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We study the propagation of a probe light in an ensemble ofL-type atoms, utilizing the dynamic symmetry
as recently discovered when the atoms are coupled to a classical control field and a quantum probe field[Sun
et al., Phys. Rev. Lett.91, 147903(2003)]. Under two-photon resonance, we calculate the group velocity of
the probe light with collective atomic excitations. Our result gives the dependence of the group velocity on the
common one-photon detuning, and can be compared with the recent experiment of E. E. Mikhailov, Y. V.
Rostovtsev, and G. R. Welch, e-print quant-ph/0309173.
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Electromagnetically induced transparency(EIT) [1] has
become an active area of theoretical and experimental re-
search[2–4]. Since the discovery of EIT, a host of new ef-
fects and techniques for light–matter interaction has oc-
curred; e.g., the propagation of ultraslow light pulses[5,6],
the storage of light in atomic vapors[7,8] or in an “atomic
crystal” [9], the cooling of ground-state atoms, and the giant
cross-Kerr nonlinearity[10].

A conventional EIT system consists of a vapor cell with
3-level atoms near-resonantly coupled to two classical fields
(from the control and probe lasers) [1,5,11]. To investigate its
application as a quantum memory, or for transferring quan-
tum information between light(photons) and atoms, several
groups[12–16] replaced the classical probe laser field with a
weak quantum field. By adiabatically changing the coupling
strength of the classic control field, it was shown that the
propagation of the quantum probe field can be coherently
controlled via theso-calleddark states and dark-state polari-
tons. The recent experiments[7,8] on light storage have fur-
ther demonstrated the possibility of using this system for
storage of quantum information.

In most studies of quantum memory based on EIT sys-
tems[9,13], both the probe and control fields are required to
be on resonance with the relevant(one-photon) atomic tran-
sitions. We note, however, on-resonance EIT is in fact not a
prerequisite for achieving significant group-velocity reduc-
tion [17]. More generally, the EIT phenomenon occurs when
the probe and control fields are two-photon Raman resonant
with theL-type atoms. References[18–21] reported theoret-
ical and experimental results on significant group-velocity
reduction when both fields are classical and two-photon reso-
nant with the atoms. A more recent experiment[22] demon-
strated the dependence of ultraslow group velocity on the
probe light detuning under two-photon resonance, with or
without a buffer gas. Some of their experimental results are,
however, difficult to explain using the conventional EIT
theory with a single atom.

In this article, we revisit the above two-photon resonant
EIT system with the dynamic symmetry analysis as devel-
oped earlier[9]. In Ref. [9], we find the EIT system, which

consists ofL-type atomsexactlyresonantly coupled by the
quantum probe light and the classical control light, possesses
a hidden dynamic symmetry described by the semidirect
product of quasispin SUs2d and the boson algebra of the
excitons. Here, we will further prove that the same hidden
dynamic symmetry persists in the more general two-photon
resonant case. This observation allows us to build a dynamic
equation describing the propagation of the probe light in this
atomic ensemble with atomic collective excitations. We cal-
culate the group velocity of the quantum probe field, and
investigate how it depends on the detuning of the control and
probe fields. Putting aside the influence of atomic spatial
motion, atomic collisions, and buffer gas atoms, our results
are consistent with some of the recent experiment of
Ref.[22].

We consider an ensemble ofN three-levelL-type atoms,
coupled to a classical control field and a quantum probe field
as shown in Fig. 1. The atomic levels are labeled as the
ground stateubl, the excited stateual, and the final stateucl.
The atomic transitionual↔ ubl with energy level difference
vab=va−vb is coupled to the quantum probe field of fre-
quencyv with the coupling coefficientg and the detuning
Dp=v−vab, while the atomic transitionual↔ ucl with energy
level differencevac is driven by a classical control field of
frequencyn with the Rabi frequencyV and the detuning
Dc=n−vac.

In the interaction picture, the interaction part of our
Hamiltonian readss"=1d

HI = − DpS+ sgÎNaA† + eisDp−DcdtVT+ + H.c.d, s1d

in terms of the collective quasispin operators

S= o
j=1

N

saa
s jd, A† =

1
ÎN

o
j=1

N

sab
s jd, T+ = o

j=1

N

sac
s jd. s2d

Here,smn
s jd = uml j jknu is the flip operator of thej th atom from

state uml j to unl j sm ,n=a,b,cd, and a† sad is the creation
sannihilationd operator of the probe light. In the large-N limit
with low atomic excitations, only a few atoms occupy states
ual or ucl f23g, and the atomic collective excitations of the
atoms behave as bosons since in this case they satisfy the
bosonic commutation relationfA,A†g=1. When at two-
photon resonance defined byDp=Dc, the Hamiltonians1d is
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time independent and thus there exists the same dark state
and dark-state polariton as shown before for the one-photon
resonant casef9,13g.

We note that the above Hamiltonian is expressed in terms
of the collective dynamic variablesS, A, A†, T−=sT+d†, and
T+. To properly describe both the probe light propagation and
the cooperative motion of the atomic ensemble stimulated by
the two fields, we consider the closed Lie algebra generated
by A, A†, T−, and T+. To this end, a new pair of atomic
collective excitation operators,

C =
1

ÎN
o
j=1

N

sbc
s jd, C† = sCd†, s3d

is introduced here to form a closed algebra. In the low exci-
tation limit, when a few atoms occupy statesual and ucl, the
corresponding atomic collective excitations also behave as
bosons since they satisfy the bosonic commutation relation
fC,C†g=1. These atomic collective excitations are indepen-
dent of each other in the same limit because of the vanishing
commutation relationsfA,Cg=0,fA,C†g→0 by a straight-
forward calculation. Together with the above commutators,
the following basic commutation relations:

fS,C†g = 0, fA,Sg = A,
s4d

fT−,C†g = 0, fT+,C†g = A†,

define a dynamic symmetry hidden in our dressed atomic
ensemble described by the semidirect-product algebra con-
taining the algebra SUs2d generated byT− andT+.

We now calculate the probe field group velocity from the
time-dependent Hamiltonian(1). With the help of the above
dynamic algebra, we can write the Heisenberg equations of
operatorsA andC as

Ȧ = − sGA − iDpdA − igÎNa− ieisDp−DcdtVC + fAstd,
s5d

Ċ = − GCC − ie−isDp−DcdtVA + fCstd,

where we have phenomenologically introduced the decay
ratesGA andGC of the statesual and ucl, and fAstd and fCstd
are the quantum fluctuation of operators withkfastdfast8dl
Þ0, but kfastdl=0, sa=A,Cd.

To find the steady-state solution for the above motion
equations of atomic coherent excitation, it is convenient to
remove the fast-changing factors by making a transformation

C=C̃e−isDp−Dcdt. The steady-state solution can be achieved
from the transformed equations

Ȧ = − sGA − iDpdA − igÎNa− iVC̃ + fAstd,
s6d

C̃
˙

= − GCC̃ + isDp − DcdC̃ − iVA + fCstd,

by letting Ȧ=C̃
˙

=0. The mean expression ofA explicitly ob-
tained is

kAl =
− igÎNfGC − isDp − Dcdgkal

sGA − iDpdfGC − isDp − Dcdg + V2 . s7d

It is noted that the single-mode probe quantum light is
described by

Estd = «e−ivt + H.c.;Î v

2Ve0
ae−ivt + H.c., s8d

whereV is the effective mode volume, which for simplicity
is chosen to be equal to the interaction volume. Its corre-
sponding polarization is

FIG. 2. (Color online) Real partx1 (solid) and imaginary partx2

(dashed) of the linear susceptibility vs two-photon detuning
Ds=Dp−Dcd in normalized units according to:(a1) V=2, Dc=0;
(a2) V=1/2, Dc=0; (b1,b2) V=1/2, Dc= ±1.5. Other parameters
are given asGA =1, GC=10−4, gÎN=100, andvab=106.

FIG. 1. (Color online) A three-levelL atom coupled to classic
control and quantum probe fields with respective detuning,Dc and
Dp. When Dp=Dc, the system satisfies the two-photon resonance
EIT condition.
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kPl = kple−ivt + H.c.; e0xk«le−ivt + H.c., s9d

wherex=kpl / sk«le0d is the susceptibility. Letm denote the
dipole moment between statesual and ubl. The average po-
larization

kpl = mKo
j=1

N

sba
s jdLYV=

mÎN

V
kAl s10d

can be expressed here in terms of the average of the exciton
operatorsA. Since the coupling coefficientg=−mÎv/2Ve0,
the susceptibility can be obtained as

x =
2ig2NsGC − isDp − Dcdd

vfsGA − iDpdsGC − isDp − Dcdd + V2g
. s11d

The real and imaginary partsx1 andx2 of this complex sus-
ceptibility x=x1+ ix2 can be explicitly expressed as

x1 =
fsDp − DcdQ − GCJgF

Q2 + J2 , s12d

x2 =
fGCQ + sDp − DcdJgF

Q2 + J2 , s13d

whereF=2g2N/v and

Q = GAGC − DpsDp − Dcd + V2,
s14d

J = DpGA + GAsDp − Dcd.

It is well-known thatx1 and x2 are related to dispersion
and absorption, respectively. In Fig. 2,x1 andx2 are plotted
versus the two-photon detuningDs=Dp−Dcd. In Figs.
2(a2,b1,b2), Dc=0, ±1.5, respectively, and other parameters
are fixed. WhenD→0, bothx1 and x2 are almost equal to
zero. This result is consistent with that in the case of one-
photon on-resonance EIT[11,14]. This fact shows that the
medium indeed becomes transparent when driven by the
classical control field as long as the system is prepared in the
two-photon resonancesD=Dp−Dc=0d. We also notice that
the width of the transparency window(which is determined
by x2) also depends on the Rabi frequencyV. It can be

observed clearly from Fig. 2(a1) (whereDc=0, V=2) com-
pared with Fig. 2(a2) (whereDc=0, V=1/2).

Next, we consider the properties of refraction and absorp-
tion of the single-mode probe light in the atomic ensemble
medium in more detail. To this end, we analyze the complex
refractive index

nsvd = Îesvd = Î1 + x, s15d

and generally the real and imaginary parts,n1 and n2, of n
are, respectively,

n1 =Îfs1 + x1d2 + x2
2g1/2 + s1 + x1d
2

, s16d

n2 =Îfs1 + x1d2 + x2
2g1/2 − s1 + x1d
2

sgnsx2d,

s17d

where sgnsx2d= +1s−1d if x2.0s,0d, n1 represents the re-
fractive index of the medium andn2 is the associated ab-
sorption coefficient. Together with the formulas for the
group velocity of the probe light

vgsDp,Dcd =
c

Refn + vdn/dvg
=

c

n1 + v
dn1

dv

s18d

swherec is the light velocity in vacuumd depending on the
frequency dispersion, one can obtain the explicit expression
for the group velocityvg from Eqs.s12d–s16d for arbitrary
reasonable values ofDp andDc. Now, we consider the group
velocity of the probe lightvg for the two-photon resonance,
wherex1 andx2 are almost zero. We find approximately

n1 . 1 + x1/2 → 1, n2 . x2 → 0,

andvg is given briefly f25g as

vgsDcd =
c

n1 + Uv
dn1

dv
U

Dp=Dc

=
c

1 +
v

2
Udx1

dv
U

Dp=Dc

. s19d

It is worth pointing out that, in the calculation of the term
dx1/dv, Dps=v−vabd is a function ofv. In what follows
we should perform a numerical calculation ofvgsDcd by
means of Eqs.s12d and s19d sand/or Eqs.s12d–s18dd since
its analytical expression is redundant. According to Eq.
s12d, the group velocityvgsDcd of the weak probe field
depends onDc, V, andg2N when given the other relevant
parametersstypically, GA =1, GC=10−4, vab=106d.

Figure 3(a) shows the dependence ofvgsDcd on the Rabi
frequency V, where the blue, solid(red, dashed) line is
drawn for gÎN=100 sgÎN=80d. This provides one with a
technique that can be used to accomplish the storage and

FIG. 3. (Color online) The probe light group velocityvg vs (a)
Rabi frequencyV (in normalized units) for Dc=5, andgÎN=100
(blue, solid) or gÎN=80 (red, dashed); (b) the detuningDc (in nor-
malized units) for V=2gÎN=200 (green, dotted-dashed) or V
=gÎN/2=50 (green, dotted), or V=0.04 and gÎN=100 (blue,
solid), or V=0.04GA andgÎN=80 (red, dashed), where the green,
dotted-dashed, and dotted lines are related to the left axis, and the
blue, solid and red, dashed lines are related to the right axis. Other
parameters are given asGA =1, GC=10−4 andvab=106.
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retrieval of the probe pulse. Initially, when the probe field
enters the atomic medium, the Rabi frequencyV is very
large(relative togÎN) andvg→c. When one reducesV adia-
batically to zero,vg reduces to zero accordingly and one can
then store the pulse in the medium. Conversely, if one wants
to retrieve the probe pulse, he needs only to increaseV adia-
batically so as to increasevg. Figure 3(b) shows the depen-
dence ofvgsDcd versus the common detuningDp (=Dc) under
two-photon resonance EIT. WhenV,gÎN, vg hardly de-
pends on the detuningDc and is close to the simplified result
c/s1+g2N/V2d given in Ref.[14]. However, whenV!gÎN,
as denoted by the blue, solid and red, dashed curves in Fig.
3(b), vg becomes very small and depends onDc. In the sym-
metric spectral configuration we find that the group velocity
vg of the quantum probe light takes its minimum near the
zero detuning, andvg increases whenuDpu increases in the
case of two-photon resonance. This theoretical result is con-
sistent with the experimental phenomena as discovered in
Ref. [22] when no buffer gases are used.

Finally, we notice that, in our model, the density of the
medium is proportional to the atom numberN. Figure 3(a)
and 3(b) demonstrates howvg depends on atomic density. In
Fig. 3(a) and 3(b), the blue, solid curve is plotted for a denser
medium(gÎN=100 andg is given as constant) than that of
the red, dashed curvesgÎN=80d. We also find that a denser
medium leads to a slowervg, consistent with our physical
intuition.

In the present parameters given in this paper, the group
velocity vg is within the zone(0,c). It is remarked thatvg can

be negative or superluminal in otherL-atoms systems as in
Refs.[24,25]. Different from our EIT system, a system con-
sisting ofL atoms coupled to three optical fields is studied in
Ref. [24], and it is the issue of coherent-population trapping
(not EIT) that is considered in Ref.[25]. A theoretical work
[21] about theL-atoms EIT system shows that a negative
group velocity can appear since the effect of atomic spatial
motion (and/or the buffer gases) in the hot atoms is consid-
ered. Contrarily, the group velocity is always withins0,cd in
our EIT system. In our opinion, this difference is mainly due
to our ignoring the effect of the atomic spatial motion and
the buffer gases in this work.

In conclusion, based on the algebraic dynamics method,
our theoretical studies on the light propagation in an atomic
ensemble with two-photon resonance EIT show a similar
phenomenon as discovered in the experiment in Ref.[22].
Our analysis ignores the generated Stokes field, which is also
detected in the above experiment and described in Refs.
[26,27]. We also neglect the influence of atomic spatial mo-
tion, atomic collisions, and the effects of buffer gases, since
in principle these effects can be taken into account as the
perturbations in our present study when the atomic ensemble
is prepared under low enough temperature.
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