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Quantum computation based ond-level cluster state
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The concept of a qudit~a d-level system! cluster state is proposed by generalizing the qubit cluster state
@Phys. Rev. Lett.86, 910 ~2001!# to higher-dimensional Hilbert space according to the finite-dimensional
representations of quantum plane algebra. We demonstrate their quantum correlations and prove a theorem
which guarantees the availability of the qudit cluster states in quantum computation. We explicitly construct the
network to show the universality of the one-way computer based on the defined qudit cluster states and
single-qudit measurement. A protocol of implementing one-way quantum computer is suggested using the
high-dimensional ‘‘Ising’’ model which can be found in many magnetic systems.
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I. INTRODUCTION

Quantum computers can undertake computational ta
that are intractable for classical computers. The reason lie
the fact that quantum computing systems composed of qu
~two-level quantum systems! possess mysterious quantu
coherence, such as entanglement~or quantum correlation!,
which has no counterpart in the classical realm@1#. Recently,
an important kind of entangled states, namely, cluster st
@2#, was introduced. Cluster states enjoy the following
markable property: each pair of qubits can be projected
maximally entangled state with certainty by single-qu
measurements on all the other qubits. This property m
suitably be referred to as maximal connectedness. More
prisingly, it was shown that cluster states can be used to b
a one-way universal quantum computer, in which all the
erations can be implemented by single-qubit measurem
only @3#. Raussendorf and Briegel provide a simple criteri
for the functioning of gate simulations on such quantu
computers@4#. This is a key theoretical step towards real
ing such a scalable quantum computer. On the other han
was pointed out that the protocol of cluster state compu
can be easily realized in practical physical systems since
creation of cluster states needs only Ising-type interacti
@2#. In fact, such interactions appear naturally in the so
state lattice system with proper spin-spin interactions@2#,
and in the optical lattice cold atom system@5#.

Theoretically, it is natural to ask whether the concept
cluster states can be generalized to the higher-dimensi
case, or the so-called qudit case, since most available ph
cal systems cannot be treated as two-level systems even
approximate way. The answer to this question is affirmat
In our analysis, we make full use of the noncommutat
operatorsX andZ, which provides ad-dimensional irreduc-
ible representation of Manin’s quantum plane algebra~QPA!
@6#. The crucial point is that the qudit cluster stateuf&C can
be defined as a common eigenstate of the tensor pro
operators

Xa
†

^

bPN~a!

Zb , ~1!
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where the lower indicesa andb denote qudita and quditb in
the cluster, and indexb is taken in the neighborhood of inde
a@N(a)#, depending on the cluster structure. Based on
definition of qudit cluster states, we manage to construct
single-qudit unitary gates and one imprimitive two-qud
gate, presenting an important ingredient for building a o
way universal quantum computer.

This paper is organized as follows. We briefly review t
finite-dimensional representations of quantum plane alge
in Sec. II. This prepares the main mathematical tools use
this paper. In Sec. III the qudit cluster state, as a nontriv
generalization of the qubit cluster state, is defined by me
of the quantum plane algebra, and its essential propertie
quantum correlations are analyzed. The main theorem is
sented and proved in Sec. IV, expediting the introduction o
one-way quantum computer based on qudit cluster states
in the qubit case@4#, this theorem guarantees the functionin
of gate simulations on the qudit cluster state quantum co
puters. In Sec. V the universality of the qudit cluster st
computer is proved by constructing explicitly all the singl
and one two-qudit logic gates. Finally, short conclusions
presented in Sec. VI.

II. FINITE-DIMENSIONAL REPRESENTATIONS
OF QUANTUM PLANE ALGEBRA

In this section we will review some basic results about
finite-dimensional representations of Manin’s quantum pla
algebra. This will provide us with a useful mathematical to
to describe not only qudit cluster states but also unit
transformation on the Hilbert space. Manin’s quantum pla
is defined by

XZ5qZX, ~2!

where q is a complex number. It is well known that th
associative algebra generated byZ, X possesses a
d-dimensional irreducible representation only whenqd51
@6#. In this article, we takeq[qd[ei2p/d. This special case
is first introduced and studied by Weyl@13# and Schwinger
@14#. Obviously, whend51, q51, X andZ can be regarded
©2003 The American Physical Society03-1
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as the ordinary coordinates ofR2 plane. Whend52, q5
21, X andZ can be identified with the Pauli matricessx and
sz . From this viewpointZ and X can be regarded as th
so-called ‘‘generalized Pauli operators’’@7–12#.

Whenq5qd , Zd andXd commute with the algebra gen
erators, so they belong to the center of QPA. From Sch
lemma it follows thatZd andXd are constant multiples of th
d-dimensional identity matrix, i.e.,Zd5zI and Xd5xI. In
general we can normalize them to the identity. Since
complex fieldC is algebraically closed, there must exist
eigenstateu0&, which satisfies

Zu0&5u0&. ~3!

Defining uk&5X†ku0&, then we have

Zuk&5qd
kuk&, ~kPZd!, ~4!

according to Eq.~2!, and

Xuk&5uk21& ~5!

by definition. Thus in theZ-diagonal representation, the m
trices ofX andZ are

Z5F 1 0 0 ¯ 0 0

0 qd 0 ¯ 0 0

] ] ] � ] ]

0 0 0 ¯ qd
d22 0

0 0 0 ¯ 0 qd
d21

G , ~6!

X5F 0 1 0 ¯ 0

0 0 1 ¯ 0

] ] ] � ]

0 0 0 ¯ 1

1 0 0 ¯ 0

G . ~7!

From Eq.~5!, we have

Xux~0!&5ux~0!&, ~8!

where

ux~0!&5
1

Ad
(
k50

d21

uk&. ~9!

Similar to the eigenvalue equation ofZ, we have

Xux~ j !&5qd
j ux~ j !&, ~10!

where

ux~ j !&5Zj ux~0!&5
1

Ad
(
k50

d21

qd
jkuk&. ~11!

These equations define a representation of the alg
equivalent to the previous one.

Obviously,
06230
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B5$ZjXk,~ j ,kPZd!% ~12!

is a basis of the algebra. The elements of this basis are ca
unitary operator bases in Ref.@14#. The following general
commutation relations for any two basis elements can
checked immediately:

XjZk5qd
jkZkXj . ~13!

We observe that many other elements in the algebra h
the same commutation relation as the generatorsZ and X.
Denote by~m,n! the greatest common factor of integersm
and n. Let m1 , n1 , m2 , n2PZd be integers such tha
(m1 ,n1)51, (m2 ,n2)51, andm1n22m2n151. We take

Z̄5qd
@2~d21!/2#m1n1Zm1Xn1, ~14!

X̄5qd
@2~d21!/2#m2n2Zm2Xn2. ~15!

It then follows thatZ̄ andX̄ respect the commutation relatio
Eq. ~2!. Note that the coefficients in the definitions ofZ̄ and
X̄ serve to guarantee that they possess the same eigenv
asZ andX, respectively. It turns out thatZ̄ and X̄ defines a
unitary transformationU:

Z̄5UZU†, X̄5UXU†. ~16!

It is easy to check that all this kind of unitary transformatio
form a group. This is the so-called Clifford group.

III. QUDIT CLUSTER STATES IN QUANTUM PLANE

Now we generalize the concept of qubit cluster states
the qudit case. For conceptual simplicity we first restrict o
selves to one-dimensional lattices. Let us recall the definit
of one-dimensional cluster states forN qubits. Consider an
N-site lattice, with a qubit attached to each site. As a no
multiqubit entangled state, the cluster state is written as

uf&C5
1

2N/2 ^

a51

N

@ u0&a1u1&a~sz!a11], ~17!

where (s i)a ( i 5x,y,z) are the Pauli matrices assigned f
site a in the lattice, and

szus&5~21!sus&, ~sP$0,1%!.

By analogy we naturally conjecture that the qudit clus
state in one dimension is

uf&C5
1

dN/2 ^

a51

N S (
k50

d21

uk&aZa11
k D , ~18!

where

Zauk&a5qd
kuk&a , ;a. ~19!

Now we present one of our main results.
3-2
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QUANTUM COMPUTATION BASED ONd-LEVEL . . . PHYSICAL REVIEW A 68, 062303 ~2003!
Theorem 1.The qudit cluster state in one dimension d
fined by Eq.~18! is a common eigenstate of eigenvalue 1
the operatorsXa

†
^ bPN(a)Zb , i.e.,

Xa
†

^

bPN~a!

Zbuf&C5uf&C , ~20!

where

N~a!5H $2%, a51

$N21%, a5N

$a21,a11%, a¹$1,N%.

~21!

Proof. We notice that the qudit cluster state~18! can be
constructed by the following procedure. We first prepar
product state

u1&5 ^

a51

N

ux~0!&a ,

then apply a unitary transformation

S5 )
b2a51

Sab ~22!

to the stateu1&. HereSab is defined as an intertwining op
erator

Sabu j &auk&b5qd
jku j &auk&b . ~23!

It is easy to prove

uf&C5Su1&. ~24!

SinceXa
†u1&5u1&, it is easy to check

SXa
†S†uf&C5uf&C . ~25!

Now it suffices to prove

SXa
†S†5Xa

†
^

bPN~a!

Zb .

To this end, fora,b,cP$1,...,N%, we observe that

SabXa
†Sab

† 5Xa
†

^ Zb , ~26!

SabXb
†Sab

† 5Za^ Xb
† , ~27!

SabXc
†Sab

† 5Xc
† , ;c¹$a,b%, ~28!

and

SabZcSab
† 5Zc , ;c. ~29!

The theorem then follows directly. j
Although the above proof is proposed in the context o

one-dimensional cluster, it still works for the more comp
cated two- or three-dimensional cluster. The reason is as
lows. For a general clusterC with one qudit on each site, th
cluster stateuf&C is defined by the following eigenequation
06230
-
f

a

a

l-

Xa
†

^

bPN~a!

Zbuf&C5uf&C . ~30!

Formally, this definition of a general cluster is the same a
one-dimensional cluster. Of course, different clusters h
different definitions of neighbors.

Now we preceed to discuss the properties of quant
correlations in the above cluster states under single q
measurements. For simplicity, we still restrict ourselves
the one-dimensional case.

First, let us consider the problem of describing a von Ne
mann measurement for a single qudit. Although the gener
Z ~or X! is not Hermitian, i.e., the eigenvalues ofZ ~or X! are
not real, the nondegenerate eigenstates ofZ ~or X! can still be
used to define a von Neumann measurement. For exam
when we make a measurement marked byZ, we mean that
we can obtain different results corresponding to differe
eigenstates ofZ.

Next, we discuss the minimal numberPe of single qudit
measurements needed to destroy all the quantum correla
in qudit cluster states. In the one-dimensional case, if
expand the cluster stateuc&C with respect to a product basis
the minimum number of terms needed will grow expone
tially with N ~precisely, asd@N/2#, where @N/2# denotes the
maximal integer not more thanN/2!. This can be shown by
induction as in Ref.@3#. This observation gives us an upp
bound of Pe :Pe<@N/2#. Further analysis shows that b
measuringZ2a (a51,2,...,@N/2#) all the quantum entangle
ment will be destroyed. Let us illustrate the key steps
reach this conclusion with one-dimensional cluster states
four qudits. In this case the cluster state is defined as
common eigenstate of eigenvalue 1 of the set of opera
$X1

†Z2 ,Z1X2
†Z3 ,Z2X3

†Z4 ,Z3X4
†%. If we measureZ2 and Z4 ,

we obtain the resultsqd
s2 and qd

s4, and the qudits 2 and 4
collapse into statesus2&2 and us4&4 , respectively. Then from
the definition of the cluster state, qudits 1 and 3 are in
eigenstates of eigenvalue 1 ofqd

s2X1
† andqd

s21s4X3 , namely,
ux(s2)&2 and ux(s21s4)&4 . Thus all the entanglement is de
stroyed by measuringZ2 and Z4 . The general case can b
dealt with similarly. In summary, we havePe5@N/2#.

Finally, we probe the most remarkable property
maximal connectedness—of a qudit cluster state. It me
that each pair of qudits in the cluster can be projected int
maximally entangled state with certainty by single-qu
measurement on all the other qudits. In fact, to project t
arbitrary qudits in a one-dimensional cluster into a ma
mally entangled state, we only need to measureX for the
qudits between them, andZ for all the other qudits. Let us
use the same four qudits cluster state as above to prove
property case by case. To project qudits 1 and 2 into ma
mally entangled states, we need to measureZ3 and Z4 .
When we obtain the resultqd

s3, qudits 1 and 2 collapse into
the common eigenstate of eigenvalue 1 of the operatorsX1

†Z2

andqd
s3Z1X2

† , which is a maximally entangled state of qudi
1 and 2. To project qudits 1 and 3 into maximally entang
states, we need to measureX2

† andZ4 . When we obtain the
resultsqd

s2 andqd
s4, qudits 1 and 3 collapse into the commo

eigenstate of eigenvalue 1 of the operatorsqd
s2Z1Z3 and
3-3
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qd
s4X1

†X3
† , which is a maximally entangled state of qudits

and 3. Other cases can be treated in the same way. Fo
general one-dimensional cluster state, this property can
proved similarly.

Moreover, we point out that two- or three-dimension
qudit cluster states are also maximally connected. As a m
ter of fact, the higher-dimensional problem can be reduce
the one-dimensional one. To this end, we only need to fin
path connecting the two qudits under consideration and m
sureZ for all the other qudits which are not on the path.

Now it is in order to discuss the problem of physic
implementation of our one-way quantum computer. Phy
cally the qudit cluster state~18! can be created by the Hami
tonian

H52\g (
~a,b!

Na
~z!Nb

~z! ~g.0!, ~31!

where~a,b! denotes sitesa andb which are nearest neighbor
in the cluster; andN(z) is defined as

N~z!5 (
k50

d21

uk&k^ku. ~32!

Then the intertwining operatorS in Eq. ~22! has the explicit
form

S5expS 2
i

\
HtCD , ~33!

with the evolution timetC52p/dg.
To associate with the more familiar Hamitonian in phy

ics, let us define the spin-(d21)/2 operator ofz direction

sz5N~z!2
d21

2
. ~34!

Then we can rewrite Eq.~31! as

H5
d21

2
\g(

a
na~sz!a2\g (

~a,b!
~sz!a~sz!b , ~35!

wherena is the number of nearest neighbors of qudita in the
cluster. Obviously, the interaction Hamiltonian

HI52\g (
~a,b!

~sz!a~sz!b ~36!

is the ferromagnetic Ising-type interaction with spin-d
21)/2.

By the way, we remark that higher spin Ising models ha
been actively studied systems in condensed matter and
tistical physics due to their rich variety of critical and mu
ticritical phenomena. For example, the spin-1 Ising mo
with nearest-neighbor interactions and a single-ion poten
is known as the Blume-Emery-Griffiths~BEG! model @17#,
the spin-3/2 Ising model was introduced to explain ph
transitions in DyVO4, and its phase diagrams were obtain
by the mean-field approximation@18#. In addition, the mag-
06230
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netic properties of some artificially fabricated superlattic
can be explained in the framework of higher spin Ising mo
els. Such superlattices consist of two or more ferromagn
materials. They have been widely studied over the years
cause their physical properties differ dramatically from tho
of simple solids formed from one single material. Moreov
the development of film deposition techniques has arou
great interest in the study of superlattices of other materi
A number of experimental@19–22# and theoretical works
@23–30# have been devoted to this direction.

IV. MEASUREMENT-BASED QUANTUM COMPUTATION
WITH QUDIT CLUSTER STATES

We have seen that the qudit cluster states exhibit the s
features in quantum entanglement as those of the qubit c
ter states. Then a question arises naturally: how are th
natures of quantum correlations related to constructing
universal quantum computation? We will answer this qu
tion in the following two sections.

In this section we further generalize the basic concep
‘‘single-qudit quantum measurement’’ and study t
measurement-based quantum computation~MBQC! on qudit
clusters. Along the line to construct MBQC for the qub
case, we will establish the corresponding theorem which
lates unitary transformation to quantum entanglement ex
ited by the qudit cluster states. The quantum computati
with qudit clusters inherit all basic concepts of those w
qubit clusters. They include the basic procedure of simu
tion of any unitary gate, the concatenation of gate simulati
and the method of dealing with the random measurem
results. Here we will give ad-dimensional version of the
central theorem 1 in Ref.@4#.

Before formulating our central theorem, let us prepa
some basic elements of quantum computing with qudit cl
ters. The main problem concerning quantum computing w
qudits is to simulate the arbitrary quantum gateg defined on
n-qudit Hilbert space. This problem can be tackled in thr
steps. The first step is to find out a proper clusterC(g) and
divide it into three subclusters: the input clusterCI(g), the
body clusterCM(g), and the output clusterCO(g). As usual
we require that the input and output clusters have the s
rank ~i.e., the same number of qudits!. Then we prepare the
initial state as

uC~ in!&C~g!5uc~ in!&CI ~g!
u1&CM ~g!øCO~g!

, ~37!

and entangle the qudits on the qudit cluster by using
cluster state generatorS,

uF~ in!&C~g!5SuC~ in!&C~g! . ~38!

This step brings the structure information of the qudit clus
into our computing process, and thus relates it with the c
responding qudit cluster state.

The second step is to measure all qudits on the clu
relative to a special space-time-dependent basis accordin
a given measurement pattern~MP!. The definition of MP is
given as follows.
3-4
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Definition 1.A measurement patternMC on a clusterC is
a set of unitary matrices

MC5$uaZaua
†uaPC, uaPSU~d!%, ~39!

which determines the one-qudit measured operatorsNa
(u) on

C, with the explicit form

Na
~u!5 (

s50

d21

uaus&asa^suua
† . ~40!

If this measurement patternMC operates on the initia
stateuF(in)&C(g) , the set of measurement outcomes

$s%C5$saPZduaPC% ~41!

is obtained. Then, modulo a norm factor, the resulting s
uCM&C is given by

uFMC
$s% &5PMC

$s% uF~ in!&C~g! , ~42!

where the pure state projection

PMC
$s% 5 ^

kPC
ukus&k k^suuk

† . ~43!

It is worthy to point out that we always measureX for the
input qudits andZ for the output qudits, regardless of gateg,
i.e.,

MCI ~g!5$Xi , i PCI~g!%, ~44!

MCO~g!5$Zi , i PCO~g!%. ~45!

In this way we manage to associate the measurement va
with the outcome of gateg acting on the initial state, com
pleting the third step.

We notice that the essential point of the above stand
procedure of qudit clusters quantum computation is to as
ciate a given gateg with a measurement pattern. Although b
now we have no general optimal operational procedure to
this for practical problems, the following theorem provides
useful tool in realizing specific gates on the qudit cluster

Theorem 2. Suppose that the state uc&C(g)

5PMCM
(g)

$s% uf&C(g) obeys the 2n eigenvalue equations

XCI ~g!,i~UXiU
†!CO~g!uc&C~g!5qd

2lx,iuc&C~g! ~46!

ZCI ~g!,i

† ~UZiU
†!CO~g!uc&C~g!5qd

2lz,iuc&C~g! , ~47!

with lx,i , lz,iPZd and 1< i<n. Then, according to the
above standard quantum computing procedure, we have

PMCI ~g!

$s% PMCM~g!

$s% uF~ in!&C~g!

}S) usi& D
CI ~g!øCM~g!

uc~out!&CO~g! , ~48!
06230
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where the input and output states in the simulation ofg are
related via

uc~out!&5UUSuc~ in!&, ~49!

whereUS is a byproduct operator given by

US5 ^

@CO~g!{ i #51

n

~Zi !
2lx,i2si~Xi !

lz,i. ~50!

Proof. Let us begin with the case that

uc~ in!&CI ~g!5u$t%&CI ~g! , ~51!

where

$t%5$t1t2¯tn%.

To associate withuc&C(g) , write the initial input state as

uc~ in!&CI ~g!5~Ad!nPMCI ~g!8
$t% u1&CI ~g! , ~52!

where

MCI ~g!8 5$Zi ,i PCI~g!%. ~53!

From Eqs.~37!, ~38!, ~48!, ~52!, we have

S) usi& D
CI ~g!øCM~g!

uc~out!&CO~g!}PMCI ~g!

$s% PMCI ~g!8
$t% uc&C~g! .

~54!

To find out the equations for the final stateuc(out)&CO(g) ,

let PMCI (g)

$s% PMCI (g)8
$t% act on both sides of Eqs.~46! and ~47!,

~UXiU
†!CO~g!uc̄~out!&CO~g!5qd

2si2lx,iuc~out!&CO~g! ,
~55!

~UZiU
†!CO~g!uc~out!&CO~g!5qd

ti2lz,iuc~out!&CO~g! ,
~56!

where the input state foruc̄(out)&

uc̄~ in!&5Xi
†u$t%&. ~57!

Before drawing a conclusion, we need to check the fi
state is not a zero vector. In fact, from Eqs.~46! and~47!, the
stateU†uc&C(g) is a simultaneous eigenvector of the ope
tors XCI (g),iXCO(g),i and ZCI (g),i

† ZCO(g),i . We find that it has

every component in theZ-diagonal representation of the in
put part. Consequently the final state is indeed a nonz
vector. So from Eqs.~55! and ~56!, we obtain

uc~out!&CO~g!5eih~ t !UUSu$t%&CO~g! . ~58!

To further determine the relation between the output s
and the input state, let us consider another case such th

uc8~ in!& I ~g!5u1&CI ~g! . ~59!
3-5
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This time the final state

u$si%&CI ~g!øCM~g!uc8~out!&O~g!5PCI ~g!
$s% ~X!uc&C~g! . ~60!

Let PMCI (g)

$s% apply on both sides of Eqs.~46! and ~47!. Then

we obtain

~UXiU
†!CO~g!uc8~out!&O~g!5qd

2si2lx,iuc8~out!&O~g! ,
~61!

~UZiU
†!CO~g!uc̄8~out!&O~g!5qd

2lz,iuc8~out!&O~g! , ~62!

where foruc̄8(out)& the input state

uc̄8~ in!&5Zi
†u1&. ~63!

From the above equations, it follows that

uc8~out!&O~g!5eixUUSu1&CO~g! . ~64!

Substituting Eq.~58! into Eq. ~64!, we have

uc8~out!&O~g!5UUSd2n/2(
$t%

eih~ t !u$t%&CO~g! . ~65!

Comparing Eq.~64! with Eq. ~65!, we finally obtain

eih~ t !5eix. ~66!

This completes the proof. j
This theorem tells us that, since the cluster states h

remarkable quantum correlations, they play an essential
in the realization of arbitrary unitary gates. More precise
as long as one cluster can be used to process a unitary
for the cluster state, it will work for arbitrary input state
Therefore, it is sufficient to check the conditions for the clu
ter states, i.e., Eq.~46! and Eq.~47!. We would like to em-
phasize that what is characteristic of the above theorem
that it is expressed in terms of not only the unitary operat
X and Z, but also their conjugates. Ford52, it exactly re-
duces to Theorem 1 of Ref.@4#.

Before using the theorem to construct a specific unit
gate, we need to explain how to deal with the byproduct p
US . The basic idea is to moveUS to the front ofU accord-
ing to the commutation relation betweenUS andU. To com-
plete this operation, the general strategy is to divide the m
surements into several steps such that the subseq
measurements depend on the results of the previous m
surements. In the next section, we will use specific exam
to demonstrate how to construct all basic elementary g
with the help of this theorem.

V. UNIVERSALITY OF QUDIT CLUSTER QUANTUM
COMPUTATION

It is well known that a finite collection of one qubit un
tary operations and CNOT gate is enough to construct
unitary transformation in the qubit quantum computing n
work. This conclusion remains true in some sense for
qudit quantum computing@16#. To be precise, the collectio
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of all one-qudit gates and any imprimitive two-qudit gate
exactly universal for arbitrary qudit quantum computin
where a primitive two-qudit gate means such a gate t
maps separate states to separate states. Therefore, in or
prove the universality of quantum computation with qu
clusters, we only need to construct the basic elemen
gates, namely, any one-qudit unitary operation and one
primitive two-qudit unitary transformation, and then int
grate them to realize an arbitrary unitary gate. We will
this in this section based on Theorem 2 in Sec. III.

A. Realizations of single-qudit unitary transformations

Let us start with single-qudit gates. First, we introduce
proposition for any unitary transformation ind-dimensional
Hilbert space.

Proposition 1.Let $Ni ,(i PZd221)% be a Hermitian basis
of the operator space ford-dimensional Hilbert space, the
any unitary transformationU has the form

U5qd
S ia iNi5)

i
qd

b iNi, ~67!

wherea i andb i are real numbers.
The first equality is obvious. For the proof of the seco

equality please refer to Ref.@15#.
Thanks to this proposition, we can divide any qudit ga

into a product of more basic ones—single parameter uni
transformations. Now, we need to findd3d independentNi
to simulate all unitary gates for one qudit. From the defi
tion of qudit cluster states, we expect that the single para
eter unitary transformations must have deep relations w
the basis elements of QPA. This is indeed true. In fact, alo
this line we find a good way to introduced3d one-
parameter unitary transformations. The idea originates fr
the observation that some of the basis elements of QPA
be used to define a state basis. We find that all the uni
transformations that do not change the basis state up
phase are defined by the property of multivalued comp
functions. For example, for operatorZ, we can define

Zb~$m%!5qd
bN~Z,$m%! ~bPR!, ~68!

where

N~Z,$m%!5 (
n50

d21

un&~n1mnd!^nu ~;mnPZ!. ~69!

Although the above definitions concern infinite unitary tran
formations, there are onlyd independent ones, which can b
used to describe the following type of unitary transform
tions:

UZ~$a%!un&5qd
anun& ~;nPZd ,aPR!. ~70!

Obviously, thesed independent unitary transformations,
the correspondingN(Z,$m%), can take the place of$Zn,n
PZd% in the unitary basis.
3-6
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A similar argument can be applied toZ̄ defined in Sec. II.
To be precise, for operatorZ̄, we define

Z̄b~$m%!5qd
bN~ Z̄,$m%! ~bPR!, ~71!

where

N~ Z̄,$m%!5 (
n50

d21

un~ Z̄!&~n1mnd!^n~ Z̄!u ~;mnPZ!,

~72!

with

Z̄un~ Z̄!&5qd
nun~ Z̄!&. ~73!

In the following, we will show that we can selectd3d in-
dependent Hermitian operators fromN(Z̄,$m%).

Whend is a prime number, a convenient choice is to ta
Z̄ from the operator set

$Z,X,ZX,ZX2,...,ZXd21%. ~74!

Because eachZ̄ definesd21 independentN(Z̄,$m%) besides
the identity, we obtaind2 @5(d21)(d11)11# independent
Hermitian operators.

Whend is not a prime number, we can choose the ind
pendentN(Z̄,$m%) by the following procedure. First, we
takeZ̄ from $Z, X, ZX%, and thus obtain 3(d21) independent
N(Z̄,$m%) besides the identity, which can take the place
the set of basis elements

S5$Zn,Xn,Zn,Xn,~nPZd!%. ~75!

Then we take an elementZ̄¹S, find out the elements in

$Z̄n,nPZd% that is not in the setS, add these elements toS,
and take the new independentN(Z̄,$m%), whose number is
the number of new elements in setS. We repeat the above
step untilS5B(12), then we obtaind2 independent Hermit-
ian operators.

Now it is clear that if we can do all the above bas
unitary transformationsZ̄b($m%), we can claim that we can
do all single-qudit unitary transformations. Let us focus
the basic unitary transformations. Our strategy is as follo
We first realizeZa($m%) on a five-qudit cluster, as a bas
single-qudit transformation, and then associate it with
other single-qudit unitary transformationZ̄a($m%). We ob-
serve that

Z̄a~$m%!5UZa~$m%!U†, ~76!

whereU satisfies

Z̄5UZU† ~77!

and belongs to the Cliford group defined in Sec. II. Equat
~77! is a consequence of Eq.~76!. In fact, Za($m%) and
Z̄a($m%) are diagonal in theZ and theZ̄ representations
respectively, and they can be expanded as
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Za~$m%!5 (
n50

d21

f ~n,m,a!Zn, ~78!

Z̄a~$m%!5 (
n50

d21

f ~n,m,a!Z̄n, ~79!

where

f ~n,m,a!5
1

Ad
Tr@Z†dZa~$m%!#. ~80!

Then the claim follows directly. Consequently, to realize t
unitary gateZ̄a($m%) we only need to connect the concern
clusters in proper order. Thus, in principle, we can make a
single qudit unitary gate inSU(d).

1. Five-qudit cluster realization of Xa„ˆm‰… and Za„ˆm‰…

In this section we realize the basic single-qudit unita
transformationZa($m%) on a five-qudit cluster designed a
in Fig. 1, which is a linear array of five qudits. We also u
the same cluster to implementXa($m%). As a byproduct, it is
shown that the same cluster with different measurement
terns can realize different unitary transformations. The c
responding cluster state is defined by the following system
equations:

X1
†Z2uf&C5uf&C , ~81!

Z1X2
†Z3uf&C5uf&C , ~82!

Z2X3
†Z4uf&C5uf&C , ~83!

Z3X4
†Z5uf&C5uf&C , ~84!

Z4X5
†uf&C5uf&C . ~85!

It follows from Eqs.~81!–~85! that

X1X3
†X5uf&C5uf&C , ~86!

Z1
†X2X4

†Z5uf&C5uf&C . ~87!

From Eq.~85!, we obtain

Z4
†a~$m%!X5

a~$m%!uf&C5uf&C . ~88!

Notice that here we have used the following condition
$m%. If n41n550 @Mod(d)#, then

FIG. 1. Five-qudit cluster used in realization ofXa($m%) and
Za($m%). A circle represents one qudit, numbern in the circle
means thenth qudit, in or out denote the input or output part of th
cluster, and two qudits which are connected by a line are neighb
3-7



n

nn

. I
-

r

w

sult
urth,

dit.
the

ted

o re-

-
at

ct,

i-
of

ZHOU et al. PHYSICAL REVIEW A 68, 062303 ~2003!
n41mn4
d1n51mn5

d50 ~n4 ,n5PZd!. ~89!

From the above four equations, we have

X1X3
†@X5

a~$m%!X5X5
†a~$m%!#uf&C5uf&C , ~90!

Z1
†X2@Z4

†a~$m%!X4
†Z4

a~$m%!#

3@X5
a~$m%!Z5X5

†a~$m%!#uf&C5uf&C . ~91!

For the measurement pattern

$X2 ,X3
† ,Z4

†a~$m%!X4
†Z4

a~$m%!%,

Theorem 2 says that the simulated unitary transformatio
X5

a($m%)US , where

US5Z5
2s12s3X5

s21s4.

BecauseUS depends on the measurement results and ca
be moved to the front ofX5

a($m%) trivially, different mea-
surement results lead to different unitary transformations
order to realize the gateX5

a($m%), we complete the measure
ment in two steps. We first measure$X1 ,X2 ,X3

†%. When the
outcomes ares1 , lx (5s3), ands2 , the byproduct operato
readsUS5Z2s32s1Xlz. At this time, lz is still unknown
since it depends on the measurement results4 . However, as
Z5

2s32s1X5
a($m%)Z5

s31s3 is diagonal in theX representation,
we have

Z5
2s32s1X5

a~$m%!Z5
s31s15)

$m%
X

5

a
$m%

s1s3

~$m%!. ~92!

From Eq.~92!, we can obtaind equations of$a$m%

s1s3%, which

determine the values of$a$m%

s1s3%.
Now we make a new choice depending on the kno

measurement results. Also from Eqs.~81!–~85!, we obtain
the following equation instead of Eq.~91!:

Z1
†X2S)

$m%
Z

4

†a
$m%

s1s3

~$m%!X4
†)

$m%
Z

4

a
$m%

s1s3

~$m%! D
3S)

$m%
X

5

a
$m%

s1s3

~$m%!Z5)
$m%

X
5

†a
$m%

s1s3

~$m%! D uf&C5uf&C .

~93!

Measuring the fourth qudit relative to the basis

)
$m%

Z
4

†a
$m%

s1s2

~$m%!X4
†)

$m%
Z

4

a
$m%

s1s3

~$m%!,

we obtain the values4 andlz5s21s4 . According to Theo-
rem 2, we obtain the final operation

UUS5Z5
2s32s1X5

s21s4X5
a~$m%!. ~94!

Finally, by measuringZ5 we obtain the correct result

s5s51s21s4 . ~95!
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The above equation does not mean that the final re
depends only on the measurements on the second, fo
and fifth qudits. The reason is that different values ofs1 and
s3 correspond to different measurements on the fourth qu

Based on the same cluster, we can also implement
single-qudit rotationZa($m%). Similarly, we first measure
$X1 ,X2 ,X4

†%; then from Eqs.~81!–~85!, we obtain

X1S)
m

Z
3

a
$m%

s2s4

~$m%!X3
†)

m
Z

3

†a
$m%

s2s4

~$m%! D
3S)

m
Z

5

a
$m%

s2s4

~$m%!X5)
m

Z
5

†a
$m%

s2s4

~$m%! D uf&C5uf&C ,

~96!

Z1
†X2X4

†Z5uf&C5uf&C , ~97!

where$a$m%

s2s4% is determined by

X5
s21s4Z5

a~$m%!X5
2s22s45)

$m%
Z

5

a
$m%

s2s4

~$m%!. ~98!

At the same time we make another measurement on

)
m

Z
3

a
$m%

s2s4

~$m%!X3
†)

m
Z

3

†a
$m%

s2s4

~$m%!.

According to Theorem 2, we conclude that the simula
unitary transformation is indeed

Z2s32s1Xs21s4Z5
a~$m%!.

The correct result and the measurement values are als
lated by Eq.~95!.

2. Realizations of single-qudit elements in Clifford group

As implied in Eq.~77!, we only need to realize the single
qudit elements in the Clifford group. It is easy to show th
all elements in the Clifford group are not required. In fa
we only need to treat the elements defined as

UmnZUmn†5Z̄, ~99!

where

Z̄5qd
@2~d21!/2#mnZmXn, ~100!

with

~m,n!51. ~101!

We will show that we can do all the above Clifford un
tary transformations through a series of four basic types
unitary transformations. The first is defined as

U1nZU1n†5qd
@2~d21!/2#nZXn, ~102!

U1nXU1n†5X. ~103!

The second is defined as

Un1ZUn1†5qd
@2~d21!/2#nZnX, ~104!
3-8
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Un1XUn1†5Z†. ~105!

The third is defined as

VZV†5qd
2~d21!/2ZX, ~106!

VXV†5X. ~107!

The last is defined as

WZW†5Z, ~108!

WXW†5qd
2~d21!/2ZX. ~109!

Theorem 3.Any unitary transformationUmn partially de-
fined by Eq.~99! can be factorized into a product of a seri
of the above four basic unitary transformations.

Proof. Let us prove it by induction. We denoteNf
[$1,2,...,f %. When m51 or n51, Umn is the first or the
second types of unitary transformation. Suppose that
above theorem is valid atmPNf or nPNf , i.e., we can do

Umn @m or nPNf ~m,n!51#. ~110!

For an arbitrary positive integern there existi PZ` andn8
PNf such that

n5 i ~ f 11!1n8. ~111!

If ( f 11,n)51, then

~ f 11,n8!51. ~112!

By the induction hypothesis, we can doU ( f 11)n8. Applying
V i times, we then obtain

ViU ~ f 11!n85U ~ f 11!n. ~113!

Similarly, we have

WiUn8~ f 11!5Un~ f 11!. ~114!

Therefore the theorem is valid form or nPNf 11 . This com-
pletes the proof. j

Now we are in a position to construct the four basic u
tary transformations. We will prove that the first~including
the third! and the fourth can be realized on the five qu
cluster as shown in Fig. 1. From Eqs.~81!–~85!, we have

X1X3
†X5uf&C5uf&C , ~115!

Z1
†X2~Z4

nX4!†Z5X5
nuf&C5uf&C . ~116!

According to Theorem 2, when the measurement patter
$X2 ,X3

† ,(qd
@2(d21)/2#nZ4

nX4)†%, the corresponding unitary
transformation is

qd
@~d21!/2#~s11s3!nZ2s12s3Xs21s42n~s11s3!U1n. ~117!

Also from Eqs.~81!–~85!, we obtain

X1Z3X3
†X4

†Z5X5uf&C5uf&C , ~118!
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Z1
†X2X4

†Z5uf&C5uf&C . ~119!

According to Theorem 2, when the measurement patter
$X2 ,qd

@(d21)/2#nZ3X3
† ,X4

†%, the corresponding unitary trans
formation is

qd
@~d21!/2#~s21s4!Zs22s12s3Xs21s4W. ~120!

To realize the unitary transformationUn1, we need a clus-
ter composed of six qudits as shown in Fig. 2. The clus
state is defined by the following system of equations:

X1
†Z2ufC&5uf&C , ~121!

Z1X2
†Z3uf&C5uf&C , ~122!

Z2X3
†Z4uf&C5uf&C , ~123!

Z3X4
†Z5uf&C5uf&C , ~124!

Z4X5
†Z6uf&C5uf&C , ~125!

Z5X6
†uf&C5uf&C . ~126!

It follows from the above equations that

X1X3
†X5Z6

†uf&C5uf&C , ~127!

Z1
†X2Z4

nX4
†X5

†nZ6
nX6uf&C5uf&C . ~128!

When the measurement pattern
$X2 ,X3

† ,qd
@(d21)/2#nZ4

nX4
† ,X5%, the corresponding unitary

transformation is

qd
~s11s3!~s21s42ns51@~d21!/2#n!Zn~s52s12s3!2s22s4X2s12s3Un1.

~129!

B. Realization of an imprimitive two-qudit gate

Now we come to the construction of the qudit cluster
simulate two-qudit operations. The cluster composed of
qudits as shown in Fig. 3 is considered with the followin
system of equations:

X1
†Z3ufC&5uf&C , ~130!

X2
†Z4uf&C5uf&C , ~131!

Z1X3
†Z4Z5uf&C5uf&C , ~132!

Z2Z3X4
†Z6uf&C5uf&C , ~133!

Z3X5
†uf&C5uf&C , ~134!

FIG. 2. Six-qudit cluster used in realization ofUn1. The mean-
ings of the symbols in this figure are the same as in Fig. 1.
3-9
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Z4X6
†uf&C5uf&C . ~135!

It follows from the above equations that

X1X5
†uf&C5uf&C , ~136!

X2X6
†uf&C5uf&C , ~137!

Z1
†X3Z5

†X6
†uf&C5uf&C , ~138!

Z2
†X4Z6

†X5
†uf&C5uf&C . ~139!

By measuring the system according to the measurem
pattern $X1X2X3X4Z5Z6%, the simulated two-qudit gateT
satisfies, and is also defined by,

TX5T†5X5
† , ~140!

TX6T†5X6
† , ~141!

TZ5T†5Z5
†X6

† , ~142!

TZ6T†5Z6
†X5

† . ~143!

According to Theorem 2, the above measurement pattern
alizes the following unitary gate:

TZ5
2s1X5

s3Z6
2s2X6

s45qd
s1s2Z5

s1X5
s22s3Z6

s2X6
s12s4T. ~144!

The next task is to prove thatT is an imprimitive two-
qudit operation. Reference@16# tells us that a two gateV is
primitive if and only if V5S1^ S2 or V5(S1^ S2)P. Here,
S1 andS2 are different single-qudit operators,P is the inter-

FIG. 3. Six-qudit cluster used in the realization of an imprim
tive two-qudit gateT. The meanings of the symbols in this figu
are the same as in Fig. 1.
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t
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changing operator obeyingPux& ^ uy&5uy& ^ ux&. Based on
this fact, we can easily conclude that a primitive opera
always maps a single-qudit operator to another single-q
operator. Obviously, the above two-qudit operatorT is im-
primitive. Another way to prove it is to evaluate the unita
transformation directly. Then we can find that it maps allZ
^ Z—bases to the maximally entangled states.

As demonstrated in this section, any single-qudit unita
gate and one imprimitive two-qudit gate can be realized
qudit clusters. Therefore, the measurement-based quan
computing on qudit clusters is universal.

VI. CONCLUSIONS

We have introduced the concept of a qudit cluster state
terms of finite-dimensional representations of QPA. Based
these qudit cluster states, we have built all the element
qudit clusters needed for implementation of univer
measurement-based quantum computations. With genera
tions of cluster states and measurement patterns, most o
results in qubit cluster can work well for qudit clusters
parallel ways. We also show that there still exists the c
ebrated theorem guaranteeing the availability of qudit clus
states for quantum computations. To prove the universalit
this quantum computation, we show that we can implem
all single-qudit unitary transformations and one imprimiti
two-qudit gate on specific qudit clusters. In addition, w
point out that the high-dimensional ‘‘Ising’’ model can b
used to generate the concerned cluster states dynamica
building a one-way universal quantum computer with qu
cluster states.
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