
PHYSICAL REVIEW A 68, 063616 ~2003!
Dynamic fragmentation of a spinor Bose-Einstein condensate
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We investigate dynamical behavior of fragmentation of a spinor Bose-Einstein condensate in both the
semiclassical and quantum regimes. We show that an unfragmented condensate can become fragmented at later
times due to the inherent interactions of elastic atomic collisions, when a certain phase relationship exists
among the state amplitudes in different components initially. A close relationship between the fragmentation
and population dynamics of atomic distributions within different spin components is found for certain initial
states with zero magnetization. The type of fragmentation regime is characterized via atom-number fluctua-
tions. We also address complications of our study when the condensate spatial mode function is different for
each spin component.
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I. INTRODUCTION

The ground-state properties of an interacting atom
Bose-Einstein condensate~BEC! are of fundamental impor
tance to the understanding of trapped quantum gases@1#.
According to the orthodox picture of Bose-Einstein conde
sation, the appearance of a condensate is accompanied b
emergence of one macroscopic eigenvalue of the sin
particle density matrix@1#, and the corresponding eigenve
tor is the single-particle orbital to which all atoms conden
When more than one eigenvalue of the single-particle d
sity matrix becomes macroscopic, it becomes impossibl
assign a single-particle wave function~or orbital! to the con-
densate. In this case the condensate is said to be fragme
@2#, and it can be effectively viewed as a Schro¨dinger cat
state of a macroscopic superposition of condensed atom
more than one orbital.

A condensate of spin-zero particles with repulsive a
local interactions is known to be unfragmented according
the arguments by Nozie`res and James@2#. Attractive atom-
atom interaction alone does not lead to fragmentation eit
as a fragmented state is generally believed to occur when
number of atoms is higher than the stability limit of th
condensate. In other words, an attractive condensate alw
collapses before fragmentation occurs. It is difficult for
bosonic system to achieve a fragmented ground state bec
of the well-known argument@2#: while the Hartree energy is
the same whether a condensate is fragmented or not
exchange energy arising from the symmetrization usually
creases for a fragmented state, thus making it less favor
to become ground state. On the other hand, by conside
nonlocal interactions in an inhomogeneous environment s
as those afforded by a Josephson-junction type potential
exchange interaction can be kept small, thus leading to
possibility of a spatially fragmented state, which of cour
needs to be distinguished from a fragmentation with resp
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to the internal degrees of freedom.
Recently, it was argued that a fragmented ground s

does occur in an optically trapped spin-1 condensate@3#.
Such a vectorial condensate can be produced either by tr
ferring a condensate~of atoms with nonzero hyperfine spins!
from a magnetic trap into an optical trap@4#, or by evapora-
tive cooling of atoms through the all optical route@5#. For
both 23Na @4# and 87Rb @5# atoms, condensation usually oc
curs in the lowest hyperfine state withf 51, i.e., with three
internal Zeeman states ofmf511,0,21. Since the low-
energys-wave atomic collisions lead to an interaction that
rotationally invariant, the order parameter for such a spi
condensate contains three components@6–10#, where earlier
studies have uncovered a host of complex ground-state s
tures that can exhibit novel dynamics@3,11,12#; e.g., frag-
mentation@2#, spin mixing, and entanglement@9,6,12,13#. In
particular, we note that a transition to a fragmented cond
sate for repulsive pairing interaction can be achieved by c
trol of optical trap parameters, thus effectively realizing
quantum phase transition@14#.

In this study, we explore optically controlled fragment
tion of a spin-1 condensate. Due to the presence of inte
degrees of freedom, fragmentation can occur even in a
mogeneous environment. The suppression of exchange i
action arises from the exchanges among atoms in diffe
Zeeman states, and the corresponding eigenfunctions o
single-particle density matrix with macroscopic eigenvalu
are highly correlated states, thus potentially useful for stud
of quantum correlation and entanglement@12#. Our objective
is to engineer a fragmented condensate using external
pulses Raman coupled to single atom transitions, as in
mixing phenomena studied earlier@12#. We propose to con-
trol the fragmentation through the amplitudes and phase
ferences of Raman pulses, and we show that this is ind
possible and leads to detectable effects in individual Zeem
level atom population oscillations for such initial prepar
©2003 The American Physical Society16-1
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tions. To characterize the type of fragmentation regime,
study two-particle correlation functions and we find that o
fragmented condensate system behaves similar to a con
sate in the coherent-fragmented regime studied earlier@3#.

This paper is organized as follows. We first describe
system of an optically trapped spin-1 BEC in Sec. II.
simple three-mode model is then developed in Sec. III. F
lowing these formulations, we explore the fragmentation
namics first semiclassically and then quantum mechanic
in Secs. IV and V, respectively. Finally we conclude
Sec. VI.

II. OUR PHYSICS SYSTEM

Our system consists ofN spin-1 atoms interacting via
s-wave elastic collisions as appropriate for either23Na or
87Rb. It is assumed that the atoms are confined in thef 51
hyperfine manifold within a far-off-resonant optical dipo
trap @4,5#. A spin-1 condensate is therefore describ
by a three-component order parameterc(xW )
5@c1(xW ),c0(xW ),c2(xW )#. This vectorial nature allows for a
rotationally invariant Hamiltonian description as required
s-wave collisions, and the two-body interaction is given
V(rW12rW2)5d(rW12rW2)(g0P01g2P2)5d(rW)(l01l2FW 1•FW 2)
@6–8,10#, whereP0 andP2 denote, respectively, the projec
tions into the symmetrical channels ofF50 and 2 of the
total spinFW 5 fW11 fW2. In terms of their respective scatterin
lengthsa0 and a2 and with gf54p\2af /M ~atomic mass
M ), one finds thatl05(g012g2)/3 and l25(g22g0)/3
@6,9#. According to atomic theory,ul0u@ul2u for both 23Na
or 87Rb atoms. Therefore, it is usually convenient to expr
the total system Hamiltonian in two separate parts@9#,

H5E drW @Hs~rW !1Ha~rW !#, ~1!

a symmetric partHs and an asymmetric partHa with the
corresponding Hamiltonian density

Hs~rW !5c i
†S 2

\2¹2

2M
d i j 1Vt

i j Dc j1
l0

2
c i

†c j
†c ic j ,

Ha~rW !5
l2

2
@c1

† c1
† c1c11c2

† c2
† c2c2

12c0
†c0~c1

† c11c2
† c2!22c1

† c1c2
† c2

1~c1
† c2

† c0
21H.c.!#, ~2!

where a summation over repeated indicesi , j 56,0 is im-
plied. Vt(rW) is the external confinement, assumed to be in
nal state independent as for a far off-resonant optical trap
the above, terms involving a single spin component desc
self-scattering, while two-component terms describe vari
cross-scattering processes, and terms with all three com
nents are responsible for spin mixing.

A straightforward approach to determine the system
namics would be to solve for the Heisenberg operator eq
tion of motion i\ ]c i /]t5@c i ,H#. This is usually impos-
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sible because the nonlinear interaction terms lead to
coupled chain of an infinite hierarchy of moments for t
system operators. To overcome this difficulty, one can ad
the mean-field approximation and simply replace the Sch¨-
dinger field operators byc numbers at the cost of neglectin
quantum fluctuations. This results in three coupled Gro
Pitaevskii equations GPEs! that can be studied with numer
cal techniques@15#. To study the effect of quantum fluctua
tions, one then implements the widely used Bogoliub
approximation by takingc5^c&1dc, i.e., supplementing
thec-number part with the fluctuation operatordc and keep-
ing its quadratic terms in the Hamiltonian@16#.

Previous studies have revealed that even classical fluc
tions in thec-number condensate fields can lead to modu
tion instabilities for a ferromagnetically interacting conde
sate @17#. In this paper, we will focus on atoms wit
antiferromagnetic interactions where modulation instabilit
are not predicted to complicate the system dynamics. Ins
of adopting the previously described procedure with the
of the Bogoliubov approximation to explore quantum d
namics, we will take an alternative approach by focusing
an appropriate choice of basis states$fn(rW)% for the expan-
sion c i5(nanfn . Several choices have been made befo
including the use of a plane-wave basis which assume
translational symmetry@18#; a harmonic-oscillator basis
which assumes weak atom interactionsl2,0 @19–21#; and the
use of mode functions of the three coupled mean-field GP
which assumes a smalll2 @15,22#. The last choice is widely
termed the single-mode approximation~SMA! @9# as the
mode functions are assumed identical for all three spin co
ponents. This approximation has been remarkably succes
because current spin-1 condensed atoms strictly satisfy
condition of ul0u@ul2u, thus one can even approximate th
identical mode function with the solution of a scalar GPE
an interaction coefficientl0. However, this approximation
does break down for larger number of atoms (N;104) with
typical trap parameters@15,23#. The harmonic oscillator ba
sis, on the other hand, corresponds to noninteracting ato
so can only be used with smaller number of atomsN,103

@21#.
In this study, we will not use the SMA. Instead, we sh

use the self-consistent mode functions from the coupled G
to perform quantum dynamical studies. Although we s
employ frozen spatial mode functions, we can determ
them numerically without neglecting any term in the Ham
tonian. As a result, we can accommodate different mo
functions for different condensate components, i.e., we
not have to use the SMA. Substitutingc i5aif i into the
Hamiltonian~1!, we get a three-mode model described by

Hs5Eiai
†ai1

gi j
s

2
ai

†aj
†aiaj ,

Ha5
gii

a

2
ni~ni21!1g10

a n1n01g20
a n2n02g12

a n1n2

1~ga1
† a2

† a0
21H.c.!, ~3!

whereni5ai
†ai , and the overlap integral terms are given
6-2
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Ei5E drW f i* S 2
\2¹2

2M
d i j 1Vt

i j Df j ,

gi j
s 5l0E drWuf i u2uf j u2,

gi j
a 5

l2

l0
gi j

s ,

g5l2E drWf1* f2* f0
2 . ~4!

For a spin-independent trap,Vt
i j 5Vtd i j , thus the only inter-

action coefficient that can take on a complex value isg as
given above. Within the mean-field approximation, we d
note the ground-state condensate order parameter af j
5uf j uexp(idj). The associated phase factor forg is then
given by d5d11d22d0 . g becomes real when mod(d)
50 or p, one of the conditions required to have stationa
states in the coupled GPE@24#.

Within the SMA@12#, the condensate wave functionf(rW)
is determined by the GPE,

F2
\2

2M
¹21Vt~rW !1l0Nufu2Gf~rW !5mf~rW ! ~5!

~see, however, Ref.@23#!, wherem is the chemical potential
Following earlier studies@6,9#, we define angular momentum
like operatorL according to

L15A2~a1
† a01a0

†a2!,

L25L1
† ,

Lz5n12n2 , ~6!

and denote the total atom number byN5n11n21n0, then
the system Hamiltonian~3! takes on the simple form@9#

H5mN2lsN~N21!22laN1laL2 ~7!

with la,s5(l2,0/2)*drWuf(rW)u4. In this case, the su~2! alge-
bra of the angular momentum operator allows for a sim
fied view of the eigenvalues and eigenstates. When the S
breaks down, the eigensystem as described by the Ha
tonian ~3! is complicated. However, as we show below,
enhancing the symmetry group to SU~3!, several technica
and conceptual advances can be achieved, and we find
condensate component populations, corresponding to di
nal elements of the single-particle density matrix, continue
exhibit dynamical spin mixing effects@9,12#. The off-
diagonal elements, on the other hand, influence quantum
relations such as spin squeezing@25#, entanglement@13#, and
fragmentation@6#. To understand the system quantum d
namics, it is therefore essential to determine the evolution
the complete single-particle density matrix within
quantum-mechanical framework.
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III. THREE-MODE MODEL

In this section, we present our formulation for investiga
ing the quantum dynamics of the coupled three-mode mo
We note that the single-particle density matrix can be
pressed in terms of the SU~3! generators of the general thre
mode Hamiltonian~3!. This points to a systematic approac
to examine the quantum dynamics of the density-matrix e
ments. We introduce auxiliary operatorsU,V,T such that
a6,0 can be used similar to a Schwinger boson representa
for su~3! Lie algebra in the following manner:

T15a1
† a2 , T35 1

2 ~n12n2!, ~8!

V15a1
† a0 , V35 1

2 ~n12n0!, ~9!

U15a2
† a0 , U35 1

2 ~n22n0!, ~10!

N5n11n21n0 , Y5 1
3 ~n11n222n0!. ~11!

Both N are T3 are constants of motion, corresponding, r
spectively, to the total number of atoms and one half of
system magnetization. The linear combinations in the fo
X66X7 for X5T,U,V, together withT3 andY constitute a
set of eight generators for SU~3!, the spherical representatio
@26#. It can be seen immediately thatT6,3 as well asU6,3
and V6,3 fulfill SU ~2! commutation relations@X1 ,X2#
52X3 and @X3 ,X6#5X6 , the basis of angular momentum
algebra. In terms of these operators we express angular
mentum asL15A2(V11U2) and Lz52T3. Using L2

5Lz
22Lz1L1L2 , we find as before@27#

L254T3
222T312~V1V21U2U1!1GY

54T3
222T312@n1~11n0!1n0~11n2!#1GY ,

~12!

with GY52(V1U11H.c.). Using n05N/32Y and n6

5N/31Y/26T3, we obtain

L254T3
21 1

2 ~N2e1!~N2e2!22~Y2Y0!21GY ~13!

with e6523/26A2 and Y052N/621/4. For N@1 we
haveY0'2N/6 which corresponds ton05N/2 independent
of n2 andn1 . The pointY0 acts as an attractor in the dif
fusive random-walk process described by theGY term. Using
@T3 ,V6#56V6/2 and @T3 ,U6#57U6/2 we check that
@T3 ,GY#50 which is consistent with@H,Lz#50. The effect
of GY is thus to simply changeY. If we consider simulta-
neous eigenstates of the commuting operatorsN,Y,T3 as
uN,T3 ,Y&, the action ofGY can be summarized as

V1uN,T3 ,Y&5AS N

3
2YD S N

3
1T31

Y

2
11D

3UN,T31
1

,Y11L , ~14!

2

6-3
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MÜSTECAPLıOĞLU et al. PHYSICAL REVIEW A 68, 063616 ~2003!
U1uN,T3 ,Y&5AS N

3
2YD S N

3
2T31

Y

2
11D

3UN,T32
1

2
,Y11L . ~15!

It couples the next-nearest neighbors along theY axis
through an off-axial hopping in theY-T3 plane as illustrated
in Fig. 1.

The three-mode Hamiltonian~3! can now be expressed a

H5(
a

AaXa1(
a,b

AabXaXb1~gV1U11H.c.!, ~16!

where a,b5N,T,Y; Xa5$N,T3 ,Y%, and Aab are known
functions ofgi j

s,a as given in the Appendix. After droppin
constant terms ofN andT3, we obtain

H5Ayy~Y2Y0!21~gV1U11H.c.!, ~17!

with

Y052
Ay1AnyN1AytT3

2Ayy
, ~18!

andca,b as given in the Appendix. It turns out that the ma
difference from the previous decomposition ofL2 Eq. ~13!
~under the SMA! is the dependence ofY0 on T3. Using Eqs.
~14! and ~15!, and denotinguN,T3 ,Y&[uY&, we arrive at a
Hamiltonian of the form

FIG. 1. The SU~3! Y-T3 domain for a givenN. The points within
the triangular boundary constitute a set of applicable (T3 ,Y) pairs
in the (N,T3 ,Y) triplets. By further fixing theT3 block as it is also
a constant of motion, the dynamics is reduced to the problem o
chain ofY with reduced size asT3 increases towards6N/2.
06361
H5(
y

@Ayy~Y2Y0!2uY&^Yu1~gLyuY12&^Yu1H.c.!#

~19!

with

Ly5AS N

3
2YD S N

3
1

Y

2
11D F S N

3
1

Y

2
11D2T3

2G .
We note that the domain of the SU~3! basis uN,T3 ,Y& is
determined by

2
2N

3
12uT3u<Y<

N

3
, ~20!

2
N

2
<T3<

N

2
, ~21!

as illustrated in Fig. 1. For givenN andT3, the line parallel
to theY axis, crossing the triangle consists of the domain
determine the basis vectors of the system. AsT3 approaches
its extremes, the number of basis vectors reduces to on
can be seen that the length of the line along which the sys
dynamics occurs depends onT3, and as suchT3 modifies the
symmetry point and the fragmentation dynamics.

The eigenequation EYc(Y)5Hc(Y) for c
5(Yf(Y)uY& then becomes

EYf~Y!5Ayy~Y2Y0!2f~Y!1gLy22f~Y22!

1g* Lyf~Y12!. ~22!

Assuming uYu@2 as the continuum limit in whichf(Y
62)'f(Y)62]f(Y)/]Y12]2f(Y)/]Y2, we obtain

EYf5Ayy~Y2Y0!21~gLy22f1g* Ly!f

12~gLy222g* Ly!
]f

]Y
12~gLy221g* Ly!

]2f

]Y2
.

~23!

After tedious calculations, a simple analytical solution can
obtained if the coefficients of the differential terms becom
independent ofY. In the limit whenN/3@uYu and uT3u, we
find

Ef~Y!5
d2f~Y!

dY2
1k

df~Y!

dY
1Ã~Y2Y0!2f~Y!,

~24!

where

E5
9EY

4gN2
2

1

2
,

k52
3

2N
,

a

6-4
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Ã5
9Ayy

4gN2
, ~25!

are found under the assumption ofgPR, ~i.e., whend1

1d222d050,p). We see thatk,0 and the sign ofÃ de-
pends on the sign ofAyy . In contrast,Ã depends only onN
under the SMA@27#.

The quantum dynamics for the three-mode model
now be investigated using the set of operator equati
i ]X/]t5@X,H#. Explicitly, we find

i
d

dt
Y52~gV1U12g* V2U2!,

i
d

dt
V15cvV11cvtV1T31cvyV1Y1cvnV1N

1g* ~V2T112V3U2!,

i
d

dt
U15cuU11cutU1T31cuyU1Y1cunU1N

1g* ~T2U212V2U3!,

i
d

dt
T15ctT11cttT1T31ctyT1Y1ctnT1N

1gV1
2 2g* U2

2 ,

d

dt
U35

d

dt
V35

3

4

d

dt
Y. ~26!

Both N andT3 are constants of motion as noted earlier, i.
dN/dt5dT3 /dt50. The coefficientscxy are linear combi-
nations of the overlap integralsgi j

a,s as given in the Appen-
dix. When the differences between overlap integrals
small one can further neglect several terms from the ab
equations. By employing the decorrelation~neoclassical! ap-
proximation @28# and taking into account the small param
eters and the SU~3! group structure the resulting dynamic
can be solved. In the simplest treatment one can also sim
replace the operators byc numbers, i.e., takinĝ XiXj&
5^Xi&^Xj&. We note that Eq.~26! can be generalized to in
clude external optical@29# and magnetic@15,30# fields.

IV. SEMICLASSICAL DYNAMICS OF FRAGMENTATION

Since we adopt a frozen spatial mode to explore the qu
tum dynamics, we will focus on the~position diagonal!
single-particle local density-matrix operatorr i j (rW)
5c i

†(rW)c j (rW). Its matrix element is give by ^r i j &
5 f i j ^ai

†aj& with the overlap integral

f i j 5E drWf i* ~rW !f j~rW !. ~27!

After solving for time evolution of the SU~3! operators, we
obtain the effective single-particle local density matrix
given by
06361
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r5S N/31Y/21T3 f 10V1 f 12T1

f 01V2 N/32Y f02U2

f 21T2 f 20U1 N/31Y/22T3

D .

~28!

All off-diagonal terms inr individually changeT3, yet T3
remains a constant of motion. The off-diagonal terms ha
the property^N8Y8T3uX6uNYT3&50 for X5U,V,T. This
leads to the conclusion that^r& should be diagonal at al
times for an initial state with a fixedT3. The next-neighbor
hopping induced byGY changes the diagonal elements
time through their dependence onY. The initial population
distribution on theY axis also redistributes in time due t
both the next-neighbor hopping and the ‘‘attractor’’ ter
(Y2Y0)2. Thus as long as the off-diagonal terms are abs
the fragmentation of an initially unfragmented condens
can be simply interpreted as a mode mixing or spin mix
process@12#.

When the initial state is a superposition of states w
different T3, the off-diagonal elements ofr become signifi-
cant, and the dynamics becomes more complicated. S
tions could arise where atomic populations in all three Z
man levels are macroscopic yet the system rema
unfragmented@3#. In order to investigate fragmentation i
such cases, it is necessary to determine the time evolutio
all U,V,T spin components and to find the eigenvaluesP1,2,3
of r at all times. From an experimental point of view th
task is almost impossible as theU,V, andT spin components
are noncommuting and cannot be measured simultaneo
It is therefore impossible to construct atom-interferomet
schemes to measure quadratures corresponding to both
and imaginary parts ofU1 ,V1 ,T1 simultaneously within
the same experiment. When the off-diagonal elements
large, there are basically five parameters, correspondin
the two phase differences between three spin componen
U,V,T and three amplitudes, enough to characterizer com-
pletely. In this limit, it becomes possible to construct a set
five commuting observables@31#. To examine this situation
we follow Ref.@32# and consider the semiclassical dynam
by treating the SU~3! operators asc numbers.

In the numerical study to be presented below, we fi
compute the set of overlap integrals by solving the th
coupled GPEs with two undetermined Lagrange multipli
for the conservation of the total atom number and the m
netization@23#. Using these overlap integrals, we determi
the interaction coefficientsEj , gi j

a,s , andg as well as param-
eters Axy and cxy . We then numerically integrate th
c-number version of Eq.~26!, and construct and diagonaliz
the corresponding single-particle density matrixr at differ-
ent times and evaluate its eigenvalues. The overlap integ

I i jkl 5E drW f i* f j* fkf l ~29!

for a typical simulation are summarized in Table I. We a
sume a 23Na condensate~antiferromagnetic! with N5106

atoms, and scattering lengthsa2550 (aB) and a0555 (aB)
in units of Bohr radiusaB . We also assume a harmoni
6-5
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TABLE I. The values of overlap integrals used in our numerical simulation of the fragmentation dyna
for a condensate with a zero magnetization (T350) andN5106. A condensate of23Na atom is confined in
a harmonic and spherically symmetric trap with a radial trap frequencyv r5(2p) 100 ~Hz! and an aspect
ratio that corresponds tovz /v r51.

i jkl 1111 0000 2222 1122 1100 2200 1200
I i jkl 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 20.0009

i j 10 02 21

f i j 0.290910.9568i 0.876710.4809i 20.776210.6304i
e-
ds
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spherically symmetric optical trap with a radial trap fr
quencyv r5(2p) 100 ~Hz! and an aspect ratio correspon
to vz /v r51.

The various values of the overlap integrals as presente
Table I reflect the fact that single-mode approximation
exact for ferromagnetic interactions, and remains true for
antiferromagnetic case provided that the condensate ma
tization is zero@23#. The general model with three distinc
modes developed here is applicable for any given m
functions and thus applies to the case of antiferromagn
condensates with nonzero magnetization as well. Using th
parameters, we propagate a system initially prepared
coherent state of equally populated spin components (n6,0

5N/3), i.e., uc&5(a1
† 1a0

†1a2
† )Nuvac&/(AN!A3N) with all

parameters being real. Such a state can be realized u
Raman coupling with external laser pulses@12#. With time,
the initial fragmented state becomes unfragmented as
eigenvalues of the single-particle density matrix dimin
while the third one gets close toN. This exchange of frag-
mented and unfragmented states occurs periodically in t
within the semiclassical dynamics as shown in Fig. 2 forN
5106 atoms. We expect that quantum character of the mo
system will change this picture, especially in the limit wh
the number of atoms is small where use of the semiclass
approach becomes questionable. In the following section

FIG. 2. The time-dependent eigenvalues of the single part
density matrixr for N5106 (23Na) atoms. The condensate is in
coherent state withn6,05N/3 initially .
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shall exploit the fact that the SMA works well at small num
bers of atoms and determine the eigenvalues in a
quantum-mechanical treatment.

V. QUANTUM DYNAMICS OF FRAGMENTATION

We now explore the quantum dynamics and look for s
natures of fragmentation in the population oscillations
well as in the two-particle correlations in terms of populati
variances. To this end, we start with an initial state that
prepared by optical Raman processes in a state describe
@12#

uc~0!&5
1

AN!
~a0a0

†1a2a2
† 1a1a1

† !Nu0,0,0&, ~30!

where u0,0,0& is the vacuum state in the Fock basis
un0 ,n2 ,n1& anda j5ua j uexp(idj) are complex numbers. Us
ing N5n01n11n2 , m5n12n2 , and the combinatoria
symbol

CN
m5

N!

m! ~N2m!!
, ~31!

we can express the initial state as

uc~0!&5(
k

cNmk~aW !U2k,
N2m

2
2k,

N1m

2
2kL ,

where

cNmk5ACN
2kCN22k

(N2m)/22ka0
2ka2

(N2m)/22ka1
(N1m)/22k ,

~32!

with aW 5(a0 ,a2 ,a1), k50,1, . . . ,(N2umu)/2 for evenN
1m and k51/2,3/2, . . . ,(N2umu)/2 for odd N1m. The
transformation coefficients between angular momentum
sis and the Fock basis were found in Ref.@33#, which can be
expressed in a more compact form as

u lm&5(
k

GlmkU2k,
N2m

2
2k,

N1m

2
2kL , ~33!

Glmk52ksl(
r

~21!r

4r S Nlm

kr D , ~34!

where we introduced a binomial symbol such that

le
6-6
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S Nlm

kr D
5AC2r

r C2k
2r Cl

2k22rCN22k
l 22k12rCN2 l 22r

(N2 l )/22r

CN
(N2m)/22kC2l

l 2m
Cl 22k12r

( l 2m)/22k1r .

~35!

We note l 5N,N22, . . . ,N22@N/2# with @n#5n or n
21/2 for n5 even or odd, and r 5max@0,k2( l
2umu)/2#, . . . ,min@k,(N2l)/2#, m50,61,62, . . . ,6 l . k
50,1,2, . . . ,(N2umu)/2 for l 1m5 even and k
51/2,3/2, . . . ,(N2umu)/2 for l 1m5 odd. The normaliza-
tion is given by

sl5F (
j 50

(N2 l )/2
1

4 j
C2 j

j C(N1 l )/22 j
j G21/2

. ~36!

We will use an initial state of the same form as used in R
@12# with a05AP0exp(id/2) anda65A12P0.

FIG. 3. The evolution of eigenvalues forr from an initial state
with d50, P050, andN5100. The lower curve in the bottom
figure denoteŝn0&.

FIG. 4. The upper figure shows the evolution of eigenvalues
r from an initial state withd5p/8, P051/2, andN5100. The
upper curve in the bottom figure is for^n0&.
06361
f.

It is now straightforward to propagate this initial sta
using the three-mode Hamiltonian~16! and to determine the
eigenvalues of the single-particle density-matrix operator
at all times. We have performed this for an initial state w
P1,250 andP35N, an unfragmented state for any choice
Raman pulse configurations. With the time evolution, ho
ever, the situation changes drastically. For the simpler cas
only two populated modes withP050, Fig. 3 demonstrates
that there exists an extended temporal region where the
densate becomes fragmented. These regions are in bet
the collapse and revival regions of spin component popu
tion oscillation. At the end of collapse region, fragmentati
occurs withP j;N/3. The two mode results are independe
of the phase differenced. However, when themf50 mode is
also populated, we findd plays an important role. In Figs
4–7, P0 is kept constant at 1/2 while the phase differen
varied ford5p/8, p/4, andp/2, respectively. The fragmen
tation is found to increase withd whenP0 is kept constant.
WhenP051/2 andd50, the case for a stationary state, w
find however,P15N andP2,350. By changingd, this sta-
tionary initial state is indeed observed to dynamically d
velop into a fragmented condensate.

It was argued in Ref.@3# that while the single-particle
density matrix probes the existence of fragmentation,
characterization of fragmentation requires consideration

r

FIG. 5. The same as Fig. 4, but ford5p/4.

FIG. 6. The same as Fig. 4, but ford5p/2.
6-7
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higher-order particle correlations. In particular, two partic
correlations can be used to distinguish the two extreme
gimes of fragmentation: the superfragmented regime and
coherent fragmented regime. When the atom-number fl
tuation (Dni)

25^(ai
†ai)

2&2^ai
†ai&

2 is of the same order a
number of particles (N), the system is said to be superfra
mented; whenDni;1, it is called coherent fragmented. W
have calculatedDni for P051/2 andd5p/4, p/2. The re-
sults are shown in Fig. 7. We find that while the syste
remains in between these two extreme regimes at all time
is closer to the coherent fragmented regime.

VI. CONCLUSION

We have shown that fragmentation of a spin-1 conden
can be optically induced and controlled by both the am
tudes and phase differences of Raman pulses. We hav
vestigated the quantum dynamics~due to coherent atomic
collisions! of such optical Raman engineered initial sta
with only one macroscopic eigenvalue of the single-parti
density matrix, i.e., initially unfragmented condensates. D
ing the course of the dynamic evolution, we find that t
initial macroscopic eigenvalue decreases while the other
increase. For certain initial configurations, arranged by
phases and amplitudes of the Raman lasers, all three e
values can be made comparable. In other cases, all t
eigenvalues remain close to their initial values. We ha
studied quantum dynamics, taking into account the differ
spatial modes for the different condensate spin compon
i.e., we have performed these quantum dynamics invest
tions in the regime beyond the usual SMA@12#. While it is
difficult to perform a tomographic or atom-interferometr
reconstruction of the single-particle density matrix, it is
principle possible for our system because of the existenc
commuting Stokes parameters for a three-mode bosonic
tem @31#. For our purpose in this work, however, we ha
found an easier approach associated with the phenomen
quantum fragmentation. We find that, for the initial sta
with a zero magnetization as considered here, atomic po
lation oscillations between the collapse and revival regi

FIG. 7. Atom-number fluctuations for each internal Zeem
state whenP051/2, andd5p/4 ~upper figure! or d5p/2 ~lower
figure!. The upper curves in both figures are for fluctuations inn0.
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disappear whenever fragmentation occurs. We also comp
population fluctuations~two-particle correlations!, a charac-
terization of the type of fragmentation regime. Our numeri
results indicate that the system as studied here is closer to
coherent fragmented regime at all times. As in the case
Ref. @12#, one of the major experimental challenges to co
firm our results is to devise a careful and precise interfe
metric arrangement of Raman pulses for imprinting the re
tive phased on the initially unfragmented spin-1 condensa
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APPENDIX: INTERACTION COEFFICIENTS

We list the various coefficients used in the paper in t
appendix. The first set is for the three-mode Hamiltonian
in Eq. ~16!, they are given by

An5 1
6 @2~E11E01E2!2g11

s 2g00
s 2g22

s 2g11
a 2g22

a #,

At5
1
2 @2~E12E2!2g11

s 1g22
s 2g11

a 1g22
a #,

Ay5 1
4 @2~E11E222E0!2g11

s 2g22
s 2g11

a 2g22
a

12g00
s #,

Ann5 1
18 @g11

s 1g11
a 1g22

s 1g22
a 1g00

s

12~g12
s 2g12

a 1g10
s 1g10

a 1g20
s 1g20

a !#,

~A1!

Ant5
1
3 @g11

s 1g11
a 2g22

s 2g22
a 1g10

s 1g10
a 2g20

s 2g20
a #,

Any5
1
6 @g11

s 1g11
a 1g22

s 1g22
a

12~g12
s 2g12

a 2g10
s 2g10

a 2g20
s 2g20

a 2g00
s !#,

Att5
1
2 @g11

s 1g11
a 1g22

s 1g22
a 12~g12

a 2g12
s !#,

Aty5 1
2 @g11

s 1g11
a 2g22

s 2g22
a

12~g20
s 1g20

a 2g10
s 2g10

a !#,

Ayy5
1
8 @g11

s 1g11
a 1g22

s 1g22
a 12~2g00

s 1g12
s 2g12

a

22g10
s 22g10

a 22g20
s 22g20

a !#. ~A2!

The next set of coefficients are for the operator Eq.~26!:

cu5
At

2
2Ay2Ayy2

Att

4
1

Ayt

2
,

cut5Att2Aty ,
6-8



DYNAMIC FRAGMENTATION OF A SPINOR BOSE- . . . PHYSICAL REVIEW A 68, 063616 ~2003!
cuy522Ayy1
Aty

2
,

cun5
Ant

s 1Ant
a

2
2~Any

s 1Any
a !,

cv52
At

2
2Ay2Ayy2

Att

4
2

Ayt

2
,

cvt52Aty2Att ,

cvy522Ayy2
Aty

2
,

v.

-

y,

06361
cvn52
Ant

s 1Ant
a

2
2~Any

s 1Any
a !,

ct52At2Att ,

ctt522Att ,

cty52Aty ,

ctn52Ant . ~A3!
ar,

ev.

s.

w,

m-
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@23# S. Yi, Ö.E. Müstecaplıog˘lu, C.P. Sun, and L. You, Phys. Rev. A

66, 011601~R! ~2002!.
@24# H. Pu, C.K. Law, S. Raghavan, J.H. Eberly, and N.P. Bigelo

Phys. Rev. A60, 1463~1999!.
@25# M. Kitagawa and M. Ueda, Phys. Rev. A47, 5138~1993!; D.J.

Winelandet al., ibid. 50, 67 ~1994!.
@26# M. Gell-Mann, Phys. Rev.92, 833 ~1953!; T. Nakuno and K.

Nishijima, Prog. Theor. Phys.10, 581 ~1953!.
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