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Consistent approach for quantum measurement
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In a close form without referring the time-dependent Hamiltonian to the total system, a consistent approach
for quantum measurement is proposed based on Zurek’s triple model of quantum decoherence@W. Zurek, Phys.
Rev. D24, 1516~1981!#. An exactly solvable model based on the intracavity system is dealt with in detail to
demonstrate the central idea in our approach: by peeling off one collective variable of the measuring apparatus
from its many degrees of freedom, as the pointer of the apparatus, the collective variable decouples with the
internal environment formed by the effective internal variables, but still interacts with the measured system to
form a triple entanglement among the measured system, the pointer, and the internal environment. As another
mechanism to cause decoherence, the uncertainty of relative phase and its many-particle amplification can be
summed up to an ideal entanglement or a Shmidt decomposition with respect to the preferred basis.
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I. INTRODUCTION

von Neumann’s quantum theory of measurement emp
sizes that, after a measurement, the emergence of classi
of a quantum systemS from quantum dynamics is due to
perfect correlation between this system and its measu
apparatusA described by quantum mechanics@1#. But Zurek
argued that this theory does not thoroughly solve the c
problem in quantum measurement@2#. His argument is that
the interaction between the quantum system and the app
tus can only produce a quantum entanglement like
Einstein-Podolsky-Rosen~EPR! state with quantum uncer
tainty @3#, rather than a classical correlation described b
statistical operator with classical probability distributio
ucsu2—the density matrix rc5(sucsu2us&^su ^ ups&^psu,
whereus& and ups& are orthonormal basis vectors of the sy
tem to be measured and the pointer state of the appar
respectively. To go beyond von Neumann’s theory, Zu
proposed an elegant ‘‘triple model’’ for quantum measu
ment 20 years ago. In his theory, besides the quantum sy
and the apparatus, an environmentE must be introduced as
necessary element to generate the triple entanglement

uF tr i &5(
s

csus& ^ ups& ^ ues& ~1!

through the coupling of the apparatus to the environmen
is obvious that the classical mixture staterc of correlation
can be obtained by ignoring~mathematically ‘‘tracing over’’!
the environment states.

Zurek’s triple model, in principle, overcomes the key d
ficulty in quantum measurement theory, but it still needs m
croscopic refinement in terms of quantum dynamics a
there remain details to be filled in. Actually, just as Zur
points out, to implement such triple entanglement as
namic Schmidt decomposition, the interactions among
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triple parts should be time dependent. To be more prec
two steps are required to finish the measurement: turning
the interactionHSA betweenS andA at the instantt50 and
turning on the interactionHAE betweenA and E at another
instantt5tm . The process can be represented as follows

(
s

csus& ^ up& ^ ue& t50
HSA→

3~(
s

csus& ^ ups&! ^ ue& t5tm
HAE→ uF tr i & . ~2!

However, the time dependence of the Hamiltonian me
that there exists another extra system governing the ‘‘u
verse’’ formed by the triple system. So the quantum dynam
theory describing the measurement is not in a close fo
Moreover, to realize a real measurement process, one sh
switch the couplings at certain exact instants. In practice,
difficult to exactly control the interaction betweenA andE so
that it occurs only after the correlation betweenA andS has
just been established. Another point we wish to mention
that according to Zurek’s model, to produce an ideal trip
entanglement such that$us&%,$ups&%, and $ues&% form three
orthonormal sets, it is even required that there is no inter
tion betweenS andE as described in Eq.~1!; otherwise the
Schmidt decomposition structure of Eq.~1! would be de-
stroyed.

Most recently, we studied the phenomenon of quant
decoherence of a macroscopic object along a different di
tion: we investigated the adiabatic quantum entanglemen@4#
between its collective states@such as that of the center-o
mass~c.m.!# and its inner states. It is shown that the adiaba
wave function of a macroscopic object can be written as
entangled state with correlation between adiabatic in
states and quasiclassical motion configurations of the c
Since the adiabatic inner states are factorized with respe
the composing parts of the macroscopic object@5#, this adia-
batic separation can induce quantum decoherence. This
©2002 The American Physical Society04-1
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servation thus provides us with a possible solution to
Schrödinger cat ~macroscopic quantum interference! para-
dox. This approach to quantum decoherence only concer
double system rather than a triple one, so it does not s
the quantum measurement problem completely. Rathe
provides an example for von Neumann’s quantum meas
ment theory, which does not produce a classical correlat

In this paper, integrating the above-mentioned results w
Zurek’s triple model, we present a consistent quantu
mechanical approach for measurement process in a c
form with a time-independent total Hamiltonian. In this a
ternative, the measuring apparatus is taken as a macros
object with effective inner variables and a pointer variab
In our treatment, the complete separation of the pointer v
able from the effective inner variables of the macrosco
apparatusA is carried out. With this separation there is n
coupling between the pointer variable and the inner variab
of A, but the effective interaction of the pointer withS is
induced by that of the original variables ofA in an adequate
way. Just for this reason, the triple entanglement@2# can be
dynamically generated without the time-dependent cont
To sketch our basic idea, we start with an exactly solva
model in the intracavity dynamics. Using this example
also show that the back action of the inner environment
the system plus pointer implied by Heisenberg’s positio
momentum uncertainty relation will disturb the phases of
states between the system and pointer and then decohe
quantum entanglement system plus pointer, which is form
dynamically just before measurement.

II. OUTLINE OF OUR APPROACH FOR QUANTUM
MEASUREMENT BASED ON ZUREK’S THEORY

The quantum theory of measurement based on von N
mann’s theory usually treats the measuring process a
quantum-mechanical evolution by considering the measu
apparatusA as a proper quantum system. This is just in co
trast to the Copenhagen interpretation with the hypothesi
classicality on the part of the apparatus. According to
theory of the Copenhagen school, the apparatus should
have classically so that the experimental outcome of m
surement can be recorded in the classical way. Zurek’s the
does not stress the classicality of apparatus directly since
meaning of classicality of apparatus is not clear without
sociation with the measured systemS. The important discov-
ery by Zurek is the decoherence of the quantum entan
ment between the measuring apparatus and the meas
system induced by an external or inner environmentE @6#.
Led by Zurek’s observation one may imagine that it is t
direct interaction of the environment with the pointer of a
paratus that leads to the classicality of apparatus. Howev
is not true.

In the following, we can show that to decoher the qua
tum entanglement betweenA and S, only two proper cou-
plings of the measured system to the pointer and to the
vironment are needed and the interaction betweenA andE is
not necessary. The requirement of no interaction betweeA
and E will result in a time-independent reformulation o
Zurek’s triple theory . In our quantum approach of measu
04210
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ment by generalizing Zurek’s triple theory, we considerE as
the collection of the internal relative degrees of freedo
Then, the pointer~also denoted byA) of the apparatus can b
defined as the collective~or macroscopic! degree of freedom
of the apparatus, e.g., the coordinate of the c.m.

In general, we write a time-independent total Hamiltoni
as

H5HS1HA1HE1VSA1VSE. ~3!

HereHS5HS(qS), HA5HA(qA), andHE5HE(qE) are, re-
spectively, the free Hamiltonian forS, A, and E; qS , qA ,
and qE roughly stand for the system variable, the poin
variable and, the environment variable, corresponding
Vsa5VSA(qA ,qS) describes the interaction betweenS andA
while VSE5VSE(qE ,qS) describes that betweenS andE.

To gain a close form for quantum measurement based
Zurek’s triple theory, it is important that no interaction exis
between the pointerA and the ‘‘inner’’ environmentE ~in
Fig. 1!. Only by assuming that the system satisfies the f
lowing double nondemolition condition:

@HS ,VSA#50, @HS ,VSE#50. ~4!

The evolution operator for the total system can be written

U~ t !5(
n

e2 iEntun&SŜ nuUAn~ t ! ^ UEn~ t !. ~5!

Here, $un&S% is an eigenvector ofHS corresponding to the
eigenvalueEn ,

UAn5S^nuexp@HA~qA!1VSA~qA ,qS!#un&S

and

UEn5S^nuexp@2 i $HE~qE!1VSE~qE ,qS!%#un&S

are the effective evolution operators. They describe the fe
backs of the measured system on the pointer of appar
and the environment, respectively, whenS is just in its eigen-
stateun&S . It is worthy to point out that in the present ap
proach for entanglement, the energy of the measured sys
is conserved while the quantum coherence is destroyed.

This kind of unitary evolution operatorU(t) can establish
a nonseparable correlation among the system, the poi
and the environment. Namely, if the initial stateuC& init ial
5uS& ^ uA& ^ uE& of the total system is of a factorized form

FIG. 1. The effective interactions among the systemS, the
pointerA, and the inner environmentE.
4-2
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CONSISTENT APPROACH FOR QUANTUM MEASUREMENT PHYSICAL REVIEW A66, 042104 ~2002!
with the system stateuS&5(ncnun&S , the pointer stateuA&,
and the environment stateuE&, then the final state of the tota
system will be

uC& f inal5U~ t !uC& init ial 5(
n

cne2 iEntun&S^ uAn& ^ uEn&.

~6!

Here,uAn&5UAnuA& anduEn&5UEnuE& are the final states o
the pointer and the environment entangling with the sys
statesun&S . Thus, a triple correlation among the measur
system, the pointer, and the environment is established.
viously, the reduced density matrix for the composite s
system formed by the system plus the pointer is

r5(
n

ucnu2un&SŜ nu ^ uAn&

3K AnU1 (
mÞn

cm* cnUnL
SS

^mu ^ uAn&^Amu^EmuEn& . ~7!

The off-diagonal terms on the right-hand side of this eq
tion is responsible for the interference pattern. It is easy
see that the interference fringe completely vanishes when
states of the inner partE are orthogonal to one another. I
this situation, an ideal Zurek’s classical correlation

r5(
n

ucnu2un&SŜ nu ^ uAn&^Anu ~8!

results from the ideal entanglement with the correlated co
ponentsuEn& orthogonal to one another.

The above Zurek’s classical correlation@2# just describes
the fact like the weather forecast impersonally predict
whether it rains or not tomorrow. Equation~7! deterministi-
cally tells us the classical correlation that the system is inun&
when the pointer is just inuAn& with probability ucnu2. This is
unlike the quantum entanglementuS&5(ncnun& ^ uAn& that
not only indicates the correlation betweenun& and uAn&, but
also simultaneously tells us the correlation with probabi
pn5(n8usn8n

21
cn8u2 between any superposition stateuSn&

5(n8snn8un8& of S and the corresponding one

utn&5A 1

pn
(
n8

s
n8n

21
cn8uAn8&

of A. This is becauseuS& can also be reexpressed as

uS&5(
n

pnuSn& ^ utn&. ~9!

In fact, the classical correlation does not say anything ab
the correlation of different pairsuSn& and utn& but for the
original pair un& and uAn&, and its prediction is independen
of what to be measured. On the contrary, what the quan
entanglement tells us depends on what we measure ac
ing to the EPR argument@3#. With this understanding, it can
04210
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be said that quantum measurement is implemented c
pletely when quantum decoherence happens to result in
so-called classical correlation.

The above argument shows that the vanishing overlap
the final states of the inner environment is necessary to
tain the classical correlation after measurement. We de
this overlapFm,n5^EmuEn& as the decoherence factor. No
an immediately following question is in what case the de
herence factor becomes zero. Our previous works on qu
tum measurement theory@5# showed that an ideal entangle
ment appears in the macroscopic limit where the numbeN
of particles making up the detector approaches infinity. In
present case, we assume that there areN degrees of freedom
in the apparatus. We can peel off one~or more! collective
variable as the pointer of the apparatus, and the inner e
ronment is formed byN relative internal variablesqk(k
51,2, . . . ,N). We can imagine that there areN blocks con-
stituting the inner environment, so we may writeHE(qE)
5(kHE

(k)(qk) and VSE(qE ,qS)5(kVSE
(k)(qk ,qS) in sum

forms. If all VSE
(k)(qk ,qS) (k51,2, . . . ,N) commute with one

another, we can factorize the effective evolution opera
UEn :

UEn5)
j 51

N

UEn
[ j ] .

When the measured system is initially prepared inun& and
the environment in a factorized stateuE&5) j 51

N uE[ j ]&, the
environment will obey a factorized evolution

uE&→uEn
[ j ]&[)

j 51

N

uEn
[ j ]&5)

j 51

N

UEn
[ j ] uE[ j ]&q ~10!

entangling with the system stateun&. It results in the factor-
ization structure@5# of the decoherence factor

Fm,n5)
j 51

N

^Em
[ j ] uEn

[ j ]&. ~11!

Since each factor̂Em
[ j ] uEn

[ j ]& in Fm,n has a norm less than
unity, the product of infinite such factors may approach ze
This investigation was developed based on the He
Coleman model and its generalizations@7,8# and was applied
to analyzing the universality of the influence of the enviro
ment on the quantum computing process@9#.

III. POINTER MODEL FOR QUANTUM MEASUREMENT
IN INTRACAVITY SYSTEM

In this section and the subsequent sections, we will use
exactly solvable model based on the over simplified intr
avity system to demonstrate our central ideas.

Consider a cavity with two end mirrors~as in Fig. 2!, one
of which is fixed while the other is treated as a macros
pic object consisting ofN particles of massmi with posi-
tion coordinate xi and momentum coordinatepi ( i
51,2, . . . ,N). The radiation pressure of the cavity field o
the moving mirror is proportional to the intracavity photo
4-3
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P. ZHANG, X. F. LIU, AND C. P. SUN PHYSICAL REVIEW A66, 042104 ~2002!
density. Leta† anda be the creation and annihilation oper
tors of the cavity with a single mode of frequencyv. The
cavity-mirror coupling is described by an interaction Ham
tonianHI52( i

Ngixia
†a, wheregi is coupling constant de

pending on the electric dipole.
In this situation we describe the cavity-field dynami

with the free HamiltonianHS5v0a†a. This cavity-field-
mirror coupling system can also be used to detect the ph
number in the cavity by the motion of the mirror. Obvious
the total Hamiltonian governing the motion of the mirror

H5v0a†a1(
i 51

N pi
2

2mi
2a†a(

i

N

gixi . ~12!

By taking the moving mirror as a whole, this intracavi
model is associated with the interferometric detection of
gravitational wave@10–12#. This system has already bee
studied quite extensively by many authors@12#, under the
assumption that the moving mirror is a macrocosm with
internal structure. Like the discussions in these previous
erences@10–12#, we also assume that the oscillation of t
movable mirror is so small that the frequency of the sing
cavity mode does not undergo a considerable change du
the displacement of the mirror.

The above-described physical system can be viewed
quantum measurement system, in which the cavity fi
monitored by the macroscopic moving mirror is to be me
sured. Since@HS ,HI #50 and@HS ,( i pi

2/2mi #50, the mov-
ing mirror has no influence on the cavity field. On the oth
hand, different eigenstatesun& of Hs can imprint on the
moving mirror differently. Indeed, the interaction ter
2n( i

Ngixi implies that different forces will act on the mov
ing mirror when the cavity is prepared in different numb
statesun&. We notice that this is a typical characteristic
nondemolition measurement@13#.

We take the c.m. positionx5M 21( i
Nmixi to be the

pointer of the apparatus—the moving mirror and the relat
coordinatesj j5xj2x( j 51,2, . . . ,N21) to be the internal
variables. Here,M5( i 51

N mi is the total mass of the movin
mirror. We denote the conjugate momenta ofx andj j by px
and pj j . Then, we obtain an interesting realization
Zurek’ s triple model with the time-independent Hamiltoni

H5HS1HA1HE1VSA1VSE, ~13!

whereHA5px
2/2M and

FIG. 2. A cavity with a moving end mirrorB and a fixed oneA.
The moving one is treated as a macroscopic object consistingN
free particles.
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N21

t21
i j pj i pj j ~14!

are the free Hamiltonians for the pointer part and the inter
environment, respectively,

VSA52Ga†ax ~15!

is the effective interaction describing the coupling of the s
tem to the pointer, and

VSE52 (
j 51

N21

Gia
†aj j ~16!

describes an interaction between the system and the inte
environment. Here

Gi5S gi2
mi

mN
gND , G5 (

i 51

N21

gi ~17!

are the effective coupling constants, and the mass matrixt is
defined by the matrix elements

t i j 5mid i j 1
mimj

mN
. ~18!

This expression oft is obtained by substituting the indi
vidual laboratory coordinate

xN5
1

mN
Fx2

1

M (
i

N21

mi~j j1x!G ~19!

into the interaction term2a†a( i
Ngixi of the total system

Hamiltonian.
In this model the couplings of the system to the poin

and to the environment can be turned on or turned off sim
taneously, forVSA andVSE are proportional to the same cou
pling constant. Physically this is reasonable as the poin
variable is a reflection of the collective average effect of
internal degrees of freedom of the macroscopic appara
Another remarkable character of the above model is the
sence of coupling between the pointer variable and the in
variables ofA. Physically this is just what is required of a
ideal measuring apparatus, whose effective inner mo
should not directly affect the reading of the pointer. In fa
this property guarantees that a triple entanglement will fo
dynamically from a factorized initial state. This just realiz
our central ideas in Sec. II: the decoupling of pointer varia
with the inner ones in the apparatus and the factorization
the inner environment with respect to each inner variable

IV. EXACT SOLUTION WITH FACTORIZATION
FOR IDEAL ENTANGLEMENT

Now let us consider the exact solution to the dynam
evolution problem of the intracavity model introduced
Sec. II. To this end we invoke a canonical transformation
4-4
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CONSISTENT APPROACH FOR QUANTUM MEASUREMENT PHYSICAL REVIEW A66, 042104 ~2002!
h i5 (
j 51

N21

Ui j j j , i , j 51, . . . ,N21 ~20!

from the inner variablesj j to a new set of canonical vari
ablesh i . Here,U is an (N21)(N21) matrix diagonalizing
the mass matrixt, i.e., UtUT is diagonal. Denote the con
jugate momenta ofx andh i by px andpi , respectively. The
inner environment is described by the new internal varia
$h i%. Then, the total Hamiltonian can be reexpressed as

H5
px

2

2M
2Ga†ax1 (

i 51

N21 S 1

2mi
8
pi

22 f ia
†ah i D 1v0a†a,

~21!

where the eigenvaluesmi
8 of matrix t are the effective

masses with respect to the new coordinates$h j%; f i

5( jGjU ji
T represent the strengths of forces on each in

coordinateh i by one photon of the cavity field. Obviously
the inner motion of the moving mirror is factorizable sin
the effective HamiltonianHSE5(HSE

j is only a simple sum
of the single component,

HSE
j ~a†a!5

1

2mi
8
pi

22 f ia
†ah i . ~22!

This direct sum structure results in the factorization of
effective evolution matrix defined by

UEn~ t !5^nuU~ t !un&5 )
i 51

N21

UEn
i ~ t !,

UEn
i ~ t !5expF2 i S pi

2

2mi
8

2n fih i D tG ~23!

5e2 i tpi
2/2mi

8
ein f i t

2pi /2mi
8
expF in f i th i2 i

n2f i
2t3

6mi
8 G ,

~24!

whereun& is the Fock state andU(t)5exp(2iHt) is the evo-
lution matrix of the total system. Here, we have used
Wei-Norman algebraic method@14# to rewrite the single-
particle evolution matrix.

Without loss of generality, we assume each inner com
nent of the moving mirror to be described by the sa
Gaussian wave packetu i & of width a, i.e.,

^h i u i &5S 1

2pa2D 1/4

e2h i
2/4a2

. ~25!

This is a physically reasonable preparation of initial sta
This is because the initial state of the innerF(0,$h j%)
5) i 51

N21^h i u i & also defines the factorized Gaussian wa
packet F(0,$j i%)5) i 51

N21^j i u i & in j representation, since
( ij i

2 is a canonical invariant, i.e.,( ij i
25( ih i

2 . A Gaussian
wave packet^j i u i &.exp@2(xi2x)2/4a2# implies basically
that the particles composing the moving mirror are alm
04210
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peaked on the position of c.m. We also assume that the
of the moving mirror is just in the position eigenstateuX& and
the cavity is initially in a coherent stateua&5(ncnun&,
where cn5e21/2uau2an/n!. In this case using the effective
evolution matrix of the pointer,

Unx5expF2 i S px
2

2M
2GnxD tG , ~26!

with respect to the cavity Fock stateun&, we explicitly obtain
the triple entanglement

uC~ t !&5(
n

cn~ t !un& ^ uxn& ^ uEn& ~27!

at any instancetÞ0. Here,

cn~ t !5cne2 i (n11/2)v0t, uxn&5Unxux&,

and

uEn&5UEn~ t !uF~0!&5)
j 51

N

UEn
j ~ t !u j &.

We can also calculate the decoherence factor with factor
tion

Fmn~ t !5^EnuEm&5)
j 51

N

^En
[ j ] uEm

[ j ]&

[)
j 51

N

^ j uUEn
j † ~ t !UEm

j ~ t ! j &

to give the decaying norm

f mn~ t !5uFmn~ t !u

5expF2~n2m!2 (
j 51

N21

f i
2S t4

32mi
82
a2

1
a2t2

2 D G . ~28!

In Fig. 2, the decaying behavior of the decoherence facto
demonstrated for differentN. It is seen that a decoherenc
process indeed happens ast→`, but it does not obey the
simple exponential lawe2gt. In a long-time scale, the tem
poral behavior of decoherence is described by

F~ t !'exp@2~m2n!2Gt4#

with G5( j 51
N21f i

2/32mi8
2a2. If we define the characteristic

time td of the decoherence process byF(td)5e21, then~see
Fig. 3!

td5@~m2n!2G#1/4. ~29!

This shows that the long-time behavior of decoherence
pends directly on interaction.

In the macroscopic limitN→` or for the long-time evo-
lution t→`, the vanishing decoherence factors^EnuEm&
4-5
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leads to an ideal triple entanglement~1! with invariant prob-
ability distributionpn5ucn(t)u25ucnu2.

Finally we need to show that the measuring process
modeled above is ideal since the pointer states entang
with each system state are orthogonal to one another, nam
^xnuxm&;dn,m for mÞn. In fact, in the coordinate represen
tation, the pointer stateuxn& can be calculated explicitly as

^xuxn&5A2 iM

t
expF i H @2nGt212M ~x2X!#2

8Mt

1S nGtx2
n2G2t3

6M D J G . ~30!

This means that the width of each wave packet^xuxn(t)& is
zero and then the overlaps

uOn,mu5u^xn~ t !uxm~ t !&u5
8pM

3Gt2
d~m2n! ~31!

of wave packets vanish formÞn. This indicates an idea
classical correlation between the measured system and
pointer of the apparatus in our intracavity model. Therefo
our triple model for quantum measurement leads to an id
quantum measurement in a purely quantum dynamical
with neither the introduction of the hypothesis of classica
for the apparatus, nor the artificial control of interactions

As shown above, an ideal entanglement of the dou
system~formed by the measured system plus pointer of
paratus! with an ~inner! environment is a necessary eleme
to force the apparatus to behave so classically that a d
tanglement process occurs in the double system. Ano
necessary element to implement quantum measurement i
ideal entanglement between the measured system and
pointer of apparatus. The work of this mechanism depe
on the choice of the form of the initial state of the point
For a general initial state of the pointer, it is difficult t
obtain an explicit condition under whicĥxnuxm& becomes
zero. The solution to this problem concerns the considera

FIG. 3. The decoherence factorF10 plotted as a function of time
and for various values of the particle numberN. We have taken the
mass of a particle,m51026 kg; the wave width of the Gaussia
wave packet as the length of the cavity,a51025 m; and the force
strength on each inner coordinate,f 510214 kg m s22. The time
unit is second. The real particle numberN5106n.
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of the classical limit of the motion of the pointer as a lar
system. In general, for certain particular states, the class
limit of the expectation value of an observable should
cover its classical value form. Such quasiclassical states
give definite classical trajectories of a particle in the class
case. In this sense the mean-square deviation of the obs
able is zero, and accordingly the expectation value of
position operator defines a classical path. In the follow
section we will discuss a similar problem in greater detail
association with the random phase induced by Heisenbe
momentum-coordinate uncertainty.

V. CLASSICALITY OF APPARATUS DUE
TO POSITION-MOMENTUM UNCERTAINTY

In the above discussion the quantum realization of m
suring process boils down to the appearance of decoher
in the entanglement between the measured system and
measuring apparatus only due to the coupling of the m
sured system with the inner environment rather than t
between the pointer of the apparatus and the inner envi
ment.

It is well known that quantum decoherence can be
plained in two ways: the usual explanation for decohere
in a which-way experiment based on Heisenberg’s positi
momentum uncertainty relation@15#, and the current expla
nation based on quantum entanglement, which is not rela
to this uncertainty relation directly. In the latter explanatio
the quantum correlations between the environment and
considered system are responsible for the destruction
quantum coherence. In the present paper the considered
tem is a composition formed by the measured system p
the pointer. In fact, in the previous sections we have adop
the second viewpoint to deal with the quantum measurem
problem. In this section we will see that the first explanati
can also work well in our modeled quantum measurem
problem. To this end, we first show that the back action
the inner environment on the system plus pointer implied
Heisenberg’s position-momentum uncertainty relation w
disturb the phases of states of the system plus pointer.
result is shown in Ref.@16#.

Let us return to our model mentioned in the preced
section. We assume that the initial stateu j & of each compo-
nent of the inner environment is a real wave packet, which
symmetric with respect to both the canonical coordinateh j
and the corresponding canonical momentumpj ,

^h j&[^ j uh j u j &50, ^pj&50. ~32!

We will not need its concrete form. Rather we assume it
be of the Gaussian type with the varianceaj5Dh j in h j
space. Here, we adopt the definition of the standard devia

Df[A^~f2^f&!2&5A^f2&2^f&2 ~33!

for a given phasef. Physically, onceDh j is given, the vari-
ance ofpj cannot be arbitrary since there is Heisenber
position-momentum uncertainty relationDh jDpj>

1
2 . In the

previous two sections, the conclusion drawn seems to dep
4-6
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on the choice of the concrete form of the initial state, b
now we can argue that this is not the case with the ab
consideration.

After a measurement, the final state ofj ’ s environment
componenth j entangling with the system-pointer stateun&
^ uxn& is just

uEn
[ j ]&5UEn

j ~ t !u j &. ~34!

The j ’ th factor in the decoherence factorFmn5^EnuEm&
5) j 51

N Fmn
j can be written as

Fmn
j [^En

[ j ] uEm
[ j ]&5^ j uexp@ i f̂mn

[ j ] #u j & ~35!

by the Wei-Norman algebraic method. Here, the tim
dependent global phase is neglected. We can understan
Hermitian operator

f̂mn
[ j ] 5~n2m! f i tD̂ j ~36!

in terms of the generalized phase difference betweenuEm
[ j ]&

and uEn
[ j ]& for

D̂ j5
t

2mj
8
p̂ j1h j . ~37!

The standard deviation

Df̂mn
[ j ] 5~n2m! f j tDD j ~38!

is proportional to timet and represents a random pha
change ofun& ^ uxn& by the j ’ th inner component.

The whole random phase change ofun& ^ uxn&, contrib-
uted by the inner variables, is determined by

f̂mn5 (
j 51

N21

f̂mn
[ j ] . ~39!

Physically, each variable of the inner environment can ex
a different impact independently on the different compone
of the entangling states of the measured system plus
pointer. If we consider each uncertain phase change by
perturbation as an independent stochastic variable, we h

Df̂mn5A(
j 51

N21

~Df̂mn
[ j ] !2

>AN min$~Df̂mn
[ j ] !2u j 51,2, . . . ,N21%. ~40!

We observe that the phase uncertaintyDf̂mn caused by all
inner variables can be amplified to a number much gre
than 2p whenN→`. Then the system-pointer states acqu
a very large random-phase factor. Therefore, the inner e
ronment washes out the interference of any two compon
of the system plus the pointer.

In the above reasoning we make the connivance that t
exists a finite minimum ofDf̂mn

[ j ] . This point is just guaran-
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teed by Heisenberg’s position-momentum uncertainty re
tion Dh jDpj>

1
2 . In fact, becauseD j is a linear combination

of h j andpj and

^pih i&1^h i pi&50 ~41!

for the real wave-function average, there should be a qu
tum limit for its varianceDD j :

DD j .5A~Dh j .!21S t

2M
D p̂ j D 2

>A~Dh j .!21
1

~Dh j .!2 S t

2M D 2

.

If one wishes the highest possible forD j , one should not
make (Dh j .)2 arbitrarily small, because this will makeDpj
arbitrarily large. So it is optimal to take (Dh j .)25t/2M , and
we have the finite minimumAt/M . So we have a minimum
of phase uncertainty

Df̂mn5AN
t

M
.

This result qualitatively illustrates the many-particle ampli
cation effect of uncertain phase change.

The direct relationship between the two explanations
decoherence can also be revealed explicitly in our pres
model. As a matter of fact, this problem has been tackled
Stern, Aharonov, and Imary, with the observation^EnuEm&
5^ei f̂mn

[ j ]
& @17#. Consider the specially chosen initial state

Gaussian typêh j u j &5(1/2pa2)1/4exp(2hj
2/4a2). Since the

standard deviationDh j is the width a of Gaussian wave
packet and the uncertaintyDpj of the momentum fluctuation
is 1/2a, we have

~DDi !
25S D

t

2mi
pi D 2

1~Dh i !
25~DDi !

25
t2

16mi
2a2

1a2.

Then we can probe the relationship between the two ex
nations by using the exact solution in the preceding sect

Fmn5 )
j 51

N21

expF 2~n2m!2f j
2t2

3
1

8 S 1

~Dpj !
2

1
1

S D
2mi

8

t
h j D 2D G

5 )
j 51

N21

exp@2~n2m!2f j
2t2 1

2 ~DD j !
2#

5expF2
1

2 (
j 51

N21

~Dfmn
j !2G5expF2

1

2
~Dfmn!

2G . ~42!
4-7
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This result just shows that the conditionFmn50, which is
required by an ideal measurement, implies a large rand
phase variance (Dfmn)

2. Furthermore, we can conclud
from this exact solution that the large random-phase cha
just originates from Heisenberg’s position-momentum unc
tainty relationDh jDpj5

1
2 . In the terminology of classica

stochastic process,h j and pj can be regarded as a pair
uncorrelated stochastic variables, but the uncertainty rela
Dh jDpj5

1
2 exerts a constraint on them. This constraint ju

reflect the uncertainty of phase change in the measuring
cess.

VI. CONCLUDING REMARKS

The above arguments shed a new light on the underst
ing of the relationship between Bohr’s complementarity pr
ciple and Heisenberg’s uncertainty principle. It is we
known that the principle of complementarity usually refers
the wave-particle duality in quantum mechanics. It says t
the quantum-mechanical entity can behave as a particl
wave under different experimental conditions, but these
natures excluded each other in the experiment. For exam
in the famous Yang’s double-slit experiment, the matter wa
of a single particle can apparently pass through both s
simultaneously. In this sense the experiment emphasizes
nature of the wave and so there forms an interference pat
On the contrary, if a which-way detector is employed to d
termine the particle’s path, the interference pattern is
stroyed. This is because the which-way experiment focu
on the nature of particle with a classical location, ‘‘path
This can further be explained in terms of Heisenberg’s
certainty principle: the uncertainty in the particle’s mome
tum will introduce a random phase difference between t
paths and thus destroy the interference. At this point i
worth mentioning that Durtet al. @18# reported a which-way
experiment in an atom interferometer in which the back
-

,
r-
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tion of path detection on the atom’s momentum is too sm
to explain the disappearance of the interference pattern.

We would also like to emphasize that the arguments ab
the quantum description of the macroscopic object such
the moving mirror is closely related to the Schro¨dinger cat
problem @19,20#, a conventional topic of quantum decohe
ence concerning the state superposition for macroscopic
ject. Most recent progress has been made in demonstra
the Schro¨dinger cat state in various macroscopic quant
systems such as superconductors, laser-cooled trapped
photons in a microwave cavity, and C60 molecules@21#. Ac-
cording to the viewpoint in this paper, a system with ma
microscopic degrees of freedom can behave quantum
chanically only if it is sufficiently decoupled from the env
ronment and the phases of its inner states match very w

In summary, we have proposed an alternative Zure
triple approach for quantum measurement with a tim
independent Hamiltonian. The calculation for a spec
model shows the possibility of implementing our approa
It should be pointed out that in the above discussed
tremely idealized model, the interaction between the p
ticles composing the moving mirror has not been conside
But we do not think this is a big problem. Starting with th
main idea developed in this paper, we can discuss a m
general situation with inter particle interaction in a simil
way. Although the exactly solvable model in this paper mig
not exist in reality, the idea of quantum adiabatic separat
or the master equation is physically meaningful.
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