atom arriving at the nodal plane at

Unless otherwise noted, the parametery, aboutt=16.7/y when h(t) is significant(near its second
=(2m)50 (MHz) is used, corresponds to tigeat the end of peak. The second smal valley corresponds to the atomic
Sec. Il of Ref.[5]. The atomic mass for Cs iM~133  speed of 0.048.y)=1.36(m/s), when the atom arrives at
X 1.67x 10?7 (kg). the nodal plane at abotrt3.3/y whenh(t) is around its first

We assume the pump shape is given by Bdb) where  temporal peak. As we have analyzed in the preceding sec-
ap=30,Tp=3X 1077 (s) ~ 10y (so that the total operation oc- tion, this second peak corresponds to the beginning of the
curs within 2I,=20/y, as typical for the optimal STIRAP state transfer protocol. If the atom leaves the dark state at this
proces$, andty,=Ty/3. Thereforet € (0, 2T). time, the whole operation will be destroyed.

From the approximate Landau-Zener result &), it is We also note that the minimum &fnear the second small
easy to see that the atom’s dark state survival probali#flity P valley whenv ~0.049\y)=1.36(m/9) is larger than the
after crossing a node is closely related to the funchi@i of minimum of the first smallP valley of v~0.017\7y)

Eq. (43). The larger ish(t), the smaller isP. We show the =0.4(m/s). This can be easily explained according to the
time dependence dfi(t) in Fig. 5. It resembles the function analytic result Eq.(44), P=exg-27h(t)/|kvgo|], which
f(t) as shown before in Fig. 4. The duration of the stateshows that for the same value loft), P is larger for larger
transfer protocol is taken to be 2§ko that the(unavoid- v. When the atomic speed is larger tham-0.049\7y)
able) maximums ofh(t) are clearly displayed. =1.36(m/s), the atom will cross more than one node during

It is easy to see that at times ne&r3.3/y or t  the operation time, and the dark state survival probability
=16.7/y, h(t) becomes rather large. If an atom crosses &ecomes even smaller. We can approximate in this ase
node at these instants, the transition probability to otherII,P; wheren is the number of nodes crossed by the atom
states may become significant. This corresponds to the qualind P, is the probability for the atom to remain in the dark
tative picture of the adiabatic breakdown as mentioned in thetate after crossing thiéh node. This constitutes an excellent
preceding section. approximation whem is small.

As a simple example, we assume the atom moves with a In practice, the atom may be trapped in an additional po-
constant speed. At time t=0 when the state transfer proto- tential, e.g., takes a harmonic motion instead of a straight
col begins, the atom is at the peak of the cavity field wherdine. In the optimal scenario when the center of the harmonic
Isin(kz)|=1. In Fig. 6 we present the results for the dark statetrap overlaps the peak of the cavity field standing wave, and
survival probabilityP (as a function ofv) att=20/y, after ~ when the operation starts at the instant when the atom is
the internal state transfer protocol has been completed. located at the trap center, the corresponding results for this

The two prominent features of smafl valleys can be case is presented in Fig. 7, where we have further assumed a
easily understood. They correspond, respectively, to théypical trap frequencyw;~ 1.32(MHz). We note that the
crossing of a nodal plane at instants wheh is large as in  atom’s final dark state survival probability is related to its
Fig. 5, by slow and fast moving atoms. If the atomic speed isnitial speedv as well.

IV. RESULTS AND DISCUSSIONS
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FIG. 7. The same as in Fig. 6 but for a predetermined oscillation FIG. 8. P as a function ofyv for the initial atomic locations
of the atom as confined in an external harmonic trap. This externalong cavity axiszy=A/4,\/3, and 5./12.
trap can be a magnetic trap or an optical dipole trap from additional
lights not involved in forming the dark state.

_ B(vy)
P(vo) = Ao’ (47)
This figure resembles that of Fig. 6, with the main differ- vo
ence being the minimum oP in the two valleys being
o . ) . .. Where

smaller here. This is because in an harmonic motion, its
speed at the nodal plane is smaller than its initial speed A/ (4x2Ty) 2

Itis remarkable that despite of the approximations used irg(, ) ~ f ” expl - %}dv
deriving the analytic Landau-Zener transition rate &d), it 0 (Av)

gives rise to results that show an overall agreement with the

_ NS
fully numerical simulations of Eq(12). This demonstrates + 13}‘/(4”%) exd - (v —vo) P (0)do
convincingly that at least in the parameter regime being con- N/ (4X2Tp) L (Av)®
sidered by us, our result Egt4) captures the complete phys- 5/ (42T - 5]
ics involved in this model problem. +J 0 exp| - (v —voz) P.(v)Po(v)dv
3N/ (4X2Ty) L (Av)* |
A. The velocity depend n/@x2ty [ (w=p0)?
e velocity dependence +f exp| - (v(A v)oz) PL(0)P(0) Pa(v)d,
To gain some understanding of the effects due to the un- 5/ (4x2Tg) - v

avoidable momentum distribution of the atom, we assume .
here a one-dimensional distributiafor the speed of the 2andPi(v),Pa(v), andPs(v) are, respectively, the dark state

atomic center of mass survivgl probability after crossiqg the_first, the second, and
the third node. In the above discussion, we have assumed
) that the atomic initial position ig,=\/4, where the cavity
f(v) = lex _ (v =vp) } (45) field has its maximal value. ThB(vy) for other values of
A (Av)? |’ Z,# 0 can be obtained similarly.

In Fig. 8, we have presented the numerically computed

centered at a central velocity and with a distribution width dark state survival probabilit as a function ob, for sev-
Av=1.2x 10°%\) [0.035(m/9)], or about 10 times Cs re- ©eral different atomic initial positionz.
coil velocity. The normalization constant is given by

B. Three-dimensional atomic motion

[ (v —vo)? To complete this study, we present selective results for the
Alvg Av) = JO ex (Av)? }dv (46) three-dimensional atomic motion in this section. We selected
) ] two different situations where the atom is initially at the
In the following, we considerw,e[0,5.3X10%\y),  antinodal point of the cavity field mode, and is taking a
i.e.,[0,1.5 (m/s). We note that for each,, the above dis-  straight line motion that makes an angle of 30° or 60° with
tribution (45) is essentially bounded from above by  respect to the cavity axigSee Figs. 9 and 1pNot surpris-
~vo+2Av. Whenv,=5.3X 107%(\y)=1.44(m/9), we find  ingly, we again find excellent agreement with our analytic
Umax~5.5X 1072(\y)=1.5(m/s) and vna2To/(N2)=2.21,  Landau-Zener result Eq44), applied appropriately as dis-
i.e., forvg=<5.3x 107%(\y), the atom will cross at most three cussed earlier with the velocity component along the cavity

nodes. axis being used to parametrize level crossing, essentially the
The dark state survival probability as a functiorvgfcan ~ same as the case of the one-dimensional model considered
then be approximately computed according to earlier.
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v (mis) { ;{ 22 }}2
05 1.0 15 20 P={1-2exd - =
\ 2kgolv|(1 +]a]?)?

. __h V|2
_[1 2ex;< W2|kvgo|>]' (50)

Expressed in terms of a series expansion of the above expo-
nent, the exact resul60) is the same as the approximate one
(44) up to the first order. For all the parameters considered in
this work, the two are essentially indistinguishable because
the exponent is relatively small as confirmed by our numeri-
. cal simulations. For very smaidl (or not so small an expo-
0 oot 008 g °%® 0.07 nend, however, the two differs, because the rapid oscillating
term neglectedsee Appendix ¢Cis not necessary small any-

FIG. 9. The dark state survival probabilify after crossing a more.
nodal plane when the atomic motion corresponds to a constant
speed along the direction 30° off the cavity axis. The solid line V. SUMMARY
comes from the numerical simulation of the nodal crossing dynam-
ics by solving the Eqs(12) for C;(t), while the dashed line is the In conclusion, we have studied nonadiabatic motional ef-
prediction of our approximate analytic result E@4) from the fects of a three-leveA-type atom Raman coupled to the
Landau-Zener theory. standing wave quantum field of a high-optical cavity and

an external pump field sharing the same spatial profile.

C. The complete analytic solution for the resonant case First, making use of the Landau-Zener approximation to
the crossing of a nodal plane by the atom, we have derived
Bn analytic formula describing the survival probability for
the atom to stay in the so-called motional insensitive dark
Mtate. Surprisingly, our numerical results show that the ap-

proximation is remarkably good within current experimental
parameters, thus can be used to guide the experimental
implementation of the motional insensitive proto¢s].

Second, we find that the nonadiabatic motional effects is

essentially connected with the dimensionless parameter

The various results illustrated above clearly show that ou
approximate Landau-Zener solution £44) captures the es-
sential physics for the level crossing dynamics of the ato
cavity model described by Eq$12). It turns out that the
complete analytic solution to Eqggl2) is available from the
earlier work of Ref[14]. Through a mapping of our model,
we find that the exact result is given by

— 2
P=(1-P-9) (48) X (20/y), the distance the atofmith center of mass velocity
with v) travels during the state transfer protocol-e20/vy. If this
distance becomes a significant fraction af i.e., v
P =exp(— 27p)), X (20/y)=N\I4, orv=\y/(48)=0.577(m/s), then nonadia-
batic effect will spoil the motional insensitive protocol in
general, even if the atom is assumed to be located initially
Q = exp(~ 27lq), (49 near the antinodal planes of @m)==1.
Ny To be sure of the adiabatic following of the dark state, one

andp=q=|K|?/[2kvgg\1+|a(t)|?]. More explicitly, the exact

' needs to assure at all times
result can be casted in the form

h(t)
v () (277)|kvgo| <1, (52
05 1,0 15 2,0
1 ) and the number of nodes crossed is small.
\ Finally, we hope to clarify whether the transition probabil-
08 ity is insensitive or sensitive to the motional effects for the
model problem studied. If the atom oscillates in a trap but
06 does not cross the node, as in the case considered if3Ref.
N and attempted in the recent Caltech experinjéht(where
0.4 the coupling typically varies by a factor of),2the result is
relatively insensitive to the motional effects. On the other
02l hand, if the atom moves across the nedsy., if there is no
, , additional trapping due to FORT beanthe transition prob-
0 oot 0.0 0.05 0.07 ability is more sensitive to the motional effects. When the

3
»
v light field from a different longitudinal mode of the cavity is

FIG. 10. The same as in Fig. 9 but for atomic motion 60° off the used to trap the atoifi], there is no guarantee that the atom
cavity axis. Only one smalP valley shows up within the velocity Wwill avoid the nodal crossing points even if it is relatively
range because of the large angle off the cavity axis. localized around a trap field node/antinode, because the cav-
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N

To compute the transition probability fak #0, we ex-
pand the state of the atom plus the field in terms of the

-
o

"553 eigenbasis Eq3) and (8) of the system Hamiltonian for
g W - = A=0, which is now
? 1
§ 05
2 D)= =——=(|01,0) - a(t)|go, 1)),
i | L +aP |01 |90
8
§ v g 7 \
5-05F T AN 1
‘\_ ,’, \‘\ J/ "\ ,” |Bi> = ?(|B> * |el 0))1 (A4)
-1 A 2 A \"2
0 2 4 . 6 8 10
with the corresponding eigenvalues K@) re-expressed in
FIG. 11. Similar to Fig. 2 but foA #0. this appendix as
= 0'
ity and trap field standing waves are of different periods. €
R
e = £ xX[r()]/golV1 +]a(t)*. (A5)
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APPENDIX A: THE CASE OF A NONZERO DETUNING H=Ale,0)(e,0] + &[B.)(B.| + e[B_)(B..

(A#0) Noting that
When A # 0, the Hamiltonian in the interaction picture 1
with the same basif|e,0),|s,1),|g,0)} becomes e,0)= ,—§(|B+> - [B-)),
\J
A* g Q we rewrite Eq.(Al) as
H=(g 0 O0]. (A1)
* A A A
Q@ 00 H =<6++E>|B+><B+| +(€—+E>|B—><B—|_E(|B+><B—|
The three eigenvalues are
E <0 +[B_)(B.). (A6)
o Expanding the quantum state as in [£9),
E.= 30+ 407+ 407+ A%, (A2) [W(1) = ColD) + C,e/des( 81| )
with the corresponding eigenstat@®) and |E,). Clearly at +C e_ifg[e_(tr)+A]dtr|B ) (A7)

nodal planes when sikz) =0, |E,| take their minimal values
we obtain the following equations:

|E+|max: A!
e =—(C.e" Tolet)+aldt 4 o i f})[—e(t’)+A]dt’)K,
E_|min=0, (A3)
. . . . - - .ot ’ ’ A ot ’ ’
?Osik;svcic;]vgnw:lr; E:)%nniint?sn inspecting of which leads to the C, = Cyealet)aldt K+|E(C_e|foze(t LRy

First, irrespective of whethek=0 or A+ 0, the dressed
state energy levels cross at the nodal plane&ksir 0. , e ) A . ,

Second, wherd =0, all three energy levels have the same C_= Coefaletraldry + iE(C+e_'f026(t Ty C).
value zero at the nodal planes, while fde: 0, only E_ and
E, take zero values. There is a gap far whose width isA. (A8)
Thus if A is large enough, the transition from dark stHd
to |E,) can be avoided, but to stafie_) remains because of
the degeneracy at the crossing. The total transition probabil- C = tifoRet)dt' (A9)
ity again can be calculated theoretically using the previously *
adopted Landau-Zener approximation. we can integrate it to obtain

Since
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- ot " ’ H ’ ’ KZ 2
C. =J C:(t,)epf})ze(t )t §tr ~ C:etle)Ze(t )dt , P=1 —%<4 +A4/ WT) (A17)

(A10)  We note that the zeroth order term 1m/K|?/|V| is exactly
» the same as that for the resonant casithin the first order

wher w hav neglect th “small term i
ere © ave eglected © sma © perturbation theory

JC(t")d exp{iif{,'Ze(t”)dt”] (as in Sec. Il and Appendix C
Then according to EqA8), we have
APPENDIX B: THE LINEAR APPROXIMATION

C, = Coelolet+Ald'K 4 jAC,,
0 ’ Within the discussion as in Sec. Il B, we mapped our level

crossing problem into the well-known problem of Landau-

C_= C,eld-et+ald'k 4 jAC._. (A11)  Zener transition.
Assuming C,=d%%,. the above equation can be ex- As was shown before, the adiabatic condition is
ressed as f(t
P L 1, (B1)
- g sin(k2)
& = Coetiost K (A12) _ _ _ o _
with the typical behavior fof(t) as shown in Fig. 4. Taking
which when coupled with the equation f(t)<0.035, we see that within the domain (gin(kz)|
) <0.7, we have
Co=-(C,e" Telet)+Aldt 4 o i f},[—e(t'>+A]dt’)K
- f(t)
= (£,e T | g ity (A13) " S <0.05, (B2)
is formally the same as equations fo=0. Thus we obtain although still much less than 1. Thus we can define the do-
the same result main sin(k2)| < 0.7 as the domain of validity where the adia-

batic condition is marginal. In this domain, the error of the

h t . . . - — . 0
ICy2= 1|62~ £ 2= exp{— oo (1) } (AL14) linear approximation sitkz) ~ kz is about 10%.
[kugol
To obtain Eq.(A14) we need to neglect the rapidly oscil- APPENDIX C: THE SMALL TERM

lating term [£-(t')d ex;{iifSZE(t”)dt"]. When A is large . . . D
NN = Tl 02 In this appendix, we provide the justification for the ne-
compared to |V|[V=kvgoy1+|a(t)?], the two terms glect of the second term of E¢34)

Jéx(t')d exdifo2e(t)dt’],  [C=(t')d exdi [ 2€(t)dt’] Given that initially the atom is in the dark state, we need
cannot be neglected simultaneouslyClf is a slowly vary-  C,(t’) to be small in order to maintain adiabatic operation.
ing function of timet, £~ will be a fast varying one thus it Thys we approximate
cannot be considered as a constant in the integration. There- .
ot g N
Tgrrg,e:r:ﬁ;s\ﬂuvI'(.AM) is applicable only wher is not much C_ = g 2he )G, 4 o f_ 205 g (1) G ()t
When the effect ofA is not negligible, we can estimate its !

influence by performing a simple perturbation calculation. (C1
Expressing Eq(A8) in a matrix form, whereu is the end of the time domain and assumed to satisfy
q |sin(kvu)|=0.7.
id—tc = M(t)C. (A15)
N 1.8 ”
with C=(C,,Cy,C_)" and the time dependent coefficient ma- 1.sn ” ﬂ ﬂ ” !
trix M. 14
The evolution operatoB defined asC(+%)=Sq-) can 12
be expanded as a series.bt, » 1
. - t 0.8
Szl—if M(t)dt—J f MOM@E)dtdt + --- . 06
-0 —o0 J —o0 0.4
(A16) 02
0

R vy 2 0 2 4
With this formula and the initial conditionC(—~) X
=(0,1,07, we obtain the dark state probability after crossing FIG. 12. The termS(x) as a function ofx for v=3.5
a mode up to the first order if, X 1072(\y).
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FIG. 13. The same as in Fig. 12 but for1.2X107%(\y).

We first approximate the second term of EG1) accord-
ing to

t ! " 4
ZIJ e—ZiIBs(t )dl’/ﬁs(t/)c+(t/)dt//ﬁ
-u

t r
~ | 2i f g 2os g (1 dt C ()R | . (C2)
-u
We note that
t v
S=|2i f g 2oe ) h g (¢ dt! 11
-u
t , —
=2 f e_Zi"rBkvt"90V1+la‘de,kUt,go\"l+|a|2 dt/
=u
t N
~2 f ek 00 1Pt g1+ [af dt
-u
o 12
=2 f e'" 7 dr|, (C3
-Qu

where we have approximatetdt) as a constant and denoted

Q=+vVkvggyl + |a|2,

7 =0t

Jﬂt
-Qu

(C4
Thus

S=2 e dr’ (C5)
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FIG. 14. The same as in Fig. 12 but for3.5X 1073\ v).

/ | 2
VkuggV1+a|%t

J

where we have used sh0.7=0.77.
We take the worst case and use the valuerefhen«a is
maximum. This leads to

=2 e dr

VkogoV1+a|?(0.77/kv)
(Co)

(1x107-6x05x107)?
a=30X exp - 14 ~0.55,
107
V1+|a2=1.14, (C7)
and \kvgoy1+a|2=5.0x 107\v. If we now taket=s/(kv),
we find
3’k a2 ki s
s f\ vgo Ve (s/ k) iz (C8)
~VkuggV1+a]2(0.77/kv)
X 12
:2 f e_|7' T, dT, H (Cg)
-5.69/\v
with
—— s
X= \kvgo\'1+|0‘|2k_- (C10
v

The oscillating behaviors ofS for v=3.5X107?(\y)
[1(m/9)], 1.2X 107%(\y) [0.35m/9)], and v=3.5
X 103(\y) [0.1(m/9)] are shown below in Figs. 12-14.

We see that the amplitude & is about 2, not really a
small value. On the other han8,is a rapid oscillation func-
tion of timet, thus does not lead to much effect during the
dynamic evolution. We believe this is the reason why our
Landau-Zener result based on the neglect of this “small
term” is justified by the numerical simulations.
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