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Consistent approach for quantum measurement
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In a close form without referring the time-dependent Hamiltonian to the total system, a consistent approach
for quantum measurement is proposed based on Zurek’s triple model of quantum decof&réhaek, Phys.
Rev. D24, 1516(1981)]. An exactly solvable model based on the intracavity system is dealt with in detail to
demonstrate the central idea in our approach: by peeling off one collective variable of the measuring apparatus
from its many degrees of freedom, as the pointer of the apparatus, the collective variable decouples with the
internal environment formed by the effective internal variables, but still interacts with the measured system to
form a triple entanglement among the measured system, the pointer, and the internal environment. As another
mechanism to cause decoherence, the uncertainty of relative phase and its many-particle amplification can be
summed up to an ideal entanglement or a Shmidt decomposition with respect to the preferred basis.
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[. INTRODUCTION triple parts should be time dependent. To be more precise,

two steps are required to finish the measurement: turning on
von Neumann’s quantum theory of measurement emphahe interactionHg, betweenS andA at the instant=0 and
sizes that, after a measurement, the emergence of classicalityrning on the interactiotd .z betweenA and E at another

of a quantum syster§ from quantum dynamics is due to a instantt=t,,. The process can be represented as follows:
perfect correlation between this system and its measuring

apparatus\ described by quantum mechanfdg. But Zurek
argued that this theory does not thoroughly solve the core

H
problem in quantum measuremdai. His argument is that ES: Csls)®[p)@|e)—o'sA
the interaction between the quantum system and the appara- "
tus can only produce a quantum entanglement like the X(ES Cs|s>®|ps>)®|e>t:tm RE| D). (2)

Einstein-Podolsky-RosefEPR state with quantum uncer-
tainty [3], rather than a classical correlation described by a

statistical operator with classical probability distribution  However, the time dependence of the Hamiltonian means
2 ; ; — 2 - . .
|cg|*—the  density ~matrix pc—25|cs] Is)(s|®[ps)(Psl,  that there exists another extra system governing the “uni-
where[s) and|ps) are orthonormal basis vectors of the sys-yerse” formed by the triple system. So the quantum dynamic
tem to be measured and the pointer state of the apparatygeory describing the measurement is not in a close form.
respectively. To go beyond von Neumann's theory, Zureky,reqver, to realize a real measurement process, one should

proposed an elegant “triple model” for quantum Measure-q, iich the couplings at certain exact instants. In practice, it is

ment 20 years ago. In his theory, besides the quantum SySteg?fficult to exactly control the interaction betweérandE so
and the apparatus, an environm&ntnust be introduced as a . :
that it occurs only after the correlation betwe&mand S has

necessary element to generate the triple entanglement . . . . .
y 9 P g just been established. Another point we wish to mention is

that according to Zurek’s model, to produce an ideal triple
[®yi)=2 cols)@|ps)®|es) (1) entanglement such thats)},{|ps)}, and{|ey)} form three
s orthonormal sets, it is even required that there is no interac-
through the coupling of the apparatus to the environment. [tion betweenS andE as described in Eq1); otherwise the
is obvious that the classical mixture statg of correlation ~ Schmidt decomposition structure of E€l) would be de-
can be obtained by ignoringnathematically “tracing overy  stroyed.
the environment states. Most recently, we studied the phenomenon of quantum
Zurek’s triple model, in principle, overcomes the key dif- decoherence of a macroscopic object along a different direc-
ficulty in quantum measurement theory, but it still needs mi-tion: we investigated the adiabatic quantum entangleif@gnt
croscopic refinement in terms of quantum dynamics andetween its collective statgsuch as that of the center-of-
there remain details to be filled in. Actually, just as Zurekmass(c.m)] and its inner states. It is shown that the adiabatic
points out, to implement such triple entanglement as dywave function of a macroscopic object can be written as an
namic Schmidt decomposition, the interactions among thentangled state with correlation between adiabatic inner
states and quasiclassical motion configurations of the c.m.
Since the adiabatic inner states are factorized with respect to
*Electronic address: suncp@itp.ac.cn; URL: the composing parts of the macroscopic ob[&g this adia-
http:// www.itp.ac.cn/suncp batic separation can induce quantum decoherence. This ob-
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servation thus provides us with a possible solution to the
Schralinger cat(macroscopic quantum interferencpara-
dox. This approach to quantum decoherence only concerns a
double system rather than a triple one, so it does not solve
the quantum measurement problem completely. Rather, it
provides an example for von Neumann’s quantum measure-
ment theory, which does not produce a classical correlation.
In this paper, integrating the above-mentioned results with APPATatUs | Environment
Zurek’s triple model, we present a consistent quantum-
mechar_1ica| "?‘pp“?aCh for measurement. process in a close FIG. 1. The effective interactions among the syst&mthe
form w|th a tlme-lnde_pendent total _HamHtoman. In this al- ointerA, and the inner environmeit
ternative, the measuring apparatus is taken as a macroscopic

object with effective inner variables and a pointer variable.ant by generalizing Zurek’s triple theory, we consitieas
In our treatment, the complete separation of the pointer varig,e cojlection of the internal relative degrees of freedom.

able from the effective inner variables of the macroscopic—l—hen, the pointefalso denoted by) of the apparatus can be
apparatusA is carried out. With this separation there is N0 yefined as the collectivor macroscopicdegree of freedom
coupling between the pc_)inter vqriable and tht_a inner_variableaf the apparatus, e.g., the coordinate of the c.m.

of A, but the effective interaction of the pointer withis In general, we write a time-independent total Hamiltonian
induced by that of the original variables Afin an adequate

way. Just for this reason, the triple entanglem{@jtcan be

dynamically generated without the time-dependent control. H=Hg+Ha+Hg+Vsat Vse. 3

To sketch our basic idea, we start with an exactly solvable

model in the intracavity dynamics. Using this example weHere Hg=Hg(qs), Ha=Ha(ga), andHg=Hg(qg) are, re-
also show that the back action of the inner environment orspectively, the free Hamiltonian fo8, A, andE; gs, qa,

the system plus pointer implied by Heisenberg's position-and g roughly stand for the system variable, the pointer
momentum uncertainty relation will disturb the phases of theyariable and, the environment variable, correspondingly;
states between the system and pointer and then decoher thig,=V,(qa,qs) describes the interaction betweSmand A
quantum entanglement system plus pointer, which is formeehile Ve=Vsg(qe,qs) describes that betweehandE.
dynamically just before measurement. To gain a close form for quantum measurement based on
Zurek’s triple theory, it is important that no interaction exists
between the pointeA and the “inner” environmentE (in
Fig. 1). Only by assuming that the system satisfies the fol-
lowing double nondemolition condition:

The quantum theory of measurement based on von Neu-
mann’s theory usually treats the measuring process as a [Hs,Vsal=0,  [Hs,Vse]=0. )
quantum-mechanical evolution by con5|der|n_g Fh‘? MeASUNNG e evolution operator for the total system can be written as
apparatus\ as a proper quantum system. This is just in con-
trast to the Copenhagen interpretation with the hypothesis of _
classicality on the part of the apparatus. According to the ut)=, e Enfln)gdn|Uan(t) @ Ugy(t). (5)
theory of the Copenhagen school, the apparatus should be- n
have classically so that the experimental outcome of me‘?ﬂere Inyg) i : tor oH ding to th
surement can be recorded in the classical way. Zurek’s theory. :{In)s} is an eigenvector ofis corresponding to the
does not stress the classicality of apparatus directly since th jgenvaluek,,,
meaning of classicality of apparatus is not clear without as-
sociation with the measured syst&nThe important discov-
ery by Zurek is the decoherence of the quantum entangleyng
ment between the measuring apparatus and the measured
system induced by an external or inner environmens]. Uen=g(nlexd —i{He(qe) + Vs ge,as)}1N)s
Led by Zurek’s observation one may imagine that it is the
direct interaction of the environment with the pointer of ap-are the effective evolution operators. They describe the feed-
paratus that leads to the classicality of apparatus. However, itacks of the measured system on the pointer of apparatus
is not true. and the environment, respectively, wheris just in its eigen-

In the following, we can show that to decoher the quan-state|n)s. It is worthy to point out that in the present ap-
tum entanglement betweeh and S, only two proper cou- proach for entanglement, the energy of the measured system
plings of the measured system to the pointer and to the eris conserved while the quantum coherence is destroyed.
vironment are needed and the interaction betweendE is This kind of unitary evolution operatdd (t) can establish
not necessary. The requirement of no interaction betwieen a nonseparable correlation among the system, the pointer,
and E will result in a time-independent reformulation of and the environment. Namely, if the initial stat# );,isial
Zurek's triple theory . In our quantum approach of measure=|S)®|A)® |E) of the total system is of a factorized form

System

II. OUTLINE OF OUR APPROACH FOR QUANTUM
MEASUREMENT BASED ON ZUREK'S THEORY

Uan=s{nlexd Ha(da) +Vsa(da,.as)1n)s
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with the system statgS)=3,.c,|n)s, the pointer stateA), be said that quantum measurement is implemented com-
and the environment statg), then the final state of the total pletely when quantum decoherence happens to result in the
system will be so-called classical correlation.
The above argument shows that the vanishing overlap of
: the final states of the inner environment is necessary to ob-
|\If>fma|=U(t)|\If>imtia,=§n: Ce™ " |N)s®|An) ®|Ep). tain the classical correlation after measurement. Wg define
(6) this overlapF,, ,=(E|E,) as the decoherence factor. Now
an immediately following question is in what case the deco-
Here,|A,)=Ua,/A) and|E,)=Ug,|E) are the final states of herence factor becomes zero. Our previous works on quan-
the pointer and the environment entangling with the systenium measurement theof] showed that an ideal entangle-
states|n)s. Thus, a triple correlation among the measuredment appears in the macroscopic limit where the nuntber
system, the pointer, and the environment is established. OI§f particles making up the detector approaches infinity. In the

viously, the reduced density matrix for the composite subpresent case, we assume that thereNadegrees of freedom
ronment is formed byN relative internal variablesy,(k
=3 HE(q) and Vse(ge,d9) =2 ViU (ak,qg) in sum

The off-diagonal terms on the right-hand side of this equa—UEn5

states of the inner pai are orthogonal to one another. In

system formed by the system plus the pointer is in the apparatus. We can peel off of@ morg collective

PZEn: |cal?[n)sgnl®]AL) =1,2,...N). We can imagine that there akeblocks con-
n> (M@ [ANAREnEn). (D forms. It allvV&(qy,qs) (k=1,2,... N) commute with one

tion is responsible for the interference pattern. It is easy to

this situation, an ideal Zurek’s classical correlation

variable as the pointer of the apparatus, and the inner envi-
stituting the inner environment, so we may writh:(qg)
X <An + > cren
m#n ss . - -
another, we can factorize the effective evolution operator
: . : N
see that the interference fringe completely vanishes when the _ H lil
UEn_j71 UEn'

When the measured system is initially prepared.ri)n and
B ) the environment in a factorized sta)=11}_,|El), the
P—En: [Cal [N sn[ @A) (Ay| ®) environment will obey a factorized evolution

N N
results from the ideal entanglement with the correlated com- : - o
lly= 1y = Ll glil
ponents|E,) orthogonal to one another. [E)—[Eq >—J.Hl |En >—]1:[1 UEnEY)a (10
The above Zurek’s classical correlatifi?] just describes
the fact like the weather forecast impersonally predictingentangling with the system stae). It results in the factor-

whether it rains or not tomorrow. Equati@?) deterministi-  jzation structurd5] of the decoherence factor
cally tells us the classical correlation that the system |ajn

when the pointer is just ifA,)) with probability|c,|2. This is N o

unlike the quantum entanglemef8)==3c,|n)®|A,) that Fmn=11 (EYEUD). (11)
not only indicates the correlation betwegr) and|A,), but =1
also simultaneously tells us the correlation with probability

- . Since each factofEU|EDNY in F., . has a norm less than
pn=2n'|sn,icnf|2 between any superposition stats,) (En|En ) e

unity, the product of infinite such factors may approach zero.

= En,snnf|n') of Sand the corresponding one This investigation was developed based on the Hepp-
Coleman model and its generalizatiqi@s8] and was applied
\F 1 to analyzing the universality of the influence of the environ-
|to) = E? SonCn’[An) ment on the quantum computing proc¢8$

Ill. POINTER MODEL FOR QUANTUM MEASUREMENT

of A. This is becauséS) can also be reexpressed as
IN INTRACAVITY SYSTEM

|S>:E PalS) @ |t,). (9) In this section and the subsequent section;, W_e_will_use an
n exactly solvable model based on the over simplified intrac-
avity system to demonstrate our central ideas.
In fact, the classical correlation does not say anything about Consider a cavity with two end mirrofas in Fig. 2, one
the correlation of different pairS,) and [t,) but for the  of which is fixed while the other is treated as a macrosco-
original pair|n) and|A,), and its prediction is independent pic object consisting ol particles of massn; with posi-
of what to be measured. On the contrary, what the quanturtion coordinate x; and momentum coordinate; (i
entanglement tells us depends on what we measure accoré-1,2, ... N). The radiation pressure of the cavity field on
ing to the EPR argumem8]. With this understanding, it can the moving mirror is proportional to the intracavity photon
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N—1
[ J
oo HE:E-Zl 7 HiPeiPgj (14)
o b=
L
e, are the free Hamiltonians for the pointer part and the internal
o environment, respectively,
FIG. 2. A cavity with a moving end mirroB and a fixed oné. Vga=—Ga'ax (15)
The moving one is treated as a macroscopic object consistihg of
free particles. is the effective interaction describing the coupling of the sys-

tem to the pointer, and
density. Leta" anda be the creation and annihilation opera-

tors of the cavity with a single mode of frequeney The _ Ni:l t

cavity-mirror coupling is described by an interaction Hamil- Vse=— “ Gia'ag (16)
tonianH,= —EiNgixiaTa, whereg; is coupling constant de-

pending on the electric dipole. describes an interaction between the system and the internal

In this situation we describe the cavity-field dynamicsenvironment. Here
with the free HamiltonianHs=wqa’a. This cavity-field-
mirror coupling system can also be used to detect the photon m N-1
number in the cavity by the motion of the mirror. Obviously, Gi=<gi— —'gN), G=>, ¢ (17)
the total Hamiltonian governing the motion of the mirror is M =

N o N are the effective coupling constants, and the mass maigx
p i .
H=wealat D) 2r|n “afa> gix;. (12) defined by the matrix elements
i=12m i

) ) ) o ) Tijzmi5ij+m. (18)
By taking the moving mirror as a whole, this intracavity My
model is associated with the interferometric detection of the ) ] ) o o
gravitational wave[10—17. This system has already been This expression ofr is obtained by substituting the indi-
studied quite extensively by many authdt], under the Vidual laboratory coordinate
assumption that the moving mirror is a macrocosm without
internal structure. Like the discussions in these previous ref- 1 D
erenced10-17, we also assume that the oscillation of the XN_m_N XM 4 m;(&;+X) (19
movable mirror is so small that the frequency of the single-

cavity mode does not undergo a considerable change due g the interaction term- a'asNgix; of the total system
the displacement of the mirror. Hamiltonian.

The above-described physical system can be viewed as a | this model the couplings of the system to the pointer
quantum measurement system, in which the cavity fieldynq tg the environment can be turned on or turned off simul-
monltore_d by the macroscopic mowgg mirror is to be Mea+aneously, folVs, andVeg are proportional to the same cou-
sured. Sincg¢Hs,H,]1=0 and[Hs,Zip{/2m;]=0, the mov-  pjing constant. Physically this is reasonable as the pointer
ing mirror has no influence on the cavity field. On the otheryariable is a reflection of the collective average effect of the
hand, different eigenstates) of Hs can imprint on the internal degrees of freedom of the macroscopic apparatus.
moving mirror differently. Indeed, the interaction term another remarkable character of the above model is the ab-
—n3]g;x; implies that different forces will act on the mov- sence of coupling between the pointer variable and the inner
ing mirror when the cavity is prepared in different numbervariables ofA. Physically this is just what is required of an
states|n). We notice that this is a typical characteristic of ideal measuring apparatus, whose effective inner motion
nondemolition measuremefit3]. should not directly affect the reading of the pointer. In fact

We take the c.m. positiorx=M‘1EiNmixi to be the this property guarantees that a triple entanglement will form
pointer of the apparatus—the moving mirror and the relativedynamically from a factorized initial state. This just realizes
coordinates{;=x;—x(j=1,2,... N—1) to be the internal our central ideas in Sec. II: the decoupling of pointer variable
variables. HereM == ,m; is the total mass of the moving with the inner ones in the apparatus and the factorization of
mirror. We denote the conjugate momentaxafnd ; by p, ~ the inner environment with respect to each inner variable.
and p;. Then, we obtain an interesting realization of
Zurek’ s triple model with the time-independent Hamiltonian IV. EXACT SOLUTION WITH FACTORIZATION

FOR IDEAL ENTANGLEMENT

N—-1

H=HstHatHetVsatVse, (13 Now let us consider the exact solution to the dynamic
evolution problem of the intracavity model introduced in
whereH = pf/ZM and Sec. Il. To this end we invoke a canonical transformation
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N-1 peaked on the position of c.m. We also assume that the c.m.
7= E Ujé, i,j=1,...N-1 (20 of the moving mirror is just in the position eigenstgXe and
=1 the cavity is initially in a coherent statpw)=3c,|n),

2 . . .
from the inner variableg; to a new set of canonical vari- Where c,=e 1{2‘04 a"/nl. In this case using the effective
ablesz; . Here,U is an (N—1)(N— 1) matrix diagonalizing ~€Vvolution matrix of the pointer,
the mass matrix, i.e., U7UT is diagonal. Denote the con- 2
jugate momenta of and %; by p, andp;, respectively. The U= exp{ —i (& -G nx)
inner environment is described by the new internal variable nx

2M
{m}. Then, the total Hamiltonian can be reexpressed as ) . o )
with respect to the cavity Fock stdte), we explicitly obtain

the triple entanglement

t], (26)

p2 N-1
H= - —Ga'ax+ >, (—,piz—fiaTaﬂi) +woa'a,
=1 '

2M 2m
1) |W<t>>=§ ca(D)|N)Y® Xy @ |Ep) (27)

where the eigenvaluem; of matrix 7 are the effective
masses with respect to the new coordinateg}; f;
=21Q1UjTi represent the strengths of forcgs on eaf:h inner Co()=cpe (120t |y y=U ]x),
coordinater; by one photon of the cavity field. Obviously,

the inner motion of the moving mirror is factorizable since and
the effective HamiltoniaH gg= =H4g is only a simple sum

of the single component,

at any instanceé+0. Here,

N
[En=Uen()]2(0)) =11 UL, 0)).

H E(aTa)zip?—f»aTa i (22)
S om i 7i -

We can also calculate the decoherence factor with factoriza-
tion
This direct sum structure results in the factorization of the N
effective evolution matrix defined by 1 el
Fmn(t) :<En|Em>: H <En |Em >
N—-1 j=1
Uen(®=(nlu(dln)= 11 Ve,

N
Ejljl GIUE UL

2
i P
| = — —_— . .
UE”(t)_eX{ '(2mi’ nf'”'>t 23 to give the decaying norm
frn(D)=|Fmn(t
—itp?/2m; ainf;t2p;/2m, : n?fie o= [Fonl0)
=g "Pilem gt PiMi ey infit oy —i——|, N-1 4 2,2
6m; 2 2 t a“t
i (24) =expg —(n—m) 1_21 fi - +T . (29
32m,a?

where|n) is the Fock state and (t) = exp(—iHt) is the evo-

lution matrix of the total system. Here, we have used thdn Fig. 2, the decaying behavior of the decoherence factor is

Wei-Norman algebraic methofll4] to rewrite the single- demonstrated for differerl¥. It is seen that a decoherence

particle evolution matrix. process indeed happens tas«, but it does not obey the
Without loss of generality, we assume each inner composimple exponential lave™ "' In a long-time scale, the tem-

nent of the moving mirror to be described by the sameporal behavior of decoherence is described by

Gaussian wave packgat) of width a, i.e.,
packh F(t)~exd —(m—n)?T't*]

1/4
<77i|i>:( 2) e 7 (25 with I'=3N'f7/32m{%a. If we define the characteristic
2ma time 4 of the decoherence processbry) =e ™1, then(see
Fig. 3

This is a physically reasonable preparation of initial state.
Thiij? bepause the .initial state of _the inn@r(o,.{nj}) rq=[(m—n)2T" ¥4, (29)
=II;_;(ni) also defines the factorized Gaussian wave

packet ®(0{&})=TI{"(&]i) in & representation, since This shows that the long-time behavior of decoherence de-
Eigiz is a canonical invariant, i.eEifizzziniz. A Gaussian pends directly on interaction.

wave packet(&|i)=exd —(x—x)%4a?] implies basically In the macroscopic limiN—o or for the long-time evo-
that the particles composing the moving mirror are almostution t—o, the vanishing decoherence factof&,|E,)
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of the classical limit of the motion of the pointer as a large
system. In general, for certain particular states, the classical
limit of the expectation value of an observable should re-
cover its classical value form. Such quasiclassical states can
give definite classical trajectories of a particle in the classical
case. In this sense the mean-square deviation of the observ-
able is zero, and accordingly the expectation value of the
position operator defines a classical path. In the following
section we will discuss a similar problem in greater detail in
association with the random phase induced by Heisenberg's
momentum-coordinate uncertainty.

t V. CLASSICALITY OF APPARATUS DUE

FIG. 3. The decoherence factei, plotted as a function of time TO POSITION-MOMENTUM UNCERTAINTY
and for various values of the particle numibérWe have taken the
mass of a particlem=10’6 kg; the wave width of the Gaussian
wave packet as the length of the caviy= 105 m; and the force
strength on each inner coordinate=10"**kgms 2. The time
unit is second. The real particle numder= 10Pn.

In the above discussion the quantum realization of mea-
suring process boils down to the appearance of decoherence
in the entanglement between the measured system and the
measuring apparatus only due to the coupling of the mea-
sured system with the inner environment rather than that
leads to an ideal triple entangleméti with invariant prob- between the pointer of the apparatus and the inner environ-
ability distribution p,=|c,(t)|2=]|c,|2. ment.

Finally we need to show that the measuring process we 't is well known that quantum decoherence can be ex-
modeled above is ideal since the pointer states entanglin@'amed in two ways: the usual explanation for decoherence

with each system state are orthogonal to one another, namef} @ which-way experiment based on Heisenberg’s position-
(Xn|Xm)~ 8 m fOr m#n. In fact, in the coordinate represen- momentum uncertainty relatidri5], and the current expla-

tation, the pointer statg,) can be calculated explicitly as nation based on quantum entanglement, which is not related

to this uncertainty relation directly. In the latter explanation,
B [—iM ([=nGt+2M(x—X)]?
(X|Xp)= exgi SVt

nG%3

* 6M

nGtx—

(30

I

This means that the width of each wave packek,(t)) is
zero and then the overlaps

87M
3Gt?

(31

|On,ml =[{Xn(1) [Xm(1)] = é(m—n)

of wave packets vanish famn#n. This indicates an ideal

the quantum correlations between the environment and the
considered system are responsible for the destruction of
quantum coherence. In the present paper the considered sys-
tem is a composition formed by the measured system plus
the pointer. In fact, in the previous sections we have adopted
the second viewpoint to deal with the quantum measurement
problem. In this section we will see that the first explanation
can also work well in our modeled quantum measurement
problem. To this end, we first show that the back action of
the inner environment on the system plus pointer implied by
Heisenberg's position-momentum uncertainty relation will
disturb the phases of states of the system plus pointer. This
result is shown in Ref.16].

classical correlation between the measured system and the L€t US rétum to our model mentioned in the preceding
pointer of the apparatus in our intracavity model. ThereforeS€ction. We assume that the initial steg of each compo-
our triple model for quantum measurement leads to an ided]€nt Of the inner environment is a real wave packet, which is
quantum measurement in a purely quantum dynamical Wa?ymmetnc with respect to bot.h the canonical coordingte
with neither the introduction of the hypothesis of classicality@nd the corresponding canonical momentpym
for the apparatus, nor the artificial control of interactions. ) .

As shown above, an ideal entanglement of the double (n)=(ilm;li)=0, (p;)=0.
system(formed by the measured system plus pointer of ap- ) _ )
paratu$ with an (inne) environment is a necessary element\We will not need.|ts concrete form. Rgther we assume it to
to force the apparatus to behave so classically that a deeR€ Of the Gaussian type with the varianag=A»; in 7;
tanglement process occurs in the double system. AnothéPace. Here, we adopt the definition of the standard deviation
necessary element to implement quantum measurement is the
ideal entanglement between the measured system and the Ap=((p—(d)?)=(P?)—(¢)?
pointer of apparatus. The work of this mechanism depends
on the choice of the form of the initial state of the pointer.for a given phaseb. Physically, onceé\ 5; is given, the vari-
For a general initial state of the pointer, it is difficult to ance ofp; cannot be arbitrary since there is Heisenberg's
obtain an explicit condition under whicfx,|x,,) becomes position-momentum uncertainty relatidnr;jApjz%. In the
zero. The solution to this problem concerns the consideratioprevious two sections, the conclusion drawn seems to depend

(32

(33
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on the choice of the concrete form of the initial state, butteed by Heisenberg’s position-momentum uncertainty rela-
now we can argue that this is not the case with the abovéon AnJApjz%. In fact, becaus®; is a linear combination

consideration. of ; andp; and
After a measurement, the final state jo& environment
componenty; entangling with the system-pointer state (pimi)+{mpi)=0 (41
®|x,) is just
, , for the real wave-function average, there should be a quan-
[EM=UL0]j). (349 tum limit for its varianceAD; :
The j'th factor in the decoherence factdt,,,=(E|E,) t . \2
=II}L,F},, can be written as AD;-=\/(A7IJ-)2+ WADJ)
Fhon=(ENERD = (jlexdi ph1) (35 1 12
=\/(Ap;.)*+ 2<W)
by the Wei-Norman algebraic method. Here, the time- (An;.)
dependent global phase is neglected. We can understand the
Hermitian operator If one wishes the highest possible fby;, one should not
make QA 7 .)? arbitrarily small, because this will makep;
&H]n: (n— m)fitf)j (36) arbitrarily large. So it is optimal to take\(, .)?=t/2M, and

we have the finite minimumnyt/M. So we have a minimum
in terms of the generalized phase difference betw@f) ~ Of phase uncertainty

and |EY) for )
Apmn= \/N M-
~ t .
Di=——p;+ . (37)
2m This result qualitatively illustrates the many-particle amplifi-
o cation effect of uncertain phase change.
The standard deviation The direct relationship between the two explanations for
. decoherence can also be revealed explicitly in our present
All=(n—m)f;tAD; (38 model. As a matter of fact, this problem has been tackled by

Stern, Aharonov, and Imary, with the observatid#y,|E,,)
=(¢' ¢’L11]n) [17]. Consider the specially chosen initial state of
Gaussian typén;|j) = (1/2ra?) Y exp(- 7//4a?). Since the
standard deviation ; is the widtha of Gaussian wave
packet and the uncertaintyp; of the momentum fluctuation

is proportional to timet and represents a random phase
change ofin)®|x,) by thej’th inner component.

The whole random phase change |[oj®|x,), contrib-
uted by the inner variables, is determined by

N-1 is 1/2a, we have
bmn= E ¢£r]1]n' (39
=1 t 2 2
(ADy)?= As P +(A7)?=(AD)?=——+a%
Physically, each variable of the inner environment can exert m 16m’a

a different impact independently on the different components
of the entangling states of the measured system plus thEhen we can probe the relationship between the two expla-
pointer. If we consider each uncertain phase change by thigations by using the exact solution in the preceding section,
perturbation as an independent stochastic variable, we have

N—1
) T Fon= 1] expg —(n—m)?f?t?
A=\ 2, (Ad? I
=N min{f(Apl1)2[j=1,2,...N=1}. (40) 1/ 1 1

We observe that the phase uncertaintyp,,, caused by all (Ap;) (Aﬂ ,7_)
inner variables can be amplified to a number much greater t
than 2w whenN—o0. Then the system-pointer states acquire N—1
a very large random-phase factor. Therefore, the inner envi- _ H exp[—(n—m)zf-ztzl(AD)z]
ronment washes out the interference of any two components j=1 "2 !

of the system plus the pointer. N—1
In the above reasoning we make the connivance that there =ex;{ 1 i

exists a finite minimum of\ ¢l . This point is just guaran-

1
=ex;{ - E(A(ﬁmn)z}- (42
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This result just shows that the conditiéf,,=0, which is  tion of path detection on the atom’s momentum is too small
required by an ideal measurement, implies a large randonte explain the disappearance of the interference pattern.
phase variance X¢,)2. Furthermore, we can conclude  We would also like to emphasize that the arguments about
from this exact solution that the large random-phase changie quantum description of the macroscopic object such as
just originates from Heisenberg’s position-momentum uncerthe moving mirror is closely related to the Sctimger cat
tainty relationA nl-ApJ:%. In the terminology of classical problem[19,20, a conventional topic of quantum decoher-
stochastic processy; and p; can be regarded as a pair of ence concerning the state superposition for macroscopic ob-
uncorrelated stochastic variables, but the uncertainty relatioject. Most recent progress has been made in demonstrating
AnjApJ:% exerts a constraint on them. This constraint justthe Schrdinger cat state in various macroscopic quantum
reflect the uncertainty of phase change in the measuring preystems such as superconductors, laser-cooled trapped ions,
cess. photons in a microwave cavity, andddnoleculeq21]. Ac-
cording to the viewpoint in this paper, a system with many
VI. CONCLUDING REMARKS microscopic degrees of freedom can behave quantum me-
chanically only if it is sufficiently decoupled from the envi-
The above arguments shed a new light on the understangonment and the phases of its inner states match very well.
ing of the relationship between Bohr’'s complementarity prin-  |n summary, we have proposed an alternative Zurek’s
ciple and Heisenberg's uncertainty principle. It is well triple approach for quantum measurement with a time-
known that the principle of complementarity usually refers tojndependent Hamiltonian. The calculation for a specific
the wave-particle duality in quantum mechanics. It says thafnodel shows the possibility of implementing our approach.
the quantum-mechanical entity can behave as a particle @f should be pointed out that in the above discussed ex-
wave under different experimental conditions, but these tw@remely idealized model, the interaction between the par-
natures excluded each other in the experiment. For exampl@eles composing the moving mirror has not been considered.
in the famous Yang's double-slit experiment, the matter wavesyt we do not think this is a big problem. Starting with the
of a single particle can apparently pass through both slitghain idea developed in this paper, we can discuss a more
simultaneously. In this sense the experiment emphasizes thaneral situation with inter particle interaction in a similar
nature of the wave and so there forms an interference patterfay. Although the exactly solvable model in this paper might
On the contrary, if a which-way detector is employed to de-not exist in reality, the idea of quantum adiabatic separation

termine the particle’s path, the interference pattern is depr the master equation is physically meaningful.
stroyed. This is because the which-way experiment focuses

on the nature of particle with a classical location, “path.”
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