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Scattering of electrons by a Bose-Einstein condensate of alkali-metal atoms
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The scattering of an incident electron by a pure Bose-Einstein condensate of alkali-metal atoms confined to
a three-dimensional harmonic-oscillator potential is investigated to give the corresponding differential cross
section. It is shown that for the elastic scattering process the differential cross section is proportional to the
square of the number of condensed atoms, and hence can be called the “coherent scattering.” For the inelastic
scattering process, the stopping power is obtained by considering the state of the center of mass and the internal
electronic state of the condensed atom being excited separately and simultaneously, which is found to be
proportional to theé power of the number of condensed atoms when the binary collision interaction between
atoms is taken into account.
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[. INTRODUCTION energy of the scattered particle is small, and scaled&s
~N&® when the energy of the probe atom is of the order of
The phase transition of the Bose-Einstein condensationg single excitation in the trapped potential.
(BECs9 is one of the fascinating predictions of quantum- It is well known that an incident electron can excite an
statistical mechanics, which states that below the criticahtom from its ground state to an excited state under the in-
temperature, a macroscopic population would condense iteraction of the incident electron with those bound electrons.
the ground state of the system consisting of identical bosonsimilarly, it is possible that the incident electron excites the
Following the outstanding experimental discovery of liquid ultracold atom being in the BEC state and therefore, the scat-
“He, the recent experimental realizations of BEC in severafering of electron also provides a way of probing atomic
systems of ultracold alkali-metal atoms again verify this pre-BEC.
diction and have become a vigorous topic in phy$ics5|. In this paper we give a theoretical study of the scattering
This impressive progress not only opened the possibility obf electrons by a BEC of alkali-metal atoms trapped in a
investigating macroscopic quantum phenomena but also othree-dimensional3D) harmonic potential. For the case that
fered the chance of applying it in various fields. Since thean incident electron is scattered by a single atom, the origin
experimental demonstration of atomic BEC in 1995-3], a  is usually situated at the position of the nucleus, and then the
large number of problems related to BEC have attractedtate of center of mass.m) may be considered to be un-
many experimental and theoretical efforts for the purpose othanged in this process. However, for the present system
understanding and utilizing this phenomenon. So far mucltonsisting of the incident electron and atomic BEC, the c.m.
research on the optical propertigs-9)], statistical properties wave function of atomic BEC should be taken into account
[10], interference and phase propertj@s11-13, tunneling  because the interaction of the incident electron with a large
effect[14,15, elementary excitationgl6—18, atomic scat- number of atoms is involved. Because the state of the con-
tering[19-21], and other propertie22,23 of atomic BEC  densate is symmetric under all atom pair permutations, the
has been undertaken. In particular, it has been pointed ouwfrigin of the system should not coincide with the position of
that the scattering of photori8] and atoms[19-21 by  a given condensed atom.
atomic BEC could provide an effective method to investigate As a matter of fact, because the incident electron is iden-
various properties of atomic BEC. In fact, as an importantical to the atomic electrons, there are exchange effects or a
method, the scattering techniques have been frequently utiearrangement of the atomic electrons under the interactions
lized to probe the structure and obtain other related informaamong them. Hence, it is a nontrivial task to treat this prob-
tion of the target particle or object. In the pioneering workslem rigorously. For simplicity, in the present paper the veloc-
on the scattering of photons and atoms by atomic BEGty of the incident electron is considered to be large com-
[8,21], the dependence of the differential and total cross segared to that of valence electrons of the condensed alkali-
tions on the number of condensed atoms has been predictadetal atoms, that is, we consider the scattering of a fast
For instance, Lewenstein and co-work¢By have shown electron by an atomic BEC. Under this condition, the ex-
that the number of scattered photons can increase dramatihange effect and rearrangement of atomic electrons can be
cally as the BEC phase transition occurs and the part ofieglected due to the little overlap between the relatively fast
coherent scattering spectrum is proportional to the square dficident electron and ultracold atoms’ bound electrons in mo-
the number of the condensed atoms. While for the scatterinnentum space. Moreover, the spin interaction between the
of atoms by atomic BEC, ldziaszek and co-work¢pd] incident electron and atomic electrons and spin-orbit cou-
have shown that the total elastic cross sectignscaled with  pling are also neglected as an approximation.
the number of condensed atoriNg as ae|~NS when the This paper is organized as follows. In Sec. Il the problem
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of scattering of an incident electron by the atomic BEC con- In this way, applying the atomic creation operator, the
sisting of N alkali-metal atoms is outlined. In Sec. Ill the ground stat¢¥y) occupied byN, alkali-metal atoms can be
differential cross section for the elastic and inelastic scatterexpressed as

ing of the electron by atomic BEC is given. In Sec IV the

energy loss of the incident electron in the inelastic scattering

process, i.e., the stopping power, is discussed by considering [P )=
the c.m. state and the internal electronic state of an atom in g
the Bose-Einstein condensed state being excited separately

and simultaneously. Furthermore, the stopping power is
found to scale aN7’5 as the binary collision interaction be-
tween the condensed atoms is taken into account and scale
NZ for an ideal BEC with thes-wave scattering length being
zero. In Sec. V the main results are summarized.

(Bgmy)"?/0.0), 23

1
JNo!

where the statd0,0) denotes the c.m. and internal vacuum
states of the atomic BEC sample and should be considered as
{2 direct product forn0,0)=|0)¢ m®|0Yinter-

Now let us turn our attention to the discussion on the
scattering of an incident electron by the atomic BEC sample.
Suppose that the incident electron with magsand charge

Il. SCATTERING OF AN INCIDENT ELECTRON (_e) has momentunﬁlzi and is scattered by the interaction

BY AN ATOMIC BEC with alkali-metal atomic BEC into momentufik; . The in-
teraction of the incident electron with the atomic BEC reads

H = ENO Vi, in which V; is the interaction of the incident
eIectron with theith atom and has the following form:

In this section we study the scattering of an incident elec-
tron by a pure BEC sample consistingM§ identical alkali-
metal atoms with nucleus char@e and masdV. In second
guantization notation, the ground canonical Hamiltonian de-
scribing atomic BEC reads

Z
= 2 - (2.9

h? -
B mvz+vtrap(R)

HBEC: d3§\1}+(§)
wherer is the position of the incident electroX; andx;; are
1 . o~ L~ the positions of theth nucleus and thé¢th electron of the
+§U0‘P+(R)‘I’(R)}‘P(R), (2.1)  atom, and where the spin-spin and spin-orbit interactions
have been ignored.
Under these interactions, the incident electron will be
where Vtrap(li): %M(wfRiﬂL w R2+w3R3) with angular scattered b)_/ the condensed atoms and, any atom.in the .BEC
can be excited from the ground state to one of its excited
tates Hence the BEC sample either remains in its ground
te|‘1'g) or is excited to one of its excited states. The

fints 1. 2 and 3 ar d to den ndz component former is called the elastic scattering process because the
scripts 2, <, a are used to denejg, a COmMponents ., wijent electron energy remains constant and the later is

of the corresponding quantities, respectively. Wheregs . known as the inelastic scattering process since the incident

— 2 ; i N i

= 4h a.S/.M is the CO”_taC‘ Interaction mduced_ by the bi- electron will transfer part of its kinetic energy to the atomic

nary collision characterized by thewave scattering length BEC

as, V7 (R) and W (R) are the boson field operators which  The initial state of the incident electron and atomic BEC

create or annihilate an atom at the positRnrespectively, system can be written as the following direct product form:

and fulfill the standard bosonic commutation relation

[V(R"),¥"(R)]=8(R-R'). o ) =|k)®|Py), 2.5
Under the Hartree-Fock approximatip®4], for the con-

densed atoms confined to the 3D harmonic-oscillator poten-

tial, we can suppose that, ., (R)=(R|n,m) is the single- where |k;) refers to the initial state of the incident electron
L ’ | 1

particle wave function of an atom in the c.m, stdte  With momentum7k;, which is usually expressed dk;)

=|n;,n,,ng) and internal state|m), where |n,m) =L 32exfik;-r] using the box normalization.

=[ny®|m,), |m;) with 1=0,1,2 ... denote the configura- It is of great interest to consider the final stdi#;)

tions of the atomic ground state, the first excited state, the-|k;)|¥;) of the system withk;)=L~32exdik ] the

second excited state. ., respectively. Therefore the cre- final state of the incident electron afw;) the atomic BEC

ation operatorB,:fml which creates an atom in the c.m. statestate after the scattering process. In the present paper the

[ny and internal statém,) can be defined as cases in which the incident electron excites more than one
atom simultaneously are neglected and for simplicity we
only consider the single-particle excitation process. Thus, us-

+ 35 S ing the atomic creation operators, the excited sfdte) of
Bom, f d*R o m (RIVT(R). 22 the atomic BEC can be chosen as

frequencieswq, w,, andws, is the external trapping poten-
tial for a single particle whose c.m. displacement from theS

center of the trap is located El(Rl,Rz,R3). Here the sub-

043604-2



SCATTERING OF ELECTRONS BY ABOSE .. PHYSICAL REVIEW A 64 043604

2 N
W)= By (Bom) 20,0 (Hi= s S (W fexplid- X,
J(No= 1+ 85,00, m)! 0 ’ L3 &
2.6 2
x| 2 eiq-ry) =2y, (210

Since we only discuss the case of fast electron scattering,
in which the velocity of the incident electron is supposed L , . .
larger than that of the bound electrditgpically, of the order ~ Wherefi;=X;; —X; is the relative coordinate of thigh elec-
c/137, wherec is the speed of light we can treat the present tron bound by theth atom. For theth atom we make use of
problem using the time-dependent perturbation theory. ithe coord_lnate transformatlon between the relative motion
should be noted that the main requirement for the validity of2nd atomic ¢.m. motion foZ electrons and nucleus,

the Born approximation ig €%/% v;<1, wherev, = fik; /m, is z
the initial velocity of the incident electron. In the opposite R =X + EF-- 21
limit, where Ze?/4v;>1, the Born approximation is no b j§=:1 MU 213

longer valid, and the system may make many successive
transitions. Then higher approximations must be consideredvhereR,; is the c.m. coordinate of th¢h atom. Furthermore,
or one appl'les other methods such as the method of'tk\(,?,e can write the equation exg(X)=exp(q-R) under the
Green function, the method of partial waves, and Class'caépproximation e)@EjZ:lme/Mdﬂj]El, since the sum is ap-
approximation, etc. In general, the scattering of a slow elec-

roximately zero. The reason is twofold. On the one hand, it
tron from an atom may lead to the exchange effects or thé y

. S . known that the alkali-metal atoms are all hydrogenlike
rearrangement of atomic electrons, wh|ch Is not cgn3|dgre toms, that is, they all have only one valence electron outside
in this paper. For the fast electron scattering under investiggy
tion, in the first Born approximation we can immediatelyS
write the differential cross sectiotho/d() in the following

form:

e closed shell, and their inner rare-gas configurations are
pherically symmetric. Thus, Eq2.11) can be approxi-
mately expressed aéiz)Zﬁ—(me/M)”ﬂ with ﬁ being the
relative position of the valence electron of tith atom. On
32 the other hand, because the mass of electron is much smaller
d_(T:( mel ) ﬁ|(H e 2.7 than the mass of the alkali-metal atofesy.,m./M is of the
dQ | 27r2) K VI ' order of 104, 10°°, and 10 for lithium (Li), sodium(Na),

and rubidium (Rb), respectively, the guantity Ejzzlme/
where kiE||zi|u ka|l2f|, and  H)ir=(H ) Mg-f;; can be P%glicted in comparison wihri;, so that

exf Zj_1(me/M)q-f;j]=1. This leads to the result

=<¢f|2i'\':°lvi|¢i> is the matrix element between the initial

and final states of the system under the interadten z
In order to evaluate the differential cross section, it is exp(id-)?i) > expig-fij))—Z
necessary to calculate the matrix elemat)(; =1
z
N = §.R. 2 PG ) —
1 . o 0 Ze? =exp(ig-Ry)| 2, expiq-rij)—Z|. (2.12
(Hl)if:_gJ’d Fexdiq - r)(We >, | - — =1
L =1 Ir—=Xil

In doing so, Eq(2.10 can be further rewritten as

W), (29 ame 2o )
] ’ (=5 3, (Vilexeid-R)

in whichg= IZi — k¢ denotes the change of the wave vector of
the incident electron in the scattering process. It is directly
integrated over to give the equation

X |\I’g>, (2.13

zZ
121 exp(iq-fij) —Z

which is the starting point of the following discussions on

42 No z the differential cross sections.
(Hl)if:W_Zl (Wl 21 exp(iq- Xi;)
= = lIl. THE DIFFERENTIAL CROSS SECTION
f e o In thi ion we will calcul he differential cr -
~Zexig- X)) I\I’g>. 2.9 . this sectio  we will cacu'atet eq erential cross sec
tion for the elastic and inelastic scattering processes. We in-

troduce the form factor of a single atom defined by

In obtaining this, we have wused the integral

z
[ d3F exp(q-F)/r =4mlc?. Eay= = G 31
It is useful to rewrite Eq(2.9) as 1) Z<m'|J21 exiq rj)|m0>' (31
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For the elastic scattering process no energy is transferreshere |m) is the eigenstate of the Hamiltonian of the 1D
from the incident electron to the atomic BEC, which meansharmonic oscillator under consideratiob(a) is the dis-
that the final state of atomic BEC is the same as its initialpjaced operator and takes the form
state withk;=k;. Then, from Eq.(2.13), we have

2

47€*NyZ A D(a)=expaa’—a*a), 3.7)
(H)ir=—gz— (Olexdid-RIO)Fo(@ 1], (32

that satisfies the equations

where the subscrigt which denotes different atoms in the - A . R
state of BEC, has been dropped because only the single- D(@)aD'(a)=a—a, D(@)a’D'(a)=a'-a*, (3.8
particle excitation process is considered.

For the inelastic process, the ¢.m. and internal states of @t which the quantitya denotes the translational parameter,
atom can be excited separately or simultaneofisge Eq. Which may be real or complex. It can be easily found that for
(2.13]. Thus using the state given by E@.6), one gets the case ofm=0, the displaced number stale,0) is the

well-known coherent state.

47e?\NoZ . ~ Furthermore, as an interesting application of the displaced
(H|)if:T(n|exmq -R)|0)F(q) number state, the following equation has been obtaj@si
: expl —|al?] a2 "™ m! |-
(I#0 or n#0). 3.3 |<||D(a)|m>|2= i le m(|a|2)
Substituting Egs(3.2) and(3.3) into Eq.(2.7), the expres-
EEJQ()srr:‘gr the elastic and inelastic differential cross sections (for 1=m), 3.9
do 00200 4N27252 where L'm’m(x) is the associated Laguerre polynomial with
GO (qay® KOlexpliq-RIO)PIFo(d)-1],  argument )
(3.4 To evaluate the result ¢fn|exp(qg-R)|0)?, we rewrite the

matrix elementn|exp(q-R)|0) as
dope " _ ANoZagky

[(n|exp(iG - R)|0)2[Fy(d)|2

dQ  (gap)’k (nlexp(ig-R)[0)=T, (njlexpiaq;R)|0) (j=1,2,3),
(1#0 or n#0). (3.5 (3.10
In Egs.(3.4) and(3.5), ag=%2/m.e? is the Bohr radius. in which the subscripi=1, 2, and 3 corresponds to tikey,

From Egs.(3.4) and (3.5 one finds that for the elastic and.z components of the correspor}ding phys_ical guantities.
scattering of electrons by the atomic BEC, the differentialNOtice that in the 3D external trapping potential, the follow-
cross section is proportional to the square of the number dfd relations:
condensed atoms; in other words, a dramatic enhancement of

the differential cross section appears, hence this process 1 | h .

could be called the “coherent scattering” of electron by the Rj= \/;(a]ﬁ—aj)L]— o L= M_wJ (1=123),
atomic BEC in analogy with the scattering of photons and (3.11
atoms by atomic BE€8,21]. For the inelastic scattering pro-
cesses, this kind of “coherence” is absent. Moreover, it

should be noted that for both elastic and inelastic scattering

process, the c.m. states of the condensed atoms play an im- . . . L
portant role because of the influence of the squared modult@n be obtained immediately. Heig = A/Mw; with |

of the matrix elementén|exp(d- §)|O) on the corresponding  — 1, 2, and 3 are the geometric mean size of the c.m. ground
. ) ) pla P 9 state, and also the characteristic length of the trap. As a con-
differential cross section.

Now let us turn our attention to calculating the quantity sequence of the theory of the displaced number state, we

- have
[(n|exp(d-R)|0)|* by means of the theory of a displaced
number stat¢25]. To this end we first outline the properties

Di(a))=exp(iq;R)), a;=iqL; (j=1,2,3, (3.12

of the displaced number states for a one-dimensi¢hB) [(n|exp(iq - |i)|o>|2:]_[ L'|aj|2”1 exp(—|aj|2)

harmonic oscillator described by the Hamiltoniad (!

=hw(a'a+3), in whicha' anda are the creation and an- 1 [q2L2\M 2 2

nihilation operators, respectively. The displaced number state = H _(ql_l> exp( _ ql_l)

|a,m) associating with the harmonic oscillator is defined as Pty 2 2
|a,my=D(a)|m), (3.6 (j=1,2,3. (3.13
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Based on this equation, the differential cross section focorresponding to theth c.m. stateln). Then for the case
the elastic and inelastic scattering can be explicitly rewrittenyhere only the internal state is excited, i.a=0 in Eq.

as (4.3), we find
do (?0—’00) 4N3Z%a3 p( gL ) dE 47Tp0NOZe f ma dg
2 ! - — —_— Olexp(ig- R)|0)P—,
90 qa0)” % I[Fo(d) —1]| H ex > ax X|< lexp(ig- R)[0)[*— q
(3.149 (4.4
dg00-nD) 4N 7222k 2| 2\ n; wherev;=7k; /m, is the initial velocity of the incident elec-
Tinel -0 jo fH ! (q’ ) tron. In this calculation, the famous result
dQ (dag)’ki 7 (np!l 2
1 ﬁZqZ
2 (ereo)[F@*=5 5 - (4.5

2 2

gL
><exp( ' )|F.<q>|2 (3.15
presented by Gottfried and Beth26], has been used.

IV. THE STOPPING POWER Making use of the result given by E¢3.13 and arrang-
IN THE SCATTERING PROCESS ing ny=n,=n3=0, Eq.(4.4) becomes

In the inelastic scattering process, the kinetic energy of an dE 41poNoZ€*[ [ dmax 1 5, 55
incident electron passing through the atomic BEC would be — 3¢ —m fq - eXp- 5(Q1L1+ asLs
transferred to the condensate by exciting the c.m. state or an n=0 e¥ min
internal state of atomic BEC. Therefore the stopping power, , 5. dq
i.e., the energy loss of the incident electron, play a key role +03L3) F (4.6
and can be obtained by means of the differential cross sec-
tion for the inelastic scattering process. The final result of this equation depends on the detailed form

In this paper, as is usually the case in scattering problem%f potential function.

we are interested in the energy loss of the incident electron =
. i or the case withH=0 in Eq. (4.3), which implies that
along the path. We write- dE/dx, which takes the form only the c.m. state is excited, we get

dmax A0 dE 47 poNoZ2e* My [ max dqg
___pz ~Eo0 | —=——daq, (4.1 - = ef Fo()>—, (4.
0 0.0 Amin dq dx 1=0 Mev;i M Amin | O(q)| q ( 7)

wherep, is the density of atomic BEC trapped in the exter- where we have used the result
nal potential,E,,; denotes the energy of an atom being the

c.m. statdn) and internal statém,), and the quantitieg - s, hPGP
and qmax are the integral limits. ; (En—Zo)nlexplig-R)[0)*= oM (4.9

Note that g?=|q|?=|(k; —k¢)|?=k>+k?— 2k;k; cos6,
where 6 is the angle betweek, andk;. From this relation

which can be explicitly obtained in the spirit of Gottfried and

we can obtain that Bethe[26]. ,
For the case that the c.m. state and internal state are ex-
dor0.0-n1) 2mq dr0.0-nD) cited simultaneously, using the decomposition of the equa-
inel inel _ (4.2 tion (E,—Epo=(g—&0)+(8n—%0) together with Egs.
dq ~ kiks dQ (4.5 and(4.8), the quantity—dE/dx can be expressed as
Using this equation together with E(.5), Eq. (4.1) can dE  4mpoNoZ?e*[ [ dmax/ Mg
- = - F
be expressed as ax mov? fqmin ( 2 [Fi(@)]?
dE 8’7Tp0Noz 1 N dq
_&:W; (Eni—Eoo +Z§n: |<n|exp(|q.R)|0)|2)F}. (4.9
qmax L= 2 N qu P 2 .
X [(n|exp(ig- R)|0)?|F\(§)|*=5 . Note that =,|(n|exp(g-R)|0)°=1, which may be
Amin q directly derived from Eq(3.13. The physical interpretation

(4.3  of this requt is rather obvious because the term
> .l(n| expg-R)|0)?> stands for the sum of the probabilities
In order to evaluate the stopping power, it is useful to rewritethat the c.m. ground state is excited to all excited states, thus
the energy difference §, | —Epo in Eq. (4.3 as (E,, it must equal to 1. Based on the same consideration, we
—Ego=(e1—&0) +(E,—%0), Whereg, is the energy corre- know thats|F|(G)|>=1 as well. This allows Eq4.9) to be
sponding to thdth internal statgm,) andz, is the energy further simplified to
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symmetric harmonic-oscillator potential, i.ev;= w,= w3
(410 =4 andL;=L,=Ls=L=A/Mw. In this case, Eq(4.6)
reduces to

dE 4mpoNyZe MoZ\[ [ dmaxd
_ 2TPoNo (1+ e )[f q

Cdx mg? M. a

Following the Bethe’s treatment with respect to the limits

Omin @Nd Qmax, that is,dmin=ki—ki andgma=2k;, we obtain dE 4mpoNoZet fmax p[ 1 ZLz}dq
-0 T E— exp — 59 —_.
dE _ 47TPoNoZe4 1 meZ 2meVi2 41 dx n=0 Me?; Amin 2 q 41
_&_ meVi2 M I ’ ( . :D ( . 3

. R o Let y=g?, then
wherel is a semiempirical parameter, which is related to the y=4

average excitation energy. This is just the stopping power in 5

the scattering process. Imax o _ L2 2 dg_ Jqﬁm& o Y5 dy
Equations(4.6), (4.7), and(4.11) correspond to the stop- 20I q W 2 2]y

ping power for the case where the internal and c.m. states are

excited separately and simultaneously. From these expreand we have

sions, it is evident that both the form factor and the quantity

3

Amin

|<n|eprd- F?)|0>|_2 determine the value of the stopping power. dE AmpNoZet | 2mgr?
Having obtained the expression of the stopping power in - = >
the inelastic scattering process, we show below the depen- dx n=0 Mevi '
dence of the stopping power on the number of the condensed - ks 2k 2K
atoms. To our knowledge, this is an interesting feature dis- +> (_ '—_) (9max— dimin (4.16
tinguishing the atomic BEC from the normal target object. k=1 2 klk '

For an ideal atomic BEGwhere a;=0) trapped in a 3D
harmonic-oscillator potential under consideration, the den}f q satisfies the condition?q%/2M <% w, the leading term
sity of the atomic BEC can be written agp, in the right-hand side of Eq4.16) becomes—dE/dx|,-¢
=(2m)%¥%(Ng/L,L,L3). Thus the stopping power is propor- =4prNOZe4/mevi2In 2m, vi2/I. Moreover, it can be shown
tional to the square of the number of the condensed atomshat |F,(g)|? will approach unity agj—0. Then under this
ie.,, —(d E/dx)mNS. However, when the binary collision in- condition, Eq.(4.7) can be approximately expressed as
teractionU,=4mr#%as/M with a nonzercss-wave scattering

lengthay is taken into account, the density of the condensed dE
atoms becomeg,=u/U, as the temperature approaches
zero [27], where u is the chemical potential. For the 3D

trapping potential used in this paper, the chemical poteptial ) _ _
takes the following forn{28]: Obviously, theZ dependence of the stopping power in

Eqgs.(4.16 and(4.17) is different, since the total-energy loss
h ( \/M15a \ )2/5 of the incident electron is (Z)(%2g%/2m,) when only the
Mr=7 7 sNoWWo w3 |
2 h

4mpoNoZ2e* m, 2mevi2

- . (417
dx|,_, mev? M I

(412 internal state is excited anti’q%2M when only the c.m.
state is excited.
which can reduce to the results given by Baym and Pethick As shown above, we find that the scattering of electrons
and Timmermanst al.[27] for the spherically and azimuth- by an atomic BEC may be used to determine the number of

ally symmetric potentials. condensed atoms and the density of the atomic BEC by mea-
From Eq.(4.12), one further gets suring elastic scattering cross section and the stopping
power.
w 1 (15a5|\|0>2’5 i1
Po™U, ~ 8wa, | L2212 413 V. SUMMARY

Substituting Eq(4.13 into Eq.(4.11), we obtain the desired In conclusion, we have studied the scattering of an inci-
result dent electron by a Bose-Einstein condensate of alkali-metal
atoms and obtained the differential cross section for the elas-

dE 1 15, \?°N{*°ze* meZ\| [2mew} tic and inelastic scattering processes. For the former, it is
Tdax ag L2L2L2)  2mgp? 1+ M I . shown that the elastic scattering differential cross section is

(4.14  proportional to the square of the number of the condensed
atoms, which indicates the intrinsic coherent property of the
From this expression we conclude that the stopping poweatomic BEC, and we may therefore call this kind of elastic
scales as thé power ofNy, i.e., —dE/dxe N(7)’5. This con-  scattering “coherent scattering” because of the dramatic en-
clusion also holds true for the case of the c.m. and internahancement of the scattering cross section. For the later, we
states being excited separately. calculated the stopping power by considering the internal
Now, as an example, we calculate the stopping power byand c.m. states being excited separately and simultaneously,
assuming that the atomic BEC is trapped in a 3D sphericallyand the dependence on the number of the condensed atoms
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Ny is found to be two power ofl, for an ideal atomic BEC give rise to different influences on the scattering result with
(as=0) and{ power of N, for a nonideal BEC §,#0), the different range of velocity of the incident electron. Some
respectively. This is an interesting feature of atomic BEC andurther discussions will be performed under the condition of
can be used to distinguish the atomic Bose-Einstein condemelaxing these limitations.

sate from normal targets.

The limitations of the present paper are as follows. The
exchange effects of the incident electron and atomic elec-
trons, the rearrangement of atomic electrons, and the spin- One of the authoréC.-p.S) is grateful for the support of
spin and spin-orbit interactions in the scattering process havine National Natural Science Foundation of the People’s Re-
been neglected. However, in practice, these interactions mayblic of China.
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