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Dynamic fragmentation of a spinor Bose-Einstein condensate
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We investigate dynamical behavior of fragmentation of a spinor Bose-Einstein condensate in both the
semiclassical and quantum regimes. We show that an unfragmented condensate can become fragmented at later
times due to the inherent interactions of elastic atomic collisions, when a certain phase relationship exists
among the state amplitudes in different components initially. A close relationship between the fragmentation
and population dynamics of atomic distributions within different spin components is found for certain initial
states with zero magnetization. The type of fragmentation regime is characterized via atom-number fluctua-
tions. We also address complications of our study when the condensate spatial mode function is different for
each spin component.
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I. INTRODUCTION to the internal degrees of freedom.
Recently, it was argued that a fragmented ground state

The ground-state properties of an interacting atomiadoes occur in an optically trapped spin-1 conden$&ie
Bose-Einstein condensatBEC) are of fundamental impor- Such a vectorial condensate can be produced either by trans-
tance to the understanding of trapped quantum g@kks ferring a condensat@f atoms with nonzero hyperfine spjns
According to the orthodox picture of Bose-Einstein conden{from a magnetic trap into an optical trél, or by evapora-
sation, the appearance of a condensate is accompanied by tive cooling of atoms through the all optical routg]. For
emergence of one macroscopic eigenvalue of the singlésoth 2Na[4] and 8'Rb [5] atoms, condensation usually oc-
particle density matrix1], and the corresponding eigenvec- curs in the lowest hyperfine state witk=1, i.e., with three
tor is the single-particle orbital to which all atoms condenseinternal Zeeman states oh;=+1,0—1. Since the low-
When more than one eigenvalue of the single-particle denenergys-wave atomic collisions lead to an interaction that is
sity matrix becomes macroscopic, it becomes impossible tootationally invariant, the order parameter for such a spinor
assign a single-particle wave functi¢or orbital) to the con-  condensate contains three compon¢fts10], where earlier
densate. In this case the condensate is said to be fragmentstidies have uncovered a host of complex ground-state struc-
[2], and it can be effectively viewed as a Sdfirmger cat tures that can exhibit novel dynami€3,11,13; e.g., frag-
state of a macroscopic superposition of condensed atoms mentation2], spin mixing, and entanglemef,6,12,13. In
more than one orbital. particular, we note that a transition to a fragmented conden-

A condensate of spin-zero particles with repulsive andsate for repulsive pairing interaction can be achieved by con-
local interactions is known to be unfragmented according tdrol of optical trap parameters, thus effectively realizing a
the arguments by Nozies and JameR2]. Attractive atom-  quantum phase transitidi4].
atom interaction alone does not lead to fragmentation either, In this study, we explore optically controlled fragmenta-
as a fragmented state is generally believed to occur when th@n of a spin-1 condensate. Due to the presence of internal
number of atoms is higher than the stability limit of the degrees of freedom, fragmentation can occur even in a ho-
condensate. In other words, an attractive condensate alwaysogeneous environment. The suppression of exchange inter-
collapses before fragmentation occurs. It is difficult for aaction arises from the exchanges among atoms in different
bosonic system to achieve a fragmented ground state becaugeeman states, and the corresponding eigenfunctions of the
of the well-known argumeri2]: while the Hartree energy is single-particle density matrix with macroscopic eigenvalues
the same whether a condensate is fragmented or not, ttae highly correlated states, thus potentially useful for studies
exchange energy arising from the symmetrization usually inef quantum correlation and entanglemgt]. Our objective
creases for a fragmented state, thus making it less favorable to engineer a fragmented condensate using external laser
to become ground state. On the other hand, by consideringulses Raman coupled to single atom transitions, as in spin
nonlocal interactions in an inhomogeneous environment sucixing phenomena studied earligk2]. We propose to con-
as those afforded by a Josephson-junction type potential, theol the fragmentation through the amplitudes and phase dif-
exchange interaction can be kept small, thus leading to th&erences of Raman pulses, and we show that this is indeed
possibility of a spatially fragmented state, which of coursepossible and leads to detectable effects in individual Zeeman
needs to be distinguished from a fragmentation with respedevel atom population oscillations for such initial prepara-
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tions. To characterize the type of fragmentation regime, wesible because the nonlinear interaction terms lead to a
study two-particle correlation functions and we find that ourcoupled chain of an infinite hierarchy of moments for the
fragmented condensate system behaves similar to a condesystem operators. To overcome this difficulty, one can adopt
sate in the coherent-fragmented regime studied edB8ier the mean-field approximation and simply replace the Schro
This paper is organized as follows. We first describe oudinger field operators bg numbers at the cost of neglecting
system of an optically trapped spin-1 BEC in Sec. Il. Aquantum fluctuations. This results in three coupled Gross-
simple three-mode model is then developed in Sec. Ill. FolPitaevskii equations GPEthat can be studied with numeri-
lowing these formulations, we explore the fragmentation dy-cal technique$15]. To study the effect of quantum fluctua-
namics first semiclassically and then quantum mechanicallyions, one then implements the widely used Bogoliubov
in Secs. IV and V, respectively. Finally we conclude in approximation by takings={#)+ 8¢, i.e., supplementing
Sec. VI. the c-number part with the fluctuation operatéy and keep-
ing its quadratic terms in the Hamiltonigm6].
Il. OUR PHYSICS SYSTEM Previous studies have revealed that even classical fluctua-
) ) ) ) _ tions in thec-number condensate fields can lead to modula-
Our system consists di spin-1 atoms interacting via jon instabilities for a ferromagnetically interacting conden-
\;Wave (_elastlc collisions as appropriate for_elth?é_Na or  sate[17]. In this paper, we will focus on atoms with
Rb. It is assumed that the atoms are confined infthd  antiferromagnetic interactions where modulation instabilities
hyperfine manifold within a far-off-resonant optical dipole gre not predicted to complicate the system dynamics. Instead
trap [4,5]. A spin-1 condensate is therefore describedof adopting the previously described procedure with the use
by a three-component order parameteri(x) of the Bogoliubov approximation to explore quantum dy-
:[¢+(§),¢0(§),¢_(§)]. This vectorial nature allows for a nhamics, we will take an alternative approach by focusing on
rotationally invariant Hamiltonian description as required foran appropriate choice of basis stafés,(r)} for the expan-
swave collisions, and the two-body interaction is given bysion ¢;=3,a,¢,. Several choices have been made before,
V(Fl—F2)=5(F1—Fz)(go7’o+ gz’Pz)zﬁ(F)()\O-}-)\zﬁl.lEz) including the use of a plane-wave basis which assumes a
[6—8,10, whereP, and P, denote, respectively, the projec- translational symmetry{18]; a harmonic-oscillator basis
tions into the symmetrical channels Bf=0 and 2 of the ~Which assumes weak atom interactions [19-21; and the
total spinF=f,+f,. In terms of their respective scattering US€ Of mode functions of the three coupled mean-field GPEs
lengthsa, and a, and with g;=4m%2a;/M (atomic mass which assumes a small, [15,22. '_I'he I_ast choice is widely
M), one finds that\o=(go+29,)/3 and \,=(g,—do)/3 termed the single-mode approxmatm@ﬁMA) [9] as the
[6,9]. According to atomic theory|>|\,| for both 2Na mode funcnqns are a_ssumed identical for all three spin com-
onents. This approximation has been remarkably successful
ecause current spin-1 condensed atoms strictly satisfy the
condition of|\g|>|\,|, thus one can even approximate the
. R . identical mode function with the solution of a scalar GPE of
HZJ dr [Hs(r)+Ha(r)], (1) an interaction coefficienk,. However, this approximation
does break down for larger number of atons~10*) with
a symmetric parH and an asymmetric pall, with the  typical trap parameterisl5,23. The harmonic oscillator ba-

or 8Rb atoms. Therefore, it is usually convenient to expres
the total system Hamiltonian in two separate p@®ls

corresponding Hamiltonian density sis, on the other hand, corresponds to noninteracting atoms,
so can only be used with smaller number of atdxhs 10°
. RPV? i No 4 o4 [21].
R =4i| — W‘Sii TV 7% bididy In this study, we will not use the SMA. Instead, we shall

use the self-consistent mode functions from the coupled GPE

D PR - to perform quantum dynamical studies. Although we still
Ha(f)=7[¢f+ AT/ A employ frozen spatial mode functions, we can determine
them numerically without neglecting any term in the Hamil-
2yl s+t ) =2yt gy tonian. As a result, we can accommodate different mode
functions for different condensate components, i.e., we do

+(yLyl yg+He)l, (2)  not have to use the SMA. Substituting=a; ¢; into the

) o o Hamiltonian(1), we get a three-mode model described by
where a summation over repeated indicgs= =,0 is im-

plied. V(r) is the external confinement, assumed to be inter-
nal state independent as for a far off-resonant optical trap. In
the above, terms involving a single spin component describe
self-scattering, while two-component terms describe various gd
cross-scattering processes, and terms with all three compo- Ha:7ni(ni_1)+gion+n0+ g%on-no—gi_n.n_
nents are responsible for spin mixing.

A straightforward approach to determine the system dy- +(galalaZ+H.c), 3
namics would be to solve for the Heisenberg operator equa-
tion of motioni# dy;/at=[¢; ,H]. This is usually impos- whereniza?ai, and the overlap integral terms are given by

S
Eata Ji ot
HS—Eiaiai+?aiajaiaj,
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Ill. THREE-MODE MODEL
¢j ’

jdr¢|( 5+v'

In this section, we present our formulation for investigat-
ing the quantum dynamics of the coupled three-mode model.
s 2012 We note_that the single-particle density matrix can be ex-

gij=Xo| drlail% &% pressed in terms of the $8) generators of the general three-

mode Hamiltonian(3). This points to a systematic approach
) to examine the quantum dynamics of the density-matrix ele-

g =59 ments. We introduce auxiliary operatots,V,T such that
0 a. o can be used similar to a Schwinger boson representation
for su3) Lie algebra in the following manner:

g=xzf dro* ¢* ¢5. (4)

T.=ala_, Tz=}(n.—n_), ®
For a spin-independent tragy! =V,§;; , thus the only inter-
action coefficient that can take on a complex valug ias V,.=ala;, Vz=3(n,—ny), 9
given above. Within the mean-field approximation, we de-
note the ground-state condensate order parametesp;as U,=a'ay, Us=%(n_—ny), (10)

=|¢;lexp(d). The associated phase factor fgris then
given by 6=6,+6_28,. g becomes real when mody
=0 or m, one of the conditions required to have stationary
states in the coupled GPR4].

Within the SMA[12], the condensate wave functig(r)
is determined by the GPE,

N=n,+n_+ny, Y=3(n,+n_—2ny). (11

Both N are T; are constants of motion, corresponding, re-
spectively, to the total number of atoms and one half of the
system magnetization. The linear combinations in the form
X X+ * X5 for X=T,U,V, together withT5 andY constitute a

——V2+ V(N +NN| B2 [b()=pp(r)  (5)  setof eight generators for $8), the spherical representation
2™ [26]. It can be seen immediately that. ; as well asU . 3
and V. 3 fulfill SU(2) commutation relationg X, ,X_]
=2X3 and[ X3,X.]=X., the basis of angular momentum
algebra. In terms of these operators we express angular mo-
mentum asL,=+2(V,+U_) and L,=2T;. Using L?
=L2-L,+L,L_, we find as beforg27]

(see, however, Ref23]), whereu is the chemical potential.
Following earlier studief6,9], we define angular momentum
like operatorL according to

L, =v2(alay+afa ),
L2=4T5-2T4+2(V,V_+U_U,)+Gy

=4T3—2T3+2[n,(1+ng)+no(1+n_)]+Gy,
LZ:nJr_n* ’ (6) (12)
and denote the total atom number By¥n, +n_+ng, then

the system HamiltoniafB) takes on the simple forrf9] with Gy=2(V, U, +H.c.). Using no=N/3-Y and n.

=N/3+Y/2+T;, we obtain
H=uN—AN(N=—1)—2\,N+\,L? 7
L2=4T3+3(N—€,)(N—€_)—2(Y=Y )2+ Gy (13
with A, ¢=(N2¢/2)/dr|#(r)|*. In this case, the £8) alge-
bra of the angular momentum operator allows for a simpli-with e, = —3/2+ 2 and Y,=—N/6—1/4. For N>1 we
fied view of the eigenvalues and eigenstates. When the SMAaveY,~ — N/6 which corresponds tn,=N/2 independent
breaks down, the eigensystem as described by the Hamitf n_ andn. . The pointY, acts as an attractor in the dif-
tonian (3) is complicated. However, as we show below, by fusive random-walk process described by @eterm. Using
enhancing the symmetry group to &) several technical [T,;,V.]=+V./2 and[T;,U.]=FU./2 we check that
and conceptual advances can be achieved, and we find th@at,,G,]=0 which is consistent withH,L,]=0. The effect
condensate component populations, corresponding to diagef Gy is thus to simply chang¥. If we consider simulta-
nal elements of the single-particle density matrix, continue theous eigenstates of the commuting operatér¥, T, as
exhibit dynamical spin mixing effect49,12. The off- |N,T;,Y), the action ofGy can be summarized as
diagonal elements, on the other hand, influence quantum cor-
relations such as spin squeez[2®], entanglemenitl3], and N
V+|NT31Y> \/<__Y

Y
—+T3+s+1

fragmentation[6]. To understand the system quantum dy- 3 5

namics, it is therefore essential to determine the evolution of
the complete single-particle density matrix within a
guantum-mechanical framework.

1
X N,T3+§,Y+1>, (14
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FIG. 1. The SW3) Y-T5; domain for a giverN. The points within
the triangular boundary constitute a set of applicafle,Y) pairs
in the (N, T3,Y) triplets. By further fixing theT ; block as it is also
a constant of motion, the dynamics is reduced to the problem on
chain of Y with reduced size a$; increases towards: N/2.

N N Y
ULINTs )=/ 3-Y|| 53~ Tat

5+l

XN, Ta— (15)

2

1
—,Y+1>.

It couples the next-nearest neighbors along theaxis
through an off-axial hopping in th&T5 plane as illustrated
in Fig. 1.

The three-mode Hamiltoniaf8) can now be expressed as

H=2 AXot 2 AlXXg+(gViU, +H.c), (16)
@ a,B

where a,8=N,T,Y; X,={N,T3,Y}, andA,; are known
functions ofgisj'a as given in the Appendix. After dropping
constant terms o and T3, we obtain

H=A,y(Y—Y0)?+(gV,U, +H.c), (17
with
A+ AN+A,T;
0o~ 2A ’ (18)

Yy

andc, ; as given in the Appendix. It turns out that the main

difference from the previous decomposition lof Eq. (13)
(under the SMA is the dependence &f, on T5. Using Egs.
(14) and (15), and denotindN,T3,Y)=]Y), we arrive at a
Hamiltonian of the form

PHYSICAL REVIEW A 68, 063616 (2003

H= ; [A (Y=Y 2 Y)Y+ (gAY +2)(Y|+H.c)]
(19

with

s

We note that the domain of the ) basis|N,T3,Y) is
determined by

N +-+1
3

3 2 3 2

NY)

N Y ,

w| Z

2N
—?+2|T3|$YS s (20)

——=<Ty=<

: (21

N Z
N| Z

as illustrated in Fig. 1. For giveN and T3, the line parallel

to theY axis, crossing the triangle consists of the domain to
determine the basis vectors of the systemTAspproaches

its extremes, the number of basis vectors reduces to one. It
can be seen that the length of the line along which the system
dynamics occurs depends @g, and as sucfiz modifies the
symmetry point and the fragmentation dynamics.

The  eigenequation Eyiy(Y)=Hu(Y) for o
L 3,¢(Y)|Y) then becomes
Ev(Y)=Ayy(Y=Y0)2h(Y) +gA, »¢(Y—2)
+g*Ayp(Y+2). (22

Assuming |Y|>2 as the continuum limit in whichp(Y
+2)~p(Y)=20p(Y)IIY+25%p(Y) Y2, we obtain

EY¢:Ayy(Y_ Y0)2+ (gAy—2¢+ g*Ay)¢

2gh g AL L agA, g A )(92—(’5
9 y—2 g Y oY g y—2 g yaYz-

(23

After tedious calculations, a simple analytical solution can be
obtained if the coefficients of the differential terms become
independent ofY. In the limit whenN/3>|Y| and|T3|, we
find

2
d°é(Y) . Kd¢(Y)

e TRy tEY Yo ey,

Ed(Y)=
(24)

where
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9A N/3+Y/24 T, fo Vs f, T,
w=—22, (25)
4gN2 p= f0+V_ N/3—Y fO_U_
fo.T_ f_oU N/3+Y/2—T
are found under the assumption 9&R, (i.e., when . * o= 3 28)

+6_—26,=0,m). We see thak<0 and the sign ots de-

pends on the sign Ay, . In contrastw depends only o A|l off-diagonal terms inp individually changeT, yet T,

under the SMA27]. remains a constant of motion. The off-diagonal terms have
The quantum dynami_cs for the three-mode model caihe property(N'Y'T4|X.|NYT;)=0 for X=U,V,T. This

now be investigated using the set of operator equationfeads to the conclusion thdp) should be diagonal at all

ioX/at=[X,H]. Explicitly, we find times for an initial state with a fixe@l;. The next-neighbor
d hopping induced byGy changes the diagonal elements in
i—Y=2(gV,U,—g*V_U_), time through their dependence &h The initial population
dt distribution on theY axis also redistributes in time due to

both the next-neighbor hopping and the “attractor” term

(Y—Y,)2. Thus as long as the off-diagonal terms are absent,
the fragmentation of an initially unfragmented condensate
can be simply interpreted as a mode mixing or spin mixing

d
i av+ =c,V i+, Vi Tz+c,y V. Y+c, VN

+g*(V T, +2VsU ),

procesq12].
d When the initial state is a superposition of states with
i&u+:CuU++CUtU+T3+ CuyU 1 Y+CyU N differentT5, the off-diagonal elements gf become signifi-
cant, and the dynamics becomes more complicated. Situa-

tions could arise where atomic populations in all three Zee-
man levels are macroscopic yet the system remains
unfragmented 3]. In order to investigate fragmentation in

+g*(T_U_+2V_Uy),

[ %TJr =CT,+CyT Tag+Cy T Y+CinT4N such cases, it is necessary to determine the time evolution of
all U,V, T spin components and to find the eigenvalligs 3
+gV2—g*Uu2? of p at all times. From an experimental point of view this
task is almost impossible as theV, andT spin components
d d 3 d are noncommuting and cannot be measured simultaneously.

(26) It is therefore impossible to construct atom-interferometric
schemes to measure quadratures corresponding to both real

Both N and T are constants of motion as noted earlier, i.e.,2nd imaginary parts ot ,V, T, simultaneously within
dN/dt=dT;/dt=0. The coefficients,, are linear combi- the same experiment. When the off-diagonal elements are

nations of the overlap integragf}'s as given in the Appen- I:;]\rge, therr]e are _ftf)asically five pararr;eters, porresponding tof
dix. When the differences between overlap integrals ardn€ two phase differences between three spin components o

small one can further neglect several terms from the abov¥ V. T and three amplitudes, enough to charactepizeom-

equations. By employing the decorrelatioreoclassicalap- pletely. In thi.s limit, it becomes possible to construct a set of
proximation[28] and taking into account the small param- five commuting observabld81]. To examine this situation,

eters and the S@) group structure the resulting dynamics we folloyv Ref.[32] and consider the semiclassical dynamics
can be solved. In the simplest treatment one can also simpl treating the S(8) operators as numbers. _

replace the operators by numbers, i.e., takingX;X;) In the numerical study to.be presented bglow, we first
=(X;){X;). We note that Eq(26) can be generalized to in- compute the set of overlap integrals by solving the three

clude external opticdl29] and magneti¢15,3Q fields. coupled GPEs with two undetermined Lagrange multipliers
for the conservation of the total atom number and the mag-

netization[23]. Using these overlap integrals, we determine

the interaction coefficients; , gf}*s, andg as well as param-
Since we adopt a frozen spatial mode to explore the quareters A, and c,,. We then numerically integrate the

tum dynamics, we will focus on théposition diagonal c-number version of Eq.26), and construct and diagonalize

single-particle  local  density-matrix operatorpij(F) the corresponding single-particle density maieat differ-
:lpif(;) tﬁj(F). lts matrix element is give by(p;) ent times and evaluate its eigenvalues. The overlap integrals

= fi;(ala;) with the overlap integral

angaV?,:Z aY.

IV. SEMICLASSICAL DYNAMICS OF FRAGMENTATION

Iim:f dr ¢ ¢ dudhy (29)
fy= | aigr 1oy, (27
for a typical simulation are summarized in Table I. We as-
After solving for time evolution of the S(3) operators, we sume a?Na condensatéantiferromagnetic with N=10°

obtain the effective single-particle local density matrix asatoms, and scattering lengths="50 (ag) anday,=55 (ag)
given by in units of Bohr radiusag. We also assume a harmonic,

063616-5
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TABLE I. The values of overlap integrals used in our numerical simulation of the fragmentation dynamics
for a condensate with a zero magnetizatidi=0) andN=10°. A condensate of°Na atom is confined in
a harmonic and spherically symmetric trap with a radial trap frequeney(2) 100 (Hz) and an aspect
ratio that corresponds t@,/w,=1.

ijkl ot 0000 ———-  +4-——  ++400  —-00 +-00
lijud 0.0009 0.0009 0.0009 0.0009 00009  0.0009 —0.0009
ij +0 0- -+

i 0.2909+ 0.9568 0.8767+0.4809 ~0.7762+0.6304

ij

spherically symmetric optical trap with a radial trap fre- shall exploit the fact that the SMA works well at small num-
guencyw,=(2) 100 (Hz) and an aspect ratio corresponds bers of atoms and determine the eigenvalues in a full
to w,/w,=1. guantum-mechanical treatment.

The various values of the overlap integrals as presented in
Table | reflect the fact that single-mode approximation is v, QUANTUM DYNAMICS OF FRAGMENTATION
exact for ferromagnetic interactions, and remains true for the . .
antiferromagnetic case provided that the condensate magne- e now explore the quantum dynamics and look for sig-
tization is zero[23]. The general model with three distinct hatures of fragmentation in the population oscillations as
modes developed here is applicable for any given mod&ell as in the two-particle correlations in terms of population
functions and thus applies to the case of antiferromagneti¥ariances. To this end, we start with an initial state that is
condensates with nonzero magnetization as well. Using thegiepared by optical Raman processes in a state described by
parameters, we propagate a system initially prepared in
coherent state of equally populated spin componentsg(
=N/3), |.e.,|¢>'=(a1+ag+af)’\'|vac>/(\/m\/§N) with all |(0)) = i(aoag—ka,at+a+a1)N|0,0,O), (30)
parameters being real. Such a state can be realized using JNT
Raman coupling with external laser puldd2]. With time,
the initial fragmented state becomes unfragmented as twwhere [0,0,0) is the vacuum state in the Fock basis of
eigenvalues of the single-particle density matrix diminish|ng,n_,n ) andaj=|aj|exp65j) are complex numbers. Us-
while the third one gets close fd. This exchange of frag- ing N=nyg+n;+n_, m=n,—n_, and the combinatorial
mented and unfragmented states occurs periodically in timeymbol
within the semiclassical dynamics as shown in Fig. 2Nor
=10° atoms. We expect that quantum character of the model cm— N! (31)
system will change this picture, especially in the limit when N ml(N—m)!”
the number of atoms is small where use of the semiclassical
approach becomes questionable. In the following section, w&e can express the initial state as

N N—m N+m
s [9(0)= 2 Yrmi @) 2k,7—k,7_k>,

R T

8— — where

_ N=m)7Z=K 2k (N—m)/2—k _(N+m)/2—k
6— — Inmi= VCN Cn=2k’ g @ ay ,

(32

with a=(ag,a_ @), k=0,1,...,0N—|m|)/2 for evenN

+m and k=1/2,3/2...,(N—|m|)/2 for odd N+m. The
transformation coefficients between angular momentum ba-
sis and the Fock basis were found in R&3], which can be
expressed in a more compact form as

N—m N-+m
Imy=> G2k, —— —k—— k), (33
K 2 2
0 1 S 4 5 6
Time (sec) x 107 ) (—1)" [NIm
. . . . Gimi= 2" 2, ; , (34)
FIG. 2. The time-dependent eigenvalues of the single particle r 4 kr
density matrixp for N=10° (?>®Na) atoms. The condensate is in a
coherent state with. ,=N/3 initially . where we introduced a binomial symbol such that
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FIG. 3. The evolution of eigenvalues fprfrom an initial state

with §=0, Py=0, andN=100. The lower curve in the bottom

figure denotegng). It is now straightforward to propagate this initial state
using the three-mode Hamiltonidf©6) and to determine the
NIm eigenvalues of the single-particle density-matrix operator
( ) at all times. We have performed this for an initial state with
kr IT, ,=0 andll;=N, an unfragmented state for any choice of

T o2 o2k ol Bk ar (N 2T Raman pulse configurations. With the time evolution, how-
2r =2kl N-—2k NZIZ2r (1 m)/2—k+r ever, the situation changes drastically. For the simpler case of
c(N-mrz—kghm Iakver only two populated modes witR,=0, Fig. 3 demonstrates
that there exists an extended temporal region where the con-
(39 densate becomes fragmented. These regions are in between
We note I=N,N—2, ... N—2[N/2] with [n]=n or n the collgpsg and revival regions of spin qomponent pop_ula—
- - tion oscillation. At the end of collapse region, fragmentation
—1/2 for n= even or odd, andr=maX0k—(l . .
. v occurs withll;~N/3. The two mode results are independent
—|mp/2], ... ,midk,(N=1/2], m=0,£1,=2,...,*l. k ). = .
_ o of the phase differencé. However, when then;=0 mode is
=0,1,2...,N—|m))/2 for I+m= even and k . . _
_ - . also populated, we find plays an important role. In Figs.
=1/2,3/2...,(N—|m|)/2 for |+ m= odd. The normaliza- i K hile the ph it
tion is given by 4—?, Pq is kept constant at 1/2 while t e phase difference
varied foré=#/8, w/4, andw/2, respectively. The fragmen-

(N=1)12 -12 tation is found to increase with when P is kept constant.
5= 2 fcjzjcl(NH)/Zij _ (36) When Po=1/2 an_d5=0, the Ease for a stat_lonary ;tate, we
=0 4 find howeverIl;=N andIl,;=0. By changingd, this sta-

tionary initial state is indeed observed to dynamically de-
We will use an initial state of the same form as used in Refvelop into a fragmented condensate.

[12] with ag= VPoexp(d/2) anda. = 1— P,,. It was argued in Ref[3] that while the single-particle
density matrix probes the existence of fragmentation, the
100~ F T S - characterization of fragmentation requires consideration of
=" 50— _ 100\_‘ I R
o “ :' \."
| H ! i "\
} E B0 memrmmimm et NP —
% 05 1 P JO\/
I I
% 0.5 1
50 I
) ln_‘
~ i A
(=3 1 LY
[ e 375 e - N
0.5 e < A )
}I'at |
2 0.5 1
FIG. 4. The upper figure shows the evolution of eigenvalues for x;t
p from an initial state with6= /8, Py=1/2, andN=100. The
upper curve in the bottom figure is fon,). FIG. 6. The same as Fig. 4, but fér= 7/2.
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50 - disappear whenever fragmentation occurs. We also computed
population fluctuationgtwo-particle correlations a charac-
terization of the type of fragmentation regime. Our numerical

j=
<25 results indicate that the system as studied here is closer to the
- i\ v } coherent fragmented regime at all times. As in the case of
0 i . i Ref.[12], one of the major experimental challenges to con-
400 05 1 firm our results is to devise a careful and precise interfero-
metric arrangement of Raman pulses for imprinting the rela-
ﬁ w j\ﬁ tive phased on the initially unfragmented spin-1 condensate.
c
420 J
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higher-order particle correlations. In particular, two particle APPENDIX: INTERACTION COEFFICIENTS
correlations can be used to distinguish the two extreme re-

gimes of fragmentation: the superfragmented regime and the We list the various coefficients used in the paper in this
coherent fragmented regime. When the atom-number f|uoappend|x The first seF is for the three-mode Hamiltonian as
tuation (An;)2=((aa;)?)—(a'a;)? is of the same order as " EQ. (16), they are given by

number of particlesN), the system is said to be superfrag- 1 s s s a a

mented; whemn;~1, it is called coherent fragmented. We An=5[2(E+ +Eo+E-) =03, — 90— 0° - —9+ . —0- ],

have calculated\n; for Po=1/2 andé=u/4, w/2. The re- . S R a a

sults are shown in Fig. 7. We find that while the system A=z[2(E+—E)—03 +9° —0gi +0- ],

remains in between these two extreme regimes at all times, it L s s a a

is closer to the coherent fragmented regime. Ay=3[2(E4+E —2Bg) 0%, —0>_—01, 0"

+ Zg(s)o],
VI. CONCLUSION

Ann=15[9% s +0% +0° +9% +g5

We have shown that fragmentation of a spin-1 condensate
can be optically induced and controlled by both the ampli- +2(95 -~ 9% - +0%0+t9%0+09%0+9%0)],
tudes and phase differences of Raman pulses. We have in- (A1)
vestigated the quantum dynami@due to coherent atomic
collisions of such optical Raman engineered initial states
with only one macroscopic eigenvalue of the single-particle
density matrix, i.e., initially unfragmented condensates. Dur- An=1[g,+g®, +g°_ +g?
ing the course of the dynamic evolution, we find that the "~ ° 9e+ TG+ TO--T0--
initial macroscopic eigenvalue decreases while the other two +2(05_-092_—050-9%0—0%0—9%6— 35 ],
increase. For certain initial configurations, arranged by the
phases and amplitudes of the Raman lasers, all three eigen- —1rgs a s a a _ 4
values can be made comparable. In other cases, all three Aue=2lOi* 0 oo +0m+2(0h g )],
eigenvalues remain close to their initial values. We have
studied quantum dynamics, taking into account the different

=305+ 105, -0 —9% _+9%0t %0020~ 0%0],

Ay=3[0%.+0%, -5 _—g?_

spatial modes for the different condensate spin component, +2(9%9+09%0—9%0—9%0)],

i.e., we have performed these quantum dynamics investiga-

tions in the regime beyond the usual SI\[IAZ]: While it is Ay=3005.+0%, +0° _+0° +2(205,+95 _—d% -
difficult to perform a tomographic or atom-interferometric

reconstruction of the single-particle density matrix, it is in —29%0—29%0—29%—29%))]. (A2)

principle possible for our system because of the existence of o
commuting Stokes parameters for a three-mode bosonic sys- The next set of coefficients are for the operator &§):
tem [31]. For our purpose in this work, however, we have
found an easier approach associated with the phenomenon of c _ﬁ AL A — ﬁ n ﬂ
; i initi u= y ™ Pyy '
quantum fragmentation. We find that, for the initial states 2 4 2
with a zero magnetization as considered here, atomic popu-
lation oscillations between the collapse and revival regions Cut=Au— Ay
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Aty
Cyy=— 2Ayy+ 7.
A+ AS,
Cun:%_(Azy_*—Agy)y
A Avw A
©=T2 T ATAYT T T
Cut Aty At
Coy=—2Ayy o

PHYSICAL REVIEW A 68, 063616 (2003

s
S (Any+AL),

Cyn=

(A3)
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