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We revisit the topic of atomic center of mass motion of a three level atom Raman coupled strongly to an
external laser field and the quantum field of a high-Q optical cavity. We focus on the motion related nonadia-
batic effects of the atomic internal dynamics and provide a quantitative answer to the validity regime for the
application of the motional insensitive dark state as recently suggested by Duan, Kuzmich, and Kimble[Phys.
Rev. A 67, 032305(2003)].
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I. INTRODUCTION

The development of quantum information science and
technology carries the potential of revolutionary impact on
many aspects of our society, as evidenced already by the
applications in quantum cryptography, quantum communica-
tion, and rudimentary quantum computing. Among the physi-
cal systems being investigated, high-Q optical cavities
coupled with trapped atomic qubits represent a paradigm for
this burgeoning field. In addition to their demonstrated abili-
ties for controlled(and coherent) quantum dynamics of both
atomic and/or cavity photonic qubits, cavity quantum elec-
tron diffraction(QED) systems are unique because they rep-
resent a prototype enabling technology for the coherent in-
terconversion of quantum information encoded in material
qubits or flying photonic qubits for propagation to far away
places.

Despite much effort and spectacular advances from sev-
eral groups in recent years[1–3], high fidelity deterministic
logic operations even at the level of two qubits remain elu-
sive in cavity QED based systems. Among the factors as
commonly attributed to being significant road blocks, the
localization of atomic motional wave packet is perhaps the
most demanding. In nearly all quantum computing protocols
of atoms coupled to a high-Q cavity field, it is essential to
reach the so-called strong coupling limit, where the coherent
coupling of an atom with the near resonant cavity modeg
must be much larger than both the cavity decay ratek (one
side) and the atomic spontaneous emission rateg, i.e., g
@k andg@g. Sinceg2 is inversely proportional to the mode
volume of the cavity, it typically points to small cavities in
the Fabry-Perot arrangement, where the cavity mode is that
of a standing wave given by

gsrWd = g0xsrWd,

xsrWd =
w0

wszd
expF−

r2

w2szdGsinskzd, s1d

with r=Îx2+y2 the transverse(polar) coordinate measured
from the cylindrically symmetric cavity axis along thez di-
rection. The typical geometries have the mode waistwszd
=w0

Î1+z2/z0
2 much larger than the cavity wavelengthl,

where z0=pw0
2/l is the Rayleigh range. Unless each indi-

vidual atomic motion is localized to much less than the reso-
nant wavelengthl, i.e., in the so-called Lamb-Dicke limit
(LDL ), this position dependent uncertainty of coupling
strengthgsrWd generally spoils the quantum coherence, and
prevents high fidelity quantum logic operations. This chal-
lenging limit is not so-far under complete experimental con-
trol, it is especially problematic for optical cavity QED sys-
tems.

Recently, two independent groups[4,5] have noticed an
interesting scenario where the above undesirable position de-
pendence ofgsrWd can be largely overcome with the use of a
so-called dark state, when the classical Raman laser field is
assumed to have the same spatial dependence as the quantum
field gsrWd. For a large class of quantum computing protocols
based on atomic cavity QED, the building block consists of a
three levelL-type atom of stable ground statesug0l and ug1l
that couple to an excited stateuel. Such an arrangement al-
lows for a coherent mapping of an atomic qubitsaug0l
+bug1ld into the photonic coherence of the cavity. In the
most publicized version as originally suggested[6], it is as-
sumed that a classical laser field and the quantum cavity field
establishes a two-photon matched Raman resonance between
ug1l↔ uel and ug0l↔ uel. By denoting the Rabi frequency of
the classical laser field asV, the dipole coupling in the in-
teraction picture can be summarized as

H0 = − "Duelkeu + "Vuelkg1u + "guelkg0uc + H.c., s2d

where c is the annihilation operator for the near resonant
cavity photon mode used for Raman coupling(Fig. 1), and
the common detuningD=vL−veg1

=v−veg0
. Both atomic

and cavity decays(g or k) are omitted in this study allowing
us to concentrate on the investigation of nonadiabatic effects
due to atomic motion within the coherent atom-cavity dy-
namics. Thus generally speaking, our model requires the to-
tal operation time to be much less than 1/g or 1/k. It is easy
to check that the following “dark state”

uDl =
1

Îugu2 + uVu2
sgug1,0l − Vug0,1ld, s3d

is an eigenstate of the Hamiltonian Eq.(2) with a zero eigen-
value, whereu0lC and u1lC denote the Fock state of 0 or 1
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cavity photons, respectively. It is dark, or, immune to atomic
spontaneous emission because it contains no atomic excited
state. By engineering a counterintuitive pulse sequence as in
the STIRAP(stimulated Raman adiabatic passage), and as-
sume the atom + cavity system to adiabatically follow the
above dark state, it leads to a highly efficient protocol for
converting the atomic qubit state into a photonic superposi-
tion according to[6–8]

saug0l + bug1ld ^ u0lC → ug1l ^ sau0l + bu1ldC. s4d

When atomic motion is considered, the position depen-
dence ofgsrWd generally leads to a loss of coherence due to
the potential entanglement between the motion and the
atomic internal state as well as the cavity photon state. The
idea of the motional insensitive protocol[4,5], assumes a
classical laser field that has the same dependence asgsrWd.
Following the notation of Duanet al. [5], this assumption
amounts to

VsrW,td = V0stdxsrWd = r0g0astdxsrWd. s5d

A simple arrangement involves choosing the pump and the
cavity transitionsug1l↔ uel and ug0l↔ uel to correspond the
left and right circular polarized component of the same cav-
ity mode. A more flexible setup would involve the use of a
different cavity mode such that near the cavity center,xsrWd
for the two modes remain almost matched as the two modes
differ very little in their respective wavelengths[9].

The aim of this paper is to study in detail nonadiabatic
effects of the above motion insensitive protocol. As was also
noted in Ref.[5], it clearly becomes difficult to maintain
adiabaticity when the atomic Raman coupling is too weak to
affect the transfer, particularly near regions of smallgsrWd
values. Furthermore, an atom remaining in the dark state
essentially experiences no light force from the combined
fields of both the cavity mode and the external laser. This
arguably leads to an upper limit on the atomic kinetic energy;
the durationT for the STIRAP is determined by atomic in-
ternal state dynamics. Thus for an atom with a velocity ofva,
during the STIRAP, it will move a distancevaT if it is to
remain in the dark state. A largerva leads simply to a large

travelling distance. Nonadiabatic effects will arise if atoms
were to travel far enough to cross nodal planes ofxsrWd (as we
will see later this contradicts the discussion of a better satis-
fied adiabatic condition near nodal points as in Ref.[5]). The
ideal operation of the motional insensitive protocol would
require the use of trapped atoms, i.e., with atoms confined
near regions of maximalgsrWd [5] by an external force inde-
pendent of the cavity or Raman field. The trap must be strong
enough to limit the atomic motion due to an amplitude
smaller than half the cavity wavelengthl /2, such that nodal
crossing can be completely avoided.

Another motivation for this study is the desire to under-
stand nodal crossing dynamics in general for the Raman con-
figuration when the trapping provided by an extra higher
order cavity mode is absent as in earlier experiments[2],
where either the resonant cavity field or an external laser
field provided confinement of atoms(not in the dark state).
Based on the dressed energy levels of an atom coupled to
both fields, we find that the dynamics of an atom crossing a
nodal plane can be effectively described in terms of the cel-
ebrated Landau-Zener theory[10]. Yet, a somewhat puzzling
situation arises according to Landau-Zener theory which pre-
fers to have a larger velocityva during the crossing in order
to maintain in the initial(dark) state. Consistent with the
paper of Duanet al. [5], the motional state insensitive pro-
tocol works only in the limit when the atoms are trapped by
yet an additional mechanism such that its motion is limited
to a variation ofgsrWd within approximately a factor of 2. On
the other hand, a large velocity tends to cause large ampli-
tude motions, thus against the localization of the Lamb-
Dicke limit. We thus find it interesting to study the relevant
Landau-Zener transitions in order to shed light on the mo-
tional effects of atoms in cavity QED.

This paper is organized as follows. In Sec. II, we formu-
late the model of our study and illustrate parameter regimes
of interest to current experimental efforts. Sections III and IV
are devoted, respectively, to the study of the nonadiabatic
level crossing in terms of a Landau-Zener transition dynam-
ics and the comparison between numerical simulations and
the approximate analytic Landau-Zener state transition for-
mulas. We have developed an interesting analytic mapping
(in the absence of an external trap) of the atomic motion
through a nodal point into a Landau-Zener level crossing
dynamics. Within each of the above sections, we will study
various limiting cases, mainly focusing on a simple model
that involves a one-dimensional motion along the cavity axis
[11,12]. Finally we summarize and attempt to make some
general conclusions in Sec. V. The appendixes contain sev-
eral technical points that may be useful for related studies.

II. FORMULATION

In the descriptions to follow, we will assume both fields to
be on resonance and take the atomic detuningD=0. For the
more general situation as shown in Appendix A with a non-
zero but constantDÞ0 (position independent), we find it
simply leads to formally identical results as discussed here
for D=0 (see Appendix A). When necessary, an external trap,
assumed to be internal state independent is assumed to be

FIG. 1. Illustration of the Raman coupling.
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available and centered around the maximum ofgsrWd to con-
fine atomic motion to within the order of one-half the stand-
ing wave wavelength as in Ref.[5].

The Hamiltonian for atomic internal degrees of freedom
(on resonanceD=0) can be written as a 3̂3 matrix [5] in
the basishue,0l , ug0,1l , ug1,0lj,

H = "1 0 g V

g* 0 0

V* 0 0
2 . s6d

Within the semiclassical approximation for the atomic mo-
tion, the center of mass motion is described bypW2/2M with
M the atomic mass andpW the atomic momentum. While for
slow atoms, we may wish to include the associated forces
due to the atomic interaction with the spatially dependent
laser(cavity) fields. We will first consider the simple case of
predetermined atomic motion as it corresponds to atoms
staying in the dark state, i.e., we simply assume that atomic
motion is not affected. We will also comparatively address
the case of a trapped harmonic atom motion. We defer the
inclusion of atomic dipole forces to a future investigation.
With these assumptions, we find the three eigenvalues

E0 = 0,

E± = ± xfrstdgg0
Î1 + ur0astdu2, s7d

whereE± depends onrW. Here, we have usedV=r0astdg, ugu
= uxfrstdgg0u, and Îugu2+ uVu2= uxfrstdgg0uÎ1+ur0astdu2. We
note that E+.E− when xfrstdgg0.0, and E+,E− when
xfrstdgg0,0.

Figure 2 shows the atomic dressed state energies(7) along
the cavity axis at a given radial locationsD=0d for a fixed
time t when the external laser is turned on. For an atom to
cross a nodal plane, it must be initially within a distance
reachable within the duration of the external pump pulseastd
with its initial velocity.

In addition to dark state(3), the two other eigenstates are

uB±l =
1
Î2

suBl ± ue,0ld,

uBl =
eif

Î1 + ur0astdu2
fug0,1l + r0

*astdug1,0lg, s8d

whereeif=g* / ugu and will be assumed to be unity later.
Before writing down the Schrödinger equation, we absorb

the phase factors due to the adiabatic evolution along each of
the above(time-dependent) eigenstates,

uCstdl = o
n=0,+,−

Cnstde−ie0
t Enstddt8/"unl, s9d

where we have used the shorthand notation ofn=0 for the
dark stateuDl andn=± for statesuB±l, respectively. The co-
efficientsCn are governed by

Ċ0 = − e−ie0
t E+st8ddt8/"kDuḂ+lC+ − e−ie0

t E−st8ddt8/"kDuḂ−lC−,

Ċ+ = − e+ie0
t E+st8ddt8/"kB+uḊlC0

− e−ie0
t fE−st8d−E+st8dgdt8/"kB+uḂ−lC−,

Ċ− = − eie0
t E−st8ddt8/"kB−uḊlC0 − e−ie0

t fE+st8d−E−st8dgdt8/"kB−uḂ+lC+.

s10d

We now assume thatastd is a real parameter, which leads
to

kB±uḂ7l =
1

2
kBuḂl = 0,

kDuḂ±l =
1
Î2

kDuḂl =
r0

*ȧstd
Î2s1 + ur0astdu2d

. s11d

DenotingE±= ±«, we end up with the simplified form of
Eq. (10),

Ċ0 = − e−ie0
t «st8ddt8/"KstdC+ − eie0

t «st8ddt8/"KstdC−,

Ċ+ = e+ie0
t «st8ddt8/"K*stdC0,

Ċ− = e−ie0
t «st8ddt8/"K*stdC0, s12d

with

Kstd =
r0

*ȧstd
Î2f1 + ur0astdu2g

= kDuḂ±l. s13d

These equations can be numerically integrated using stan-
dard algorithms to investigate nonadiabatic level crossings.
Before attempting an analytical understanding of the level
crossing dynamics near the nodes of the cavity mode func-
tion xsrWd in the next section, we first consider here typical
regimes of system parameters.

A. Parameters

We will use Cs as a prototype atom for the estimation of
various atomic parameters. The resonant transition between

FIG. 2. Dressed energies of the coupled atom + cavity system at
a particular radial location along the cavity axisz (at a fixed timet).
When the atom moves through a nodal plane, nonadiabatic transfer
of its internal state out of the dark state becomes a critical issue,
which constitutes the main topic being studied in this work.
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the 62S1/2 and 62P3/2 (unclear spinI =7/2), occurs at around
l=852.35snmd ,"v=1.455seVd, and excited state lifetime
s1/gd=30.70snsd, or g=s2pd5.18 sMHzd. The recoil fre-
quency of resonant transition is aboutvR="k2/ s2Md
=2.07skHzd, corresponding to a temperature of 0.198(µK),
or a recoil velocity of 0.352(cm/s). The wavelength of
lFORT=936 snmd used for the dipole trapping of atoms in
Ref. [5] corresponds to a higher order cavity field.

The vacuum Rabi coupling between the cavity field and
the atom isg0=s2pd50 sMHzd as in the recent CalTech ex-
periment[1]. For order of magnitude estimates, the ratior0
=V / fgastdg can be taken as unity.

According to Sec. III A of Ref.[5], we take the adiabatic
parameterastd as a Gaussian function

astd = a0 expF−
st − T0d2

tW
2 G , s14d

with the total protocol for state transfer being approximated
as T=2T0. The amplitudea0 is assumed to be 30 and the
width tW is assumed to beT0/3. For the efficient operation of
the quantum state transfer protocol utilizing the dark state
adiabatic passage, the excited state atomic lifetime~1/g es-
sentially sets the time scale, for this reason we taketW
,1/g, or T0,10/g.

Assuming that atoms are trapped inside a single well of
the standing wave cavity field, or of the wells of the dressed
energyE±srWd, we can estimate the oscillation frequency in-
side according to

g0xsr,z− l/4d = g0 expF−
r2

w2sz− l/4dGsinskz− p/2d

= g0 expF−
r2

w2sz− l/4dGF2 sin2Skz

2
D − 1G

< g0 expF−
r2

w2szdGF skzd2

2
− 1G , s15d

near the axis center where the well is deepest, which gives
the strongest axial oscillation and radial oscillation according
to

1

2
Mvz

2z2 =
1

2
"g0k

2z2, s16d

1

2
Mvr

2r2 = "g0
r2

w2szd
, s17d

i.e., we obtain

vz = Î2g0s"k2/2Md,

vr = 2Îg0s"k2/2Md
1

kwszd
. s18d

Given the additional enhancement due toVsrWd in E±, and use
the estimated parameters as outlined above, we then take
vz,s2pd500 skHzd, and assume a fundamental cavity mode
waist ofws0d=30l, we end up withvr,s2pd2.65 skHzd, of
the same orders of magnitude as in Ref.[1] of the optical

trap from a higher order cavity mode. Of course, these esti-
mates are valid only for atomic motion near the bottom of
the trap. For significantly higher atomic energies, as for in-
stance in the recent experiment[1], where atomic kinetic
energy is of the order ofs2pd20 sMHzd, or about one-half of
the actual potential barriers at abouts2pd50 sMHzd, and
about 40s"vzd and 7500s"vrd, simple harmonic motion
cannot be assumed.

Within the regimes of these parameters, atomic center of
mass motion is well approximated by classical dynamics in a
conservative potential. We can also estimate the maximal
velocity of these atoms when trapped in the above single
well potential,

1
2MvzM

2 s"k/Md2 = 40s"vzd , 1
2MvrM

2 s"k/Md2 = 7500s"vrd,

s19d

where we have expressed velocities in atomic recoil units.
Thus we find

vzM , vrM =Î40 sMHzd
2vR

= Î10 000 = 100svRd < 35scm/sd.

s20d

This leads to the assumption of atomic velocities with the
following choices for numerical simulations;vz<1 sm/sd
,0.036slgd (10 times more kinetic energy), vz<0.35sm/sd,
and vz<0.1sm/sd (10 times less kinetic energy). With T0

,10/g, the respective distances that a typical atom travels
during the state transfer protocols become 0.03–0.3(µm),
which is a significant fraction ofl /4, one-half the distance
between the nearest nodal planes. It is important to empha-
size that in this limit which corresponds to the recent experi-
ment[1], atomic kinetic energy is much higher than its single
photon recoil energy, and the atom’s motional quantum state
is much higher than the ground state of each trapped well.
This lends strong support to our assumption of using a con-
stant(predetermined) atomic trajectory in studying the level
crossing dynamics. When an additional cavity field is used to
confine atoms, optical dipole force is the reason for atoms to
turn around at classical turning points.

B. Qualitative picture of the failure of adiabaticity

To maintain adiabaticity during atomic motion, the system
must satisfy[13]

U knstdu]tumstdl
Enstd − Emstd

U ! 1, s21d

for all adiabatic energy levels. The above notation applies to
a general time dependent HamiltonianHstd with eigenfunc-
tions umstdl and eigenvaluesEmstd. The time derivative of
umstdl should be calculated according to

]tumstdl = o
Ri

]

] Ri
umstdl

dRi

dt
, s22d

with Ri the ith parameter.
In the problem considered here, there are four parameters:

a ,x,y, andz. Similar to Ref.[5], we take the spatial mode
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functions to be identical as in Eq.(5). It is easy to see that
the dark state Eq.(3) uDl as well as the other two eigenstates

uB±l =
1

2Îg2 + V2
sgug0,1l + Vug1,0ld ±

1
Î2

ue,0l, s23d

only depends on the parametera and has nothing to do with
rW. So the numerator of Eq.(21) is independent of the atomic
speedrW. On the other hand, two of the three eigenvalues

E± = ± Îg2 + V2, s24d

do depend onrW. Thus the denominator of Eq.(21) depends
on the position of the atomrW. Assuming that the time evolu-
tion of astd is uncorrelated with atomic motionrWstd, the value
of Eq. (21) may become large, especially in the regions
whereuEnstd−Emstdu! uknstdu]tumstdlu.

Two regions require special attention:(1) the nodal planes
perpendicular to the cavity axis due to the standing wave
term sinskzd=0; and(2) the region away from the cavity axis
due to the exponentially damped Gaussian term
expf−r2/v2szdg. In this study, we focus on the level crossing
dynamics, which happens mainly in the first region defined
above. For the latest experiments, as in Refs.[1,2] where
atoms are localized to a single well along the cavity axis, we
may expect reduced nonadiabaticity because no actual level
crossing occurs.

Before attempting a comprehensive understanding of the
problem, we will first discuss the qualitative picture of how
adiabatic following is violated during the atomic motion in
this section. For simplicity, we will model the atomic motion
as being simple one dimensional. From Eq.(13), the adia-
batic condition Eq.(21) is just

U Kstd
E±std

U ! 1, s25d

where uE±stdu= uxfrstdgug0Î1+ur0astdu2 as defined before. We
see thatE±std becomes sufficiently small(see Fig. 3) when
the atom is near the nodal plane sinskzd=0, where the con-
dition Eq. (25) is easily violated.

After elementary substitutions, we find

U Kstd
E±std

U =
fstd

usinskzdu
, s26d

with

fstd = U ȧstd
Î2g0f1 + uastdu2g3/2U . s27d

In Fig. 4, we have graphed the functionfstd.
The two prominent features as in Fig. 4 at times of 3.3/g

and 16.7/g correspond to the instants when the Gaussian
shaped pulse gives rise to the largest shape changes. Appar-
ently, fstd is significant att=3.3/g and t=16.7/g. From Eq.
(26), we note if the atomic position is near a nodal plane
when usinskzdu is small, uKstd /E±stdu becomes large and the
adiabatic condition(25) can become severely violated at
these instants. This adiabatic breakdown is less serious att
=16.7/g when the internal state transfer protocol is almost
completed, but detrimental att=3.3/g, near the beginning of
the process.

III. LANDAU-ZENER TRANSITIONS

As was shown from the previous discussions, the applica-
tion of the adiabatic approximation can potentially fail near a
nodal plane wherexsrWd=0. In this section, we hope to ana-
lytically investigate the transition from the dark state to
bright states when the atom goes across a nodal plane.

A. One-dimensional motion along the cavity axis

We first deal with the one-dimensional case of atomic
motion along the cavity axis. Assuming

xsrWd = sinskzd, s28d

and take the atomic motion according toz=vt, our problem
is to solve Eq.(12), with the initial conditions

uC0s− udu = 1,

C±s− ud = 0. s29d

More specifically, we in fact only wish to solve foruC0sudu2
and uC±sudu2 after one nodal crossing.

As the lowest order approximation, we assumeastd and
Kstd to be constants in the domainkzP f−u,ug and we also

FIG. 3. The time dependent dressed state energiesE0/± with the
time dependent pulse shapeastd as in Eq.(14). We have usedzstd
=vt with the speed of the atom beingv=0.14slgd<4sm/sd. astd is
assumed to begin increasing at timet=0 when the atom is located at
the peak of the cavity field whereusinskzdu=1.

FIG. 4. The functionfstd of Eq. (27).
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assume that the energy«std /"=sinskzdg0Î1+uastdu2 can be
approximated as a linear function of time(see Appendix B)
in this domain

«std/" < kvtg0
Î1 + uastdu2, s30d

wherev is a constant atomic speed along the cavity axis.
The second equation of Eq.(12) can be rewritten as

d2

dt2
C+ = iestdĊ+/" + eie0

t «st8ddt8/"KĊ0

= iestdĊ+/" − eie0
t «st8ddt8/"K

3se−ie0
t «st8ddt8/"KC+ + eie0

t «st8ddt8/"KC−d
= iestdĊ+/" − K2C+ − e2ie0

t «st8ddt8/"K2C−. s31d

Using

Ċ− = e−ie0
t «st8ddt8/"KC0 = e−2ie0

t «st8ddt8/"Ċ+, s32d

andC±s−ud=0, we find

C− =E
−u

t

e−2ie0
t8«st9ddt9/"Ċ+st8ddt8 = e−2ie0

t8«st9ddt9/"C+

+ 2iE
−u

t

e−2ie0
t8«st9ddt9/"«st8dC+st8ddt8/". s33d

Substituting Eq.(33) into (31), we find

d2

dt2
C+ = iestdĊ/" − 2K2C+

+ 2iK2E
−u

t

e2ie
t8
t

«st9ddt9/"«st8dC+st8ddt8/". s34d

The last term is rapidly oscillating and within the lowest
order approximation, it can be neglected(see Appendix C).
Then the equations ofC+ andC0 become

d2

dt2
C+ = iestdĊ+/" − 2K2C+ s35d

and

Ċ+ = eie0
t «st8ddt8/"KC0. s36d

Using the transformation

d0 = s− id
1
Î2

C0,

c+ = e−ie0
t «st8ddt8/"C+, s37d

we find that Eq.(35) is equivalent to a problem described by
an effective Hamiltonian as below

i"
]

] t
Sd0

c+
D = S 0 − Î2"K

− Î2"K «
DSd0

c+
D , s38d

with the initial condition

d0s− ud = s− id
1
Î2

,

c+s− ud = 0. s39d

Nonadiabatic effect induced transitions mainly occur within
the domainkzP f−u,ug, i.e., u is chosen such that beyond
this domain, adiabatic condition Eq.(21) is well satisfied. In
the end, as we will see later, our result is independent of the
choice ofu. Sinceestd is a linear function oft, this problem
is exactly the same one as discussed in the original Zener’s
paper[10]. At the edge of the domainkzP f−u,ug , uKu! ueu
and the initial conditions can be adiabatically maintained to
the domains−` ,`d, just as Zener has done. Noting the nor-
malization condition

ud0u2 + uc0u2 = 1
2 , s40d

and using Zener’s solution[10], we find that

ud0s`du2 =
1

2
expS− 2p

2K2

ukvg0
Î1 + uau2u

D , s41d

which leads to

uC+s`du2 =
1

2
− ud0s`du2 =

1

2
F1 − expS− 2p

hstd
ukvg0uDG ,

s42d

with

hstd =
2K2

Î1 + uau2
=

ȧ2std
sÎ1 + uau2d5/2

. s43d

This constitutes the main result of our paper. We note the
dark state probability after crossing a node becomes

P = 1 − uC+s`du2 − uC−s`du2 = expS− 2p
hstd

ukvg0uD . s44d

To our knowledge, this result has not been derived before. As
we will show in the following through extensive compari-
sons with detailed numerical simulations, this result com-
pletely captures the physics of population transfer due to
nonadiabatic level crossing induced by the center of mass
motion of the Lambda-type 3-level atom coupled to two laser
fields. It leads to the conclusion that the larger the atomic
speedvz is, the more reasonable it is to adopt the approxi-
mation of takingastd andKstd as constants and neglect the
term 2iK2e−u

t expf2i et8
t «st9ddt9 /"g«st8dC+st8ddt8 /". Further-

more as we shall see in the next section, even in the limit of
a small vz, the transition probability(44) as given by the
analytic Landau-Zener method also compares well with re-
sults from numerical simulations.

B. Three-dimensional motion of atoms

In the limit as considered presently when atomic motion
is predetermined, a full three dimensional center of mass
motion of the atom can be discussed without much further
complications. Essentially, it is the component of the atomic
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velocity along the cavity axis direction that is involved in the
level crossing dynamics, motion in the orthogonal directions
only causes the crossing to be at different radial locations,
thus different level spacing characteristics.

IV. RESULTS AND DISCUSSIONS

In this section, we investigate the dark state survival prob-
ability by comparing the analytic result(44) under the
Landau-Zener approximation with numerical solutions of
Eq. (12).

Unless otherwise noted, the parameterg0
=s2pd50 sMHzd is used, corresponds to theḡ at the end of
Sec. II of Ref. [5]. The atomic mass for Cs isM <133
31.67310−27 skgd.

We assume the pump shape is given by Eq.(14) where
a0=30,T0=3310−7 ssd,10g (so that the total operation oc-
curs within 2T0=20/g, as typical for the optimal STIRAP
process), andtW=T0/3. ThereforetP s0,2T0d.

From the approximate Landau-Zener result Eq.(44), it is
easy to see that the atom’s dark state survival probabilityP
after crossing a node is closely related to the functionhstd of
Eq. (43). The larger ishstd, the smaller isP. We show the
time dependence ofhstd in Fig. 5. It resembles the function
fstd as shown before in Fig. 4. The duration of the state
transfer protocol is taken to be 20/g so that the(unavoid-
able) maximums ofhstd are clearly displayed.

It is easy to see that at times neart=3.3/g or t
=16.7/g , hstd becomes rather large. If an atom crosses a
node at these instants, the transition probability to other
states may become significant. This corresponds to the quali-
tative picture of the adiabatic breakdown as mentioned in the
preceding section.

As a simple example, we assume the atom moves with a
constant speedv. At time t=0 when the state transfer proto-
col begins, the atom is at the peak of the cavity field where
usinskzdu=1. In Fig. 6 we present the results for the dark state
survival probabilityP (as a function ofv) at t=20/g, after
the internal state transfer protocol has been completed.

The two prominent features of smallP valleys can be
easily understood. They correspond, respectively, to the
crossing of a nodal plane at instants whenhstd is large as in
Fig. 5, by slow and fast moving atoms. If the atomic speed is

small enough, e.g., whenv,0.01slgd=0.28sm/sd ,P re-
mains essentially unity. This is because with this speed, the
atom cannot arrive at the nearest node before the state trans-
fer protocol is completed. Whenv is increased to
0.017slgd=0.47sm/sd, the first smallP valley shows up,
corresponding to the atom arriving at the nodal plane at
about t=16.7/g when hstd is significant (near its second
peak). The second smallP valley corresponds to the atomic
speed of 0.049slgd=1.36sm/sd, when the atom arrives at
the nodal plane at aboutt=3.3/g whenhstd is around its first
temporal peak. As we have analyzed in the preceding sec-
tion, this second peak corresponds to the beginning of the
state transfer protocol. If the atom leaves the dark state at this
time, the whole operation will be destroyed.

We also note that the minimum ofP near the second small
P valley whenv,0.049slgd=1.36sm/sd is larger than the
minimum of the first smallP valley of v,0.017slgd
=0.4 sm/sd. This can be easily explained according to the
analytic result Eq. (44), P=expf−2phstd / ukvg0ug, which
shows that for the same value ofhstd , P is larger for larger
v. When the atomic speed is larger thanv,0.049slgd
=1.36sm/sd, the atom will cross more than one node during
the operation time, and the dark state survival probability
becomes even smaller. We can approximate in this caseP
<pi=1

n Pi wheren is the number of nodes crossed by the atom
and Pi is the probability for the atom to remain in the dark
state after crossing theith node. This constitutes an excellent
approximation whenn is small.

In practice, the atom may be trapped in an additional po-
tential, e.g., takes a harmonic motion instead of a straight
line. In the optimal scenario when the center of the harmonic
trap overlaps the peak of the cavity field standing wave, and
when the operation starts at the instant when the atom is
located at the trap center, the corresponding results for this
case is presented in Fig. 7, where we have further assumed a
typical trap frequencyvT,1.32 sMHzd. We note that the
atom’s final dark state survival probability is related to its
initial speedv as well.

FIG. 5. The functionhstd.
FIG. 6. The dark state survival probabilityP after crossing a

nodal plane when the atomic motion corresponds to a constant
speed along the cavity axis. The solid line comes from the numeri-
cal simulation of the nodal crossing dynamics by solving Eqs.(12)
for Cjstd, while the dashed line is the prediction of our approximate
analytic result Eq.(44) from the Landau-Zener theory.
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This figure resembles that of Fig. 6, with the main differ-
ence being the minimum ofP in the two valleys being
smaller here. This is because in an harmonic motion, its
speed at the nodal plane is smaller than its initial speedv.

It is remarkable that despite of the approximations used in
deriving the analytic Landau-Zener transition rate Eq.(44), it
gives rise to results that show an overall agreement with the
fully numerical simulations of Eq.(12). This demonstrates
convincingly that at least in the parameter regime being con-
sidered by us, our result Eq.(44) captures the complete phys-
ics involved in this model problem.

A. The velocity dependence

To gain some understanding of the effects due to the un-
avoidable momentum distribution of the atom, we assume
here a one-dimensional distribution(for the speed of the
atomic center of mass)

fsvd =
1

A
expF−

sv − v0d2

sDvd2 G , s45d

centered at a central velocityv0 and with a distribution width
Dv=1.2310−3slgd f0.035sm/sdg, or about 10 times Cs re-
coil velocity. The normalization constant is given by

Asv0,Dvd =E
0

`

expF−
sv − v0d2

sDvd2 Gdv. s46d

In the following, we considerv0P f0,5.3g310−2slgd,
i.e., f0,1.5g sm/sd. We note that for eachv0, the above dis-
tribution (45) is essentially bounded from above byvmax
,v0+2Dv. When v0=5.3310−2slgd=1.44sm/sd, we find
vmax,5.5310−2slgd=1.5 sm/sd and vmax2T0/ sl /2d=2.21,
i.e., forv0ø5.3310−2slgd, the atom will cross at most three
nodes.

The dark state survival probability as a function ofv0 can
then be approximately computed according to

Psv0d =
Bsv0d
Asv0d

, s47d

where

Bsv0d < E
0

l / s432T0d
expF−

sv − v0d2

sDvd2 Gdv

+E
l / s432T0d

3l / s432T0d
expF−

sv − v0d2

sDvd2 GP1svddv

+E
3l / s432T0d

5l / s432T0d
expF−

sv − v0d2

sDvd2 GP1svdP2svddv

+E
5l / s432T0d

7l / s432T0d
expF−

sv − v0d2

sDvd2 GP1svdP2svdP3svddv,

and P1svd ,P2svd, and P3svd are, respectively, the dark state
survival probability after crossing the first, the second, and
the third node. In the above discussion, we have assumed
that the atomic initial position isz0=l /4, where the cavity
field has its maximal value. ThePsv0d for other values of
z0Þ0 can be obtained similarly.

In Fig. 8, we have presented the numerically computed
dark state survival probabilityP as a function ofv0 for sev-
eral different atomic initial positionsz0.

B. Three-dimensional atomic motion

To complete this study, we present selective results for the
three-dimensional atomic motion in this section. We selected
two different situations where the atom is initially at the
antinodal point of the cavity field mode, and is taking a
straight line motion that makes an angle of 30° or 60° with
respect to the cavity axis.(See Figs. 9 and 10.) Not surpris-
ingly, we again find excellent agreement with our analytic
Landau-Zener result Eq.(44), applied appropriately as dis-
cussed earlier with the velocity component along the cavity
axis being used to parametrize level crossing, essentially the
same as the case of the one-dimensional model considered
earlier.

FIG. 7. The same as in Fig. 6 but for a predetermined oscillation
of the atom as confined in an external harmonic trap. This external
trap can be a magnetic trap or an optical dipole trap from additional
lights not involved in forming the dark state.

FIG. 8. P as a function ofv0 for the initial atomic locations
along cavity axisz0=l /4 ,l /3, and 5l /12.
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C. The complete analytic solution for the resonant case

The various results illustrated above clearly show that our
approximate Landau-Zener solution Eq.(44) captures the es-
sential physics for the level crossing dynamics of the atom
cavity model described by Eqs.(12). It turns out that the
complete analytic solution to Eqs.(12) is available from the
earlier work of Ref.[14]. Through a mapping of our model,
we find that the exact result is given by

P = s1 −P − Qd2 s48d

with

P = exps− 2pupud,

Q = exps− 2puqud, s49d

andp=q= uKu2/ f2kvg0Î1+uastdu2g. More explicitly, the exact
result can be casted in the form

P = H1 − 2 expF− p
ȧ2

2kg0uvus1 + uau2d5/2GJ2

= F1 − 2 expS− p
hstd

2ukvg0uDG2

. s50d

Expressed in terms of a series expansion of the above expo-
nent, the exact result(50) is the same as the approximate one
(44) up to the first order. For all the parameters considered in
this work, the two are essentially indistinguishable because
the exponent is relatively small as confirmed by our numeri-
cal simulations. For very smallv (or not so small an expo-
nent), however, the two differs, because the rapid oscillating
term neglected(see Appendix C) is not necessary small any-
more.

V. SUMMARY

In conclusion, we have studied nonadiabatic motional ef-
fects of a three-levelL-type atom Raman coupled to the
standing wave quantum field of a high-Q optical cavity and
an external pump field sharing the same spatial profile.

First, making use of the Landau-Zener approximation to
the crossing of a nodal plane by the atom, we have derived
an analytic formula describing the survival probability for
the atom to stay in the so-called motional insensitive dark
state. Surprisingly, our numerical results show that the ap-
proximation is remarkably good within current experimental
parameters, thus can be used to guide the experimental
implementation of the motional insensitive protocol[5].

Second, we find that the nonadiabatic motional effects is
essentially connected with the dimensionless parameterv
3 s20/gd, the distance the atom(with center of mass velocity
v) travels during the state transfer protocol of,20/g. If this
distance becomes a significant fraction ofl, i.e., v
3 s20/gdùl /4, or vùlg / s48d=0.577sm/sd, then nonadia-
batic effect will spoil the motional insensitive protocol in
general, even if the atom is assumed to be located initially
near the antinodal planes of sinskzd= ±1.

To be sure of the adiabatic following of the dark state, one
needs to assure at all times

s2pd
hstd

ukvg0u
! 1, s51d

and the number of nodes crossed is small.
Finally, we hope to clarify whether the transition probabil-

ity is insensitive or sensitive to the motional effects for the
model problem studied. If the atom oscillates in a trap but
does not cross the node, as in the case considered in Ref.[5]
and attempted in the recent Caltech experiment[1] (where
the coupling typically varies by a factor of 2), the result is
relatively insensitive to the motional effects. On the other
hand, if the atom moves across the node(e.g., if there is no
additional trapping due to FORT beams), the transition prob-
ability is more sensitive to the motional effects. When the
light field from a different longitudinal mode of the cavity is
used to trap the atom[1], there is no guarantee that the atom
will avoid the nodal crossing points even if it is relatively
localized around a trap field node/antinode, because the cav-

FIG. 9. The dark state survival probabilityP after crossing a
nodal plane when the atomic motion corresponds to a constant
speed along the direction 30° off the cavity axis. The solid line
comes from the numerical simulation of the nodal crossing dynam-
ics by solving the Eqs.(12) for Cjstd, while the dashed line is the
prediction of our approximate analytic result Eq.(44) from the
Landau-Zener theory.

FIG. 10. The same as in Fig. 9 but for atomic motion 60° off the
cavity axis. Only one smallP valley shows up within the velocity
range because of the large angle off the cavity axis.
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ity and trap field standing waves are of different periods.
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APPENDIX A: THE CASE OF A NONZERO DETUNING
„DÅ0…

When DÞ0, the Hamiltonian in the interaction picture
with the same basisuhue,0l , us,1l , ug,0lj becomes

H = 1 D g V

g* 0 0

V* 0 0
2 . sA1d

The three eigenvalues are

E0 = 0,

E± = 1
2D ± Î4g2 + 4V2 + D2, sA2d

with the corresponding eigenstatesuDl and uE±l. Clearly at
nodal planes when sinskzd=0,uE±u take their minimal values

uE+umax= D,

uE−umin = 0, sA3d

as shown in Fig. 11, on inspecting of which leads to the
following two comments.

First, irrespective of whetherD=0 or DÞ0, the dressed
state energy levels cross at the nodal planes sinskzd=0.

Second, whenD=0, all three energy levels have the same
value zero at the nodal planes, while forDÞ0, only E− and
E0 take zero values. There is a gap forE+ whose width isD.
Thus if D is large enough, the transition from dark stateuDl
to uE+l can be avoided, but to stateuE−l remains because of
the degeneracy at the crossing. The total transition probabil-
ity again can be calculated theoretically using the previously
adopted Landau-Zener approximation.

To compute the transition probability forDÞ0, we ex-
pand the state of the atom plus the field in terms of the
eigenbasis Eqs.(3) and (8) of the system Hamiltonian for
D=0, which is now

uDl =
1

Î1 + uastdu2
sug1,0l − astdug0,1ld,

uB±l =
1
Î2

suBl ± ue,0ld, sA4d

with the corresponding eigenvalues Eq.(7) re-expressed in
this appendix as

e0 = 0,

e± = ± xfrstdgug0uÎ1 + uastdu2. sA5d

As before in Eq.(8), we have introduced

uBl =
1

Î1 + uastdu2
fug1,1l + astdug0,0lg,

and the parameterr0 has been assumed to be unity. Then the
system Hamiltonian includingD is

H = Due,0lke,0u + e+uB+lkB+u + e−uB−lkB−u.

Noting that

ue,0l =
1
Î2

suB+l − uB−ld,

we rewrite Eq.(A1) as

H = Se+ +
D

2
DuB+lkB+u + Se− +

D

2
DuB−lkB−u −

D

2
suB+lkB−u

+ uB−lkB+ud. sA6d

Expanding the quantum state as in Eq.(9),

uCstdl = C0uDl + C+e−ie0
t fe+st8d+Dgdt8uB+l

+ C−e−ie0
t fe−st8d+Dgdt8uB−l, sA7d

we obtain the following equations:

Ċ0 = − sC+e−ie0
t fest8d+Dgdt8 + C−e−ie0

t f−est8d+Dgdt8dK,

Ċ+ = C0e
ie0

t fest8d+Dgdt8K + i
D

2
sC−eie0

t 2est8ddt8 + C+d,

Ċ− = C0e
ie0

t f−est8d+Dgdt8K + i
D

2
sC+e−ie0

t 2est8ddt8 + C−d.

sA8d

Since

Ċ± = e±ie0
t 2est8ddt8Ċ7, sA9d

we can integrate it to obtain

FIG. 11. Similar to Fig. 2 but forDÞ0.
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C± =E Ċ7st8de±ie0
t82est9ddt9 dt8 . C7e±ie0

t 2est8ddt8,

sA10d

where we have neglected the “small term”

eC7st8dd expf±ie0
t82est9ddt9g (as in Sec. III and Appendix C).

Then according to Eq.(A8), we have

Ċ+ = C0e
ie0

t fest8d+Dgdt8K + iDC+,

Ċ− = C0e
ie0

t f−est8d+Dgdt8K + iDC−. sA11d

Assuming C±=eiDtj±, the above equation can be ex-
pressed as

j̇± = C0e
±ie0

t est8ddt8K, sA12d

which when coupled with the equation

Ċ0 = − sC+e−ie0
t fest8d+Dgdt8 + C−e−ie0

t f−est8d+Dgdt8dK

= − sj+e−ie0
t est8ddt8 + j−e−ie0

t est8ddt8dK, sA13d

is formally the same as equations forD=0. Thus we obtain
the same result

uC0u2 = 1 − uj+u2 − uj−u2 = expF− 2p
hstd

ukvg0uG . sA14d

To obtain Eq.(A14) we need to neglect the rapidly oscil-

lating term ej7st8dd expf±ie0
t82est9ddt9g. When D is large

compared to ÎuVufV=kvg0Î1+uastdu2g, the two terms

ej7st8dd expf±ie0
t82est9ddt9g, eC7st8dd expf±ie0

t82est9ddt9g
cannot be neglected simultaneously. IfC7 is a slowly vary-
ing function of timet ,j7 will be a fast varying one thus it
cannot be considered as a constant in the integration. There-
fore, the result(A14) is applicable only whenD is not much
larger thanÎuVu.

When the effect ofD is not negligible, we can estimate its
influence by performing a simple perturbation calculation.
Expressing Eq.(A8) in a matrix form,

i
d

dt
CW = MstdCW . sA15d

with CW =sC+,C0,C−dT and the time dependent coefficient ma-
trix M.

The evolution operatorS defined asCW s+`d=SCW s−`d can
be expanded as a series ofM,

S= 1 − iE
−`

`

Mstddt −E
−`

` E
−`

t

MstdMst8ddt dt8 + ¯ .

sA16d

With this formula and the initial conditionCW s−`d
=s0,1,0dT, we obtain the dark state probability after crossing
a mode up to the first order inD,

P = 1 −
puKu2

uVu
S4 + DÎ2p

uVu
D . sA17d

We note that the zeroth order term 1−4puKu2/ uVu is exactly
the same as that for the resonant case(within the first order
perturbation theory).

APPENDIX B: THE LINEAR APPROXIMATION

Within the discussion as in Sec. II B, we mapped our level
crossing problem into the well-known problem of Landau-
Zener transition.

As was shown before, the adiabatic condition is

U fstd
sinskzd

U ! 1, sB1d

with the typical behavior forfstd as shown in Fig. 4. Taking
fstdø0.035, we see that within the domain ofusinskzdu
,0.7, we have

minU fstd
sinskzd

U , 0.05, sB2d

although still much less than 1. Thus we can define the do-
main usinskzdu,0.7 as the domain of validity where the adia-
batic condition is marginal. In this domain, the error of the
linear approximation sinskzd,kz is about 10%.

APPENDIX C: THE SMALL TERM

In this appendix, we provide the justification for the ne-
glect of the second term of Eq.(34).

Given that initially the atom is in the dark state, we need
C+st8d to be small in order to maintain adiabatic operation.
Thus, we approximate

C− = e−2ie0
t8«st9ddt9/"C+ + 2iE

−u

t

e−2ie0
t8«st9ddt9/"«st8dC+st8ddt8/",

sC1d

whereu is the end of the time domain and assumed to satisfy
usinskvudu=0.7.

FIG. 12. The term Ssxd as a function of x for v=3.5
310−2slgd.
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We first approximate the second term of Eq.(C1) accord-
ing to

U2iE
−u

t

e−2ie0
t8«st9ddt9/"«st8dC+st8ddt8/"U

, U2iE
−u

t

e−2ie0
t8«st9ddt9/"«st8ddt8C+std/"U . sC2d

We note that

S= U2iE
−u

t

e−2ie0
t8«st9ddt9/"«st8ddt8/"U

= 2UE
−u

t

e−2ie0
t8kvt9g0

Î1+uau2dt9kvt8g0
Î1 + uau2 dt8U

< 2UE
−u

t

e−ikvt82g0
Î1+uau2kvt8g0

Î1 + uau2 dt8U
= 2UE

−Vu

Vt

e−it82
t8 dt8U , sC3d

where we have approximatedastd as a constant and denoted

V = Îkvg0
Î1 + uau2,

t8 = Vt8. sC4d

Thus

S= 2UE
−Vu

Vt

e−it82
t8 dt8U sC5d

=2UE
−Îkvg0

Î1+uau2s0.77/ kvd

Îkvg0
Î1+uau2t

e−it82
t8 dt8U ,

sC6d

where we have used sin−1 0.7=0.77.
We take the worst case and use the value ofa when ȧ is

maximum. This leads to

a = 303 expF−
s1 3 10−7 − 6 3 0.53 10−7d2

10−14 G < 0.55,

Î1 + uau2 = 1.14, sC7d

and Îkvg0
Î1+uau2=5.03107Îv. If we now taket=s/ skvd,

we find

S= 2UE
−Îkvg0

Î1+uau2s0.77/ kvd

Îkvg0
Î1+uau2ss/ kvd

e−it82
t8 dt8U sC8d

=2UE
−5.69/ Îv

x

e−it82
t8 dt8U , sC9d

with

x = Îkvg0
Î1 + uau2

s

kv
. sC10d

The oscillating behaviors ofS for v=3.5310−2slgd
f1sm/sdg , 1.2310−2slgd f0.35sm/sdg, and v=3.5
310−3slgd f0.1sm/sdg are shown below in Figs. 12–14.

We see that the amplitude ofS is about 2, not really a
small value. On the other hand,S is a rapid oscillation func-
tion of time t, thus does not lead to much effect during the
dynamic evolution. We believe this is the reason why our
Landau-Zener result based on the neglect of this “small
term” is justified by the numerical simulations.
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