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The concept of a qudita d-level system cluster state is proposed by generalizing the qubit cluster state
[Phys. Rev. Lett86, 910 (2001] to higher-dimensional Hilbert space according to the finite-dimensional
representations of quantum plane algebra. We demonstrate their quantum correlations and prove a theorem
which guarantees the availability of the qudit cluster states in quantum computation. We explicitly construct the
network to show the universality of the one-way computer based on the defined qudit cluster states and
single-qudit measurement. A protocol of implementing one-way quantum computer is suggested using the
high-dimensional “Ising” model which can be found in many magnetic systems.
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[. INTRODUCTION where the lower indicea andb denote qudia and quditb in
the cluster, and indelx is taken in the neighborhood of index

Quantum computers can undertake computational taska{A\{(a)], depending on the cluster structure. Based on this
that are intractable for classical computers. The reason lies idefinition of qudit cluster states, we manage to construct all
the fact that quantum computing systems composed of qubitsngle-qudit unitary gates and one imprimitive two-qudit
(two-level quantum systemgossess mysterious quantum gate, presenting an important ingredient for building a one
coherence, such as entanglemémt quantum correlation ~ way universal quantum computer.
which has no counterpart in the classical re@lh Recently, This paper is organized as follows. We briefly review the
an important kind of entangled states, namely, cluster statd#ite-dimensional representations of quantum plane algebra
[2], was introduced. Cluster states enjoy the following re-in Sec. Il. This prepares the main mathematical tools used in
markable property: each pair of qubits can be projected intdhis paper. In Sec. Ill the qudit cluster state, as a nontrivial
maximally entangled state with certainty by single-qubitgeneralization of the qubit cluster state, is defined by means
measurements on all the other qubits. This property mighof the quantum plane algebra, and its essential properties of
suitably be referred to as maximal connectedness. More suguantum correlations are analyzed. The main theorem is pre-
prisingly, it was shown that cluster states can be used to buildented and proved in Sec. IV, expediting the introduction of a
a one-way universal quantum computer, in which all the op-one-way quantum computer based on qudit cluster states. As
erations can be implemented by single-qubit measurements the qubit cas¢4], this theorem guarantees the functioning
only [3]. Raussendorf and Briegel provide a simple criterionof gate simulations on the qudit cluster state quantum com-
for the functioning of gate simulations on such quantumputers. In Sec. V the universality of the qudit cluster state
computerd4]. This is a key theoretical step towards realiz- computer is proved by constructing explicitly all the single-
ing such a scalable quantum computer. On the other hand, énd one two-qudit logic gates. Finally, short conclusions are
was pointed out that the protocol of cluster state computerpresented in Sec. VI.
can be easily realized in practical physical systems since the

creation of cIuste( states.needs only Ising—type_ interactiqns Il. EINITE-DIMENSIONAL REPRESENTATIONS

[2]. In fact, such interactions appear naturally in the solid OF QUANTUM PLANE ALGEBRA

state lattice system with proper spin-spin interactip®k

and in the optical lattice cold atom systéBi. In this section we will review some basic results about the

Theoretically, it is natural to ask whether the concept offinite-dimensional representations of Manin’s quantum plane
cluster states can be generalized to the higher-dimensionalgebra. This will provide us with a useful mathematical tool
case, or the so-called qudit case, since most available phydie describe not only qudit cluster states but also unitary
cal systems cannot be treated as two-level systems even in &ansformation on the Hilbert space. Manin’s quantum plane
approximate way. The answer to this question is affirmativeis defined by
In our analysis, we make full use of the noncommutative
operatorsX and Z, which provides al-dimensional irreduc- XZ=qZX, (2
ible representation of Manin’s quantum plane algel&A)

[6]. The crucial point is that the qudit cluster sta#g). can  where q is a complex number. It is well known that the
be defined as a common eigenstate of the tensor produgksociative algebra generated h¥, X possesses a

operators d-dimensional irreducible representation only whegt= 1
[6]. In this article, we take=qq=¢€'?>"9. This special case
x; ® Zp, (1) s first introduced and studied by Wej3] and Schwinger
beMa) [14]. Obviously, wherd=1, q=1, X andZ can be regarded
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as the ordinary coordinates & plane. Whend=2, q= B={ZiXk,(j,keZd)} (12)

—1, XandZ can be identified with the Pauli matrices and

o,. From this viewpointZ and X can be regarded as the is a basis of the algebra. The elements of this basis are called

so-called “generalized Pauli operators’—12). unitary operator bases in Rdfl4]. The following general
Wheng=qq4, Z% and X% commute with the algebra gen- commutation relations for any two basis elements can be

erators, so they belong to the center of QPA. From Schur'shecked immediately:

lemma it follows thaZ® and X are constant multiples of the , L

d-dimensional identity matrix, i.eZ%=zI and X4=xI. In XI1Z¥=qlfZ*X. (13

general we can normalize them to the identity. Since the _

complex fieldC is algebraically closed, there must exist an Ve observe that many other elements in the algebra have

eigenstatd0), which satisfies the same commutation relation as the generaZ(_)emd X.
Denote by(m,n the greatest common factor of integers
Z|0)=10). (3 andn. Let my, n;, my,, n,eZ, be integers such that

(my,ny)=1, (My,n,)=1, andm;n,— myn,;=1. We take
Defining |k)=X¥|0), then we have L 2112 12— MaNy

—_ [—d=D/2lmin1>m,\n

Z= ZMixX", 14
z|ky=allk), (keZy), (@ % a4
according to Eq(2), and X= qz_(d_l)/z]mZ"ZZmZX“Z. (15)

X|k)=k=1) ) It then follows tha’rfandfrespect the commutation relation

by definition. Thus in th&-diagonal representation, the ma- Ed. (2). Note that the coefficients in the definitions Dfand
trices of X andZ are X serve to guarantee that they possess the same eigenvalues

asZ and X, respectively. It turns out that andX defines a

(1 00 0 0 7 unitary transformationJ:

0 g4 O 0 0

. . . . . - _ T v — T

2 IR : : ' ©6) Z=UZU', X=UXU" (16)
qgfz 0 It is easy to check that all this kind of unitary transformations
qgfl form a group. This is the so-called Clifford group.
-0 1 0 --- 07 I1l. QUDIT CLUSTER STATES IN QUANTUM PLANE
0 0

Now we generalize the concept of qubit cluster states to
S e the qudit case. For conceptual simplicity we first restrict our-

X=|: ™ : (7 . . : o

selves to one-dimensional lattices. Let us recall the definition

C R

of one-dimensional cluster states fdrqubits. Consider an

| | N-site lattice, with a qubit attached to each site. As a novel
multiqubit entangled state, the cluster state is written as

From Eq.(5), we have
1 N
X|x(0))=[x(0)), (8) |b)e=5m2 © [[0)at[L)alo2)asral, (17
a=1
where
where (@), (i=X,y,z) are the Pauli matrices assigned for
d-1 L .
|x(0)>=i2 1K) © site a in the lattice, and
Jdico

o2l =(~1)s), (se{0.1).

Similar to the eigenvalue equation &f we have By analogy we naturally conjecture that the qudit cluster

X|x(j)>=q{j|x(j)) (10) state in one dimension is
d-1
where 1 N
|b)e= gz © > |k>aZ§+1>: (18
1 d-1 a=1\ k=0
x(j))=2)|x(0))= — K1k). 11
X(D)=Zx(0)= = 2 eIk aw
These equations define a representation of the algebra Za|k>a=q§|k)a, Va. (19
equivalent to the previous one.
Obviously, Now we present one of our main results.
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Theorem 1The qudit cluster state in one dimension de-
fined by Eq.(18) is a common eigenstate of eigenvalue 1 of

the operator!®p . aia)Zo, i-€.,

X ® Zyld)e=|d)e,
be Ma)

where

{2}, a=1

{N-1}, a=N
{a—1a+1}, a&¢{1N}.

Ma)=

Proof. We notice that the qudit cluster state8) can be

(20

(21)
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X ® Zpld)e=|d)c. (30)
beMa)

Formally, this definition of a general cluster is the same as a
one-dimensional cluster. Of course, different clusters have
different definitions of neighbors.

Now we preceed to discuss the properties of quantum
correlations in the above cluster states under single qudit
measurements. For simplicity, we still restrict ourselves to
the one-dimensional case.

First, let us consider the problem of describing a von Neu-
mann measurement for a single qudit. Although the generator
Z (or X) is not Hermitian, i.e., the eigenvalues®for X) are
not real, the nondegenerate eigenstates @k X) can still be

constructed by the following procedure. We first prepare 4/Sed to define a von Neumann measurement. For example,

product state

N
|+>: ®|X(O»av
a=1

then apply a unitary transformation

s= Il s

b—a=1

to the statd+). Here S,;, is defined as an intertwining op-

erator
SanliYalK)p= 0l )al K)o -
It is easy to prove
|$)e=S+).
SinceX]|+)=|+), it is easy to check
SX;ST|¢>C:|¢>C-
Now it suffices to prove

sXst=x! o z,.
beMa)

To this end, fora,b,ce{1,...N}, we observe that
SapXiSlp=X1®Zy,
S.pXiShy=2Z.0 X,
SapXish =x!, Vce{a,bl,
and
SanZcSh =2, Ve.

The theorem then follows directly.

Although the above proof is proposed in the context of
one-dimensional cluster, it still works for the more compli-
cated two- or three-dimensional cluster. The reason is as fo

(22)

(23

(29)

(29

(26)
(27)

(28)

(29)
|

a

when we make a measurement markedzbye mean that
we can obtain different results corresponding to different
eigenstates of.

Next, we discuss the minimal numbBg, of single qudit
measurements needed to destroy all the quantum correlations
in qudit cluster states. In the one-dimensional case, if we
expand the cluster stafey). with respect to a product basis,
the minimum number of terms needed will grow exponen-
tially with N (precisely, asd™'?), where[N/2] denotes the
maximal integer not more thaN/2). This can be shown by
induction as in Ref[3]. This observation gives us an upper
bound of P.:P.<[N/2]. Further analysis shows that by
measuringZ,, (a=1,2,...fN/2]) all the quantum entangle-
ment will be destroyed. Let us illustrate the key steps to
reach this conclusion with one-dimensional cluster states for
four qudits. In this case the cluster state is defined as the
common eigenstate of eigenvalue 1 of the set of operators
(X12,,2,X375,2,X32,,25X]}. If we measureZ, andZ,,
we obtain the results|? and g3, and the qudits 2 and 4
collapse into statefs,), and|s,)4, respectively. Then from
the definition of the cluster state, qudits 1 and 3 are in the
eigenstates of eigenvalue 1 gPX} andq?” **Xs, namely,
IX(S,)), and|x(s,+54))4. Thus all the entanglement is de-
stroyed by measuring, andZ,. The general case can be
dealt with similarly. In summary, we have,=[N/2].

Finally, we probe the most remarkable property—
maximal connectedness—of a qudit cluster state. It means
that each pair of qudits in the cluster can be projected into a
maximally entangled state with certainty by single-qudit
measurement on all the other qudits. In fact, to project two
arbitrary qudits in a one-dimensional cluster into a maxi-
mally entangled state, we only need to measXiréor the
qudits between them, ard for all the other qudits. Let us
use the same four qudits cluster state as above to prove this
property case by case. To project qudits 1 and 2 into maxi-
mally entangled states, we need to measdgeand Z,.
When we obtain the res 33, qudits 1 and 2 collapse into
the common eigenstate of eigenvalue 1 of the operaﬁﬂg
andqflex;, which is a maximally entangled state of qudits
1 and 2. To project qudits 1 and 3 into maximally entangled
ptates, we need to measuté andZ,. When we obtain the

lows. For a general clust& with one qudit on each site, the resultsqy? andgy, qudits 1 and 3 collapse into the common
cluster staté¢),. is defined by the following eigenequations: eigenstate of eigenvalue 1 of the operatqrf,ézlz3 and
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qetxIx3, which is a maximally entangled state of qudits 1 netic properties of some artificially fabricated superlattices
and 3. Other cases can be treated in the same way. For ti@n be explained in the framework of higher spin Ising mod-

general one-dimensional cluster state, this property can b&S- Such superlattices consist of two or more ferromagnetic
proved similarly. materials. They have been widely studied over the years be-

Moreover, we point out that two- or three-dimensional Cause their physical properties differ dramatically from those
qudit cluster states are also maximally connected. As a magf simple solids formed from one single material. Moreover,
ter of fact, the higher-dimensional problem can be reduced t§€ development of film deposition techniques has aroused
the one-dimensional one. To this end, we only need to find great interest in the study of superlattices of other materials.
path connecting the two qudits under consideration and med® humber of experimental19-22 and theoretical works
sureZ for all the other qudits which are not on the path.  [23—30 have been devoted to this direction.

Now it is in order to discuss the problem of physical
implementation of our one-way quantum computer. Physi-1V. MEASUREMENT-BASED QUANTUM COMPUTATION
cally the qudit cluster stat@ 8) can be created by the Hamil- WITH QUDIT CLUSTER STATES

tonian
We have seen that the qudit cluster states exhibit the same

features in quantum entanglement as those of the qubit clus-

H=-hg > NYNY (g>0), (31)  ter states. Then a question arises naturally: how are these
(@) natures of quantum correlations related to constructing the
where(a,b) denotes sitea andb which are nearest neighbors universal quantum computation? We will answer this ques-

in the cluster; andN@ is defined as tion in the following two sections.
In this section we further generalize the basic concept of
d-1 “single-qudit quantum measurement” and study the
N(Z)IKEO [k)k(K]. (32 measurement-based quantum computatldBQC) on qudit

clusters. Along the line to construct MBQC for the qubit
case, we will establish the corresponding theorem which re-
lates unitary transformation to quantum entanglement exhib-
ited by the qudit cluster states. The quantum computations
i with qudit clusters inherit all basic concepts of those with
S= exr{ - %Htc), (33)  qubit clusters. They include the basic procedure of simula-
tion of any unitary gate, the concatenation of gate simulation,
and the method of dealing with the random measurement
results. Here we will give a-dimensional version of the
central theorem 1 in Ref4].
Before formulating our central theorem, let us prepare
d—1 some basic elements of quantum computing with qudit clus-
s,=N@— — (34)  ters. The main problem concerning quantum computing with
qudits is to simulate the arbitrary quantum ggtdefined on
n-qudit Hilbert space. This problem can be tackled in three
steps. The first step is to find out a proper clust@y) and
d—1 divide it into three subclusters: the input clustg(g), the
H= TﬁQE va(S)a—19 2 (S)a(S)p, (39  body clusterCy(g), and the output clustafo(g). As usual
é (a.b) we require that the input and output clusters have the same
rank (i.e., the same number of quditShen we prepare the
initial state as

Then the intertwining operat@in Eq. (22) has the explicit
form

with the evolution timet,=2/dg.
To associate with the more familiar Hamitonian in phys-
ics, let us define the spird(-1)/2 operator of direction

Then we can rewrite Eq31) as

wherev, is the number of nearest neighbors of quaih the
cluster. Obviously, the interaction Hamiltonian

W (in) =|y(in) + , (37

Hi= =9 % (SJ)a(So (36) P =1l | Yoy oy
@b and entangle the qudits on the qudit cluster by using the

is the ferromagnetic Ising-type interaction with spuh-( cluster state generat&

=1)/2.

By the way, we remark that higher spin Ising models have |D(in))cig) =SV (in))c(g) - (38

been actively studied systems in condensed matter and sta-

tistical physics due to their rich variety of critical and mul- This step brings the structure information of the qudit cluster

ticritical phenomena. For example, the spin-1 Ising modeinto our computing process, and thus relates it with the cor-

with nearest-neighbor interactions and a single-ion potentialesponding qudit cluster state.

is known as the Blume-Emery-Griffithi@EG) model[17], The second step is to measure all qudits on the cluster

the spin-3/2 Ising model was introduced to explain phaseelative to a special space-time-dependent basis according to

transitions in DyVQ, and its phase diagrams were obtaineda given measurement pattefP). The definition of MP is

by the mean-field approximatidri8]. In addition, the mag- given as follows.
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Definition 1.A measurement pattet, on a clusteCis  where the input and output states in the simulatiory @ire

a set of unitary matrices related via
Me={u,Zullaec, u,eSUd)}, (39 [p(out)=UUx|y(in)), (49
which determines the one-qudit measured operaﬂ@n‘)son whereUs is a byproduct operator given by
C, with the explicit form n
Us=  ®  (Z) Mi7Si(Xphei, (50)
-t [Co(g)5i1=1
N(aU): 2 Ua|s>asa<s| uZTi- " (40)
s=0 Proof. Let us begin with the case that

If this measurement patterm, operates on the initial |¢(in)>cl(g):|{t}>cl(g), (51
state|®(in))¢( . the set of measurement outcomes
where
{slc={saeZ4aeC} (41)
{t={taty o).

is obtained. Then, modulo a norm factor, the resulting state

To associate withy , write the initial input state as
| W ) is given by c(9)
. i _ npith
|15 )= Pl | (i) g). (42) |9(in)¢, g = (Vd) PMéI(gJ e (52
where the pure state projection where
P.{/\S/I}C: ® Uk|S>k k<S|Ul . (43) Mél(g)z{zi i EC|(g)} (53)
keC

From Egs.(37), (38), (48), (52), we have
It is worthy to point out that we always measuxefor the

input qudits and for the output qudits, regardless of gaje (s} {t}
H |si) |lﬂ(OUt))CO(g)OCP/\S/lc|<g>PMél(g)|¢>c(g)-

ie., C(9)UCy(9)
. 54
Mg={Xi, icC(g)h, (44) 59
To find out the equations for the final stéi;e(out))co(g) ,
Meyg={Zi, 1€Co(9)}. 49 et Pﬁc( P!, act on both sides of Eq¢46) and (47),
@ Meyg)
In this way we manage to associate the measurement values . — Cs g
with the outcome of gatg acting on the initial state, com- (UXiUD)cgl (0uh)e g =dg " e(0ub)e ()
pleting the third step. (55)

We notice that the essential point of the above standard .
procedure of qudit clusters quantum computation is to asso- (UZiUT)CO(g)|w(OUt»CO(g):qg | g(out))ey(g)
ciate a given gatg with a measurement pattern. Although by (56)
now we have no general optimal operational procedure to do
this for practical problems, the following theorem provides awhere the input state fdnp(out))
useful tool in realizing specific gates on the qudit clusters. _

Theorem 2. Suppose that the state|¥)q |p(in)) = XT[{t}). (57)

=pfs obeys the 2n eigenvalue equations . . .
Mc (9)|¢>C(9) y 9 q Before drawing a conclusion, we need to check the final

state is not a zero vector. In fact, from E¢46) and(47), the

Xe i (UXiUD e gl Weg=0g ™ #)eq  (46)  stateU "4)eg is @ simultaneous eigenvector of the opera-
tors Xc (g),iXcq().i and ZC @.ilco(a)i- We find that it has
Z}l(g) i(UZiUT)CO<g)|z/x)c(g)zq;hz'ilt,b)c(g), (47 every component in thz-dlagonal representation of the in-

put part. Consequently the final state is indeed a nonzero
with A\,;, A,ieZq and I<i<n. Then, according to the Vector. So from Eqs(55) and(56), we obtain
above standard quantum computing procedure, we have ,
|¢(0Ut)>co(g): ey U2|{t}>co(g) . (59

pist  plst d(in
MC(Q CM@' (iM)eg To further determine the relation between the output state

and the input state, let us consider another case such that

o S (out) ) (48) i
(H| >)CI(Q)UCM(9)I¢ )eo(w) |9 (iM)igy=1+)eyq) - (59
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This time the final state
H{sibe,@ucy @l ¥' (0ud)og = P{Cﬁg)(xn Peg - (60)

Let Pﬂa}c @ apply on both sides of Eq$46) and (47). Then
we obtain

(UX;U T)Co(g>| Y’ (oud)o(g)= q;s‘ ]y (ou)o(g)»
(61)

(uz UT)CO(g)|$, (oud))o(g)= q;““l ' (0ud)o(g), (62)

where for| ' (out)) the input state

|9/ (in)=Z{|+). (63)
From the above equations, it follows that
|4 (0u) o) =€ UUs|+)cyq) - (64)

Substituting Eq(58) into Eq. (64), we have

|4 (0uD)o(g)= uuzd*””% ety (69
Comparing Eq(64) with Eq. (65), we finally obtain
el =gix, (66)

This completes the proof. |

This theorem tells us that, since the cluster states havg

in the realization of arbitrary unitary gates. More precisely,
as long as one cluster can be used to process a unitary 99
for the cluster state, it will work for arbitrary input states.
Therefore, it is sufficient to check the conditions for the clus-
ter states, i.e., Eq46) and Eq.(47). We would like to em-
phasize that what is characteristic of the above theorem
that it is expressed in terms of not only the unitary operator
X and Z, but also their conjugates. Far=2, it exactly re-

duces to Theorem 1 of Ref4].

Before using the theorem to construct a specific unitary

PHYSICAL REVIEW A 68, 062303 (2003

of all one-qudit gates and any imprimitive two-qudit gate is
exactly universal for arbitrary qudit quantum computing,
where a primitive two-qudit gate means such a gate that
maps separate states to separate states. Therefore, in order to
prove the universality of quantum computation with qudit
clusters, we only need to construct the basic elementary
gates, namely, any one-qudit unitary operation and one im-
primitive two-qudit unitary transformation, and then inte-
grate them to realize an arbitrary unitary gate. We will do
this in this section based on Theorem 2 in Sec. Ill.

A. Realizations of single-qudit unitary transformations

Let us start with single-qudit gates. First, we introduce a
proposition for any unitary transformation drdimensional
Hilbert space.

Proposition 1.Let {N;,(i € Z42_4)} be a Hermitian basis
of the operator space fa-dimensional Hilbert space, then
any unitary transformatiokd has the form

U:qii“iNi:H qgiNi' (67)

wherea; and gB; are real numbers.

The first equality is obvious. For the proof of the second
equality please refer to Ref15].

Thanks to this proposition, we can divide any qudit gate
into a product of more basic ones—single parameter unitary
transformations. Now, we need to filndk d independenti\;
to simulate all unitary gates for one qudit. From the defini-
fon of qudit cluster states, we expect that the single param-
Ster unitary transformations must have deep relations with
tEe basis elements of QPA. This is indeed true. In fact, along
fis line we find a good way to introducdxd one-
parameter unitary transformations. The idea originates from
the observation that some of the basis elements of QPA can

ibe used to define a state basis. We find that all the unitary

ffansformations that do not change the basis state up to a

%hase are defined by the property of multivalued complex

functions. For example, for operat@dy we can define

gate, we need to explain how to deal with the byproduct part Z°({mh=qg" =™ (BeR), (68)
Us . The basic idea is to movésy to the front ofU accord-

ing to the commutation relation betwebl andU. To com- ~ Where

plete this operation, the general strategy is to divide the mea- 41

surements into several steps such that the subsequent
measurements depend on the results of the previous mea-
surements. In the next section, we will use specific examples

to demonstrate how to construct all basic elementary gategjiough the above definitions concern infinite unitary trans-
with the help of this theorem. formations, there are only independent ones, which can be
used to describe the following type of unitary transforma-
tions:

N(z,{m}>=§0|n><n+mnd><nl (Ym,eZ). (69

V. UNIVERSALITY OF QUDIT CLUSTER QUANTUM
COMPUTATION

It is well known that a finite collection of one qubit uni- Uz({ah)In)=qg"n) (VneZy,aeR). (70
tary operations and CNOT gate is enough to construct any

unitary transformation in the qubit quantum computing net-Obviously, thesed independent unitary transformations, or
work. This conclusion remains true in some sense for théhe correspondindN(Z,{m}), can take the place dfz",n

qudit quantum computinfl6]. To be precise, the collection e Zg} in the unitary basis.
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A similar argument can be applied Todefined in Sec. IL. G ° ° ° °
To be precise, for operatat, we define
_ - In Out
ZP({mp =qN* ™ (BeR), (7D
FIG. 1. Five-qudit cluster used in realization ¥&x({m}) and

where Za({m}). A circle represents one qudit, numberin the circle
means thenth qudit,in or outdenote the input or output part of the

— o — cluster, and two qudits which are connected by a line are neighbors.
N(Z{mh =2 [n(2))(n+md)(n(Z)| (Ymye7),
(72 d-1
ze(fmp)= 2> f(n,m,a)2", (79)
with n=0
ZIn(2))=a3in(2)). (73) - < -
ze({mh=2 f(n,m,a)Z", (79)
In the following, we will show that we can seledtx d in- -0
dependent Hermitian operators frdd{Z,{m}). where
Whend is a prime number, a convenient choice is to take
Z from the operator set 1
P f(n,m,a)= ﬁTr[ZTdZ“({m})]. (80)

{Z,X,ZX,ZX?,....Zx9" 1, (79

Because eadch definesd— 1 independenIN(Z{m}) besides Then the claim follows directly. Consequently, to realize the

the identity, we obtainl? [ = (d— 1)(d+ 1)+ 1] independent unitary gateZ*({m}) we only need to connect the concerned
Hermitian operators. clusters in proper order. Thus, in principle, we can make any

Whend is not a prime number, we can choose the inde-Single qudit unitary gate i$U(d).
pend_entN(Z,{m}) by the following procedure. First, we
takeZ from{Z, X, Z%, and thus obtain 3{— 1) independent

N(Z{m}) besides the identity, which can take the place of;
the set of basis elements

1. Five-qudit cluster realization of X({m}) and Za({m})

In this section we realize the basic single-qudit unitary
ransformationZ“({m}) on a five-qudit cluster designed as
in Fig. 1, which is a linear array of five qudits. We also use
S={Z" X", 2" X" (ne Zy)}. (75) the same cluster to implemeNf‘(_{m}_). As a byproduct, it is

shown that the same cluster with different measurement pat-
terns can realize different unitary transformations. The cor-

Then we take an elemente S, find out the elements in responding cluster state is defined by the following system of

{Z",neZ4} that is not in the se§, add these elements &

pll equations:

and take the new independe({Z,{m}), whose number is
the number of new elements in s&tWe repeat the above X1Z,| dYe=d)c, (81
step untilS=B(12), then we obtai? independent Hermit-
lan operators. Z1X3Z3| b)c=|¢)e (82

Now it is clear that if we can do all the above basic
unitary transformationZ”({m}), we can claim that we can Z,X3Z4 )= ), (83
do all single-qudit unitary transformations. Let us focus on
the basic unitary transformations. Our strategy is as follows. ZX1Z6| dYe=d)e, (84
We first realizeZ“({m}) on a five-qudit cluster, as a basic
single-qudit transformation, and then issociate it with the z4xg|¢,>cz|¢>c_ (85)
other single-qudit unitary transformaticgf'({m}). We ob-
serve that It follows from Egs.(81)—(85) that

Ze({mp)=uz*({mpu’, (76) X1 X{Xs| b)c=|b)c. (86)
whereU satisfies ZIXZXZZS|¢>C:|¢>C- (87
z=uzut (77 From Eq.(85), we obtain

and belongs to the Cliford group defined in Sec. Il. Equation ZiemhXedmb)| )e=|d)c. (89)

(77) is a consequence of E@76). In fact, Z*({m}) and

Z*({m}) are diagonal in the&Z and theZ representations, Notice that here we have used the following condition on
respectively, and they can be expanded as {m}. If ng+ns=0[Mod(d)], then
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ng+ mn4d+n5+ mnsd:o (Ng,NseZy). (89 The above equation does not mean that the final result
depends only on the measurements on the second, fourth,
From the above four equations, we have and fifth QUditS. The reason is that different valuesphnd
s3 correspond to different measurements on the fourth qudit.
X XA XEAmMHXsXE (M) ]| d)e= | b)e, (90 Based on the same cluster, we can also implement the
single-qudit rotationZ*({m}). Similarly, we first measure
ZIX[Zh(dmhXIzZa({m})] {X1,X5,X}}; then from Eqs(81)—(85), we obtain

X[Xs({mp)ZsXg“({mP1|)e=|d)c.  (9D)
For the measurement pattern

{X2. X3, Z}*({mHXGZs({mp)}, X

xl(fm[ Zgim ({mp X3 z;“{fnf({mb)
T zzm(mpxs ] Z;a{ﬁ’;({m})>|¢>c:|¢>c=

Theorem 2 says that the simulated unitary transformation is (96)
Xs({m})Us , where

Us =2, 5o, ZIXoXiZs| p)e=b)e 97)
Where{azﬁ“} is determined by

BecausdJy depends on the measurement results and cannot
be moved to the front oKg({m}) trivially, different mea- X52+S4Z"({m})x_
surement results lead to different unitary transformations. In 5 5 5
order to realize the gatéz({m}), we complete the measure-
ment in two steps. We first measu¥; ,X,,X}}. When the
outcomes ars,, \, (=S3), ands,, the byproduct operator 55 .5
readsUs=2Z"%"%X"z At this time, \, is still unknown 11 z;‘w({m})ng[ Z;a{m}({m}).
since it depends on the measurement resultHowever, as m m
7% SXg({m})zE" = is diagonal in theX representation, According to Theorem 2, we conclude that the simulated
we have unitary transformation is indeed

=]z (m). (99
{m}

At the same time we make another measurement on

o asls3 Z—S3—slxs2+s4zat mb).
Zg % gz =TT X (mp). (@2) b
{m} The correct result and the measurement values are also re-

?lsf} which lated by Eq.(95).
g
determine the values Qfa{srlns}a}. 2. Realizations of single-qudit elements in Clifford group

Now we make a new choice depending on the kpown As implied in Eq.(77), we only need to realize the single-
measurement results. Also from Ed81)—(85), we obtain gt elements in the Clifford group. It is easy to show that
the following equation instead of E¢I1): all elements in the Clifford group are not required. In fact,
we only need to treat the elements defined as

From Eq.(92), we can obtaird equations of «

+ Ta5153 + a5153
Z1X, {H} z, {m}({m}m{ﬂ} Zmi ({m})
m m

UngUmnT:Z (99)
o 1% ta 1% where
x| IT xgim (fmpzs[ T X {m}({m}))|¢>c:|¢>c-
{m} {m} - qg—(d—l)IZ]ngan’ (100
(93
with
Measuring the fourth qudit relative to the basis
(m,n)=1. (101
Ta5152 2153
IT z, "o (fmh AT Z5m ({m), We will show that we can do all the above Clifford uni-
{m} {m} tary transformations through a series of four basic types of
we obtain the valus, and\,=s,+s,. According to Theo- unitary transformations. The first is defined as
rem 2, we obtain the final operation UanUlnT:qg*(dfl)/Z]ann’ (102
UUs=2_ % X2 “X2({m}). (94) Uiy Uint—x. (103
Finally, by measuringZs we obtain the correct result The second is defined as
S=Sg+S,+5S,. (95) untzynti= gl (- brEnzny, (104
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UanUan:ZT- (105) ( ) ( ) ( ) ( 4 ) @ @
Out

The third is defined as

In
t_ y—(d—1)12
VZVi=0g 2 (108 FIG. 2. Six-qudit cluster used in realization df'*. The mean-
VXV =X (107) ings of the symbols in this figure are the same as in Fig. 1.
The last is defined as ZIXX1Zs| )= d)e - (119
WZW=2, (108 According to Theorem 2, when the measurement pattern is
{X,,qd" Dz xT X1}, the corresponding unitary trans-
WXW =g " D72zX. (109  formation is
Theorem 3Any unitary transformatiod™" partially de- qu(d‘1>/2]<52+54)z$z—51—53x52+54w, (120
fined by Eqg.(99) can be factorized into a product of a series
of the above four basic unitary transformations. To realize the unitary transformatiah™, we need a clus-

Proof. Let us prove it by induction. We denoth;  ter composed of six qudits as shown in Fig. 2. The cluster
={1,2,...f}. Whenm=1 or n=1, U™ is the first or the state is defined by the following system of equations:
second types of unitary transformation. Suppose that the

above theorem is valid ahe N; or ne N;, i.e., we can do X1Zs| o) =|db)c. (121

U™ [m or neN; (m,n)=1]. (110 Z:X3Z3| Y= d)ec, (122

For an arbitrary positive integer there existi e Z,, andn’ ZzX§Z4|¢>c:|¢>c, (123
e N¢ such that

n=i(f+1)+n’. (11 Z3XiZs| d)e=|d)c, (124

If (f+1,n)=1, then Z X126l b)e=|d)c, (125

(f+1n")=1. (112 ZsXi p)e=1d)c- (126

By the induction hypothesis, we can dgf+n’ Applying It follows from the above equations that
V i times, we then obtain

X XIXsZ| )= b)e. (127)
ViU(f+1)n’:U(f+l)n_ (113)
ZIX,ZiXEXE"ZgXe| b)e=|b)c - (128
Similarly, we have .
When the measurement pattern is
Wi (1 = n(f+1) 114 {X2.X,qd? A"Z4X] Xs}, the corresponding  unitary

transformation is
Therefore the theorem is valid fon or ne N;, ;. This com-

pletes the proof. - qgs1+53)(52+34*”55+[(d*1>/2]”)Zn(55—51—53)—52—54x—sl—53U ni
Now we are in a position to construct the four basic uni- (129

tary transformations. We will prove that the firgcluding

the third and the fourth can be realized on the five qudit B. Realization of an imprimitive two-qudit gate

cluster as shown in Fig. 1. From Ed81)—(85), we have . .
Now we come to the construction of the qudit cluster to

x1x§x5|¢>cz|¢>6, (115 simulate two-qudit operations. The cluster composed of six
qudits as shown in Fig. 3 is considered with the following
ZiXo(ZiX4)'ZsXE| b)e=b)c- (116  system of equations:
T _
According to Theorem 2, when the measurement pattern is X1Z3|pe)=d)c, (130
{X,, X3, (g @ 2nzx )T, the corresponding unitary
transfca)rmation is ) X3Zs| p)e=1d)e. (13D
qu(d*l)/21(51+53)nzfslf53X52+s47n(sl+s3)uln_ (117 21X£Z425| d)e=|d)c, (132
Also from Egs.(81)—(85), we obtain Z,Z3X5Z6| d)c=| b)e (133
X1 Z5XIXiZsXs| b)e=b)c (118 ZXi| d)e=|d)c, (134
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0 changing operator obeyinB|x)®|y)=|y)®|x). Based on
1 3 5 this fact, we can easily conclude that a primitive operator
In
®

always maps a single-qudit operator to another single-qudit

operator. Obviously, the above two-qudit operafois im-
Out primitive. Another way to prove it is to evaluate the unitary

transformation directly. Then we can find that it mapszall
@ ®Z—Dbases to the maximally entangled states.

As demonstrated in this section, any single-qudit unitary

gate and one imprimitive two-qudit gate can be realized on
qudit clusters. Therefore, the measurement-based quantum

Y,
FIG. 3. Six-qudit cluster used in the realization of an imprimi-
tive two-qudit gateT. The meanings of the symbols in this figure

are the same as in Fig. 1. computing on qudit clusters is universal.
Z X )e=|d)ec- (135 VI. CONCLUSIONS
It follows from the above equations that We have introduced the concept of a qudit cluster state in
terms of finite-dimensional representations of QPA. Based on
X1 X3 d)e=|db)e, (136 these qudit cluster states, we have built all the elements of
qudit clusters needed for implementation of universal
XX b)e=|b)c, (137 measurement-based quantum computations. With generaliza-
tions of cluster states and measurement patterns, most of the
ZIXZIXE| p)e= ) (138 results in qubit cluster can work well for qudit clusters in
parallel ways. We also show that there still exists the cel-
ZIXZEXE| )= d)e. (139  ebrated theorem guaranteeing the availability of qudit cluster

) , states for quantum computations. To prove the universality of
By measuring the system according to the measuremenis quantum computation, we show that we can implement
pattern {X,X,X3X4ZsZg}, the simulated two-qudit gat® ) single-qudit unitary transformations and one imprimitive

satisfies, and is also defined by, two-qudit gate on specific qudit clusters. In addition, we

TX.T =t (140 point out that the high-dimensional “Ising” model can be
5 5 used to generate the concerned cluster states dynamically in
TXGTTZX(E, (141) building a one-way universal quantum computer with qudit
cluster states.
TZsT'=2zIX{, (142
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