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Scattering of electrons by a Bose-Einstein condensate of alkali-metal atoms
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The scattering of an incident electron by a pure Bose-Einstein condensate of alkali-metal atoms confined to
a three-dimensional harmonic-oscillator potential is investigated to give the corresponding differential cross
section. It is shown that for the elastic scattering process the differential cross section is proportional to the
square of the number of condensed atoms, and hence can be called the ‘‘coherent scattering.’’ For the inelastic
scattering process, the stopping power is obtained by considering the state of the center of mass and the internal
electronic state of the condensed atom being excited separately and simultaneously, which is found to be
proportional to the7

5 power of the number of condensed atoms when the binary collision interaction between
atoms is taken into account.
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I. INTRODUCTION

The phase transition of the Bose-Einstein condensat
~BECs! is one of the fascinating predictions of quantum
statistical mechanics, which states that below the crit
temperature, a macroscopic population would condens
the ground state of the system consisting of identical bos
Following the outstanding experimental discovery of liqu
4He, the recent experimental realizations of BEC in seve
systems of ultracold alkali-metal atoms again verify this p
diction and have become a vigorous topic in physics@1–5#.
This impressive progress not only opened the possibility
investigating macroscopic quantum phenomena but also
fered the chance of applying it in various fields. Since
experimental demonstration of atomic BEC in 1995@1–3#, a
large number of problems related to BEC have attrac
many experimental and theoretical efforts for the purpose
understanding and utilizing this phenomenon. So far m
research on the optical properties@6–9#, statistical properties
@10#, interference and phase properties@9,11–13#, tunneling
effect @14,15#, elementary excitations@16–18#, atomic scat-
tering @19–21#, and other properties@22,23# of atomic BEC
has been undertaken. In particular, it has been pointed
that the scattering of photons@8# and atoms@19–21# by
atomic BEC could provide an effective method to investig
various properties of atomic BEC. In fact, as an import
method, the scattering techniques have been frequently
lized to probe the structure and obtain other related inform
tion of the target particle or object. In the pioneering wor
on the scattering of photons and atoms by atomic B
@8,21#, the dependence of the differential and total cross s
tions on the number of condensed atoms has been predi
For instance, Lewenstein and co-workers@8# have shown
that the number of scattered photons can increase dram
cally as the BEC phase transition occurs and the par
coherent scattering spectrum is proportional to the squar
the number of the condensed atoms. While for the scatte
of atoms by atomic BEC, Idziaszek and co-workers@21#
have shown that the total elastic cross sectionsel scaled with
the number of condensed atomsN0 as sel;N0

2 when the
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energy of the scattered particle is small, and scaled assel

;N0
8/5 when the energy of the probe atom is of the order

a single excitation in the trapped potential.
It is well known that an incident electron can excite

atom from its ground state to an excited state under the
teraction of the incident electron with those bound electro
Similarly, it is possible that the incident electron excites t
ultracold atom being in the BEC state and therefore, the s
tering of electron also provides a way of probing atom
BEC.

In this paper we give a theoretical study of the scatter
of electrons by a BEC of alkali-metal atoms trapped in
three-dimensional~3D! harmonic potential. For the case th
an incident electron is scattered by a single atom, the or
is usually situated at the position of the nucleus, and then
state of center of mass~c.m.! may be considered to be un
changed in this process. However, for the present sys
consisting of the incident electron and atomic BEC, the c
wave function of atomic BEC should be taken into accou
because the interaction of the incident electron with a la
number of atoms is involved. Because the state of the c
densate is symmetric under all atom pair permutations,
origin of the system should not coincide with the position
a given condensed atom.

As a matter of fact, because the incident electron is id
tical to the atomic electrons, there are exchange effects
rearrangement of the atomic electrons under the interact
among them. Hence, it is a nontrivial task to treat this pro
lem rigorously. For simplicity, in the present paper the velo
ity of the incident electron is considered to be large co
pared to that of valence electrons of the condensed alk
metal atoms, that is, we consider the scattering of a
electron by an atomic BEC. Under this condition, the e
change effect and rearrangement of atomic electrons ca
neglected due to the little overlap between the relatively f
incident electron and ultracold atoms’ bound electrons in m
mentum space. Moreover, the spin interaction between
incident electron and atomic electrons and spin-orbit c
pling are also neglected as an approximation.

This paper is organized as follows. In Sec. II the proble
©2001 The American Physical Society04-1
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of scattering of an incident electron by the atomic BEC co
sisting of N0 alkali-metal atoms is outlined. In Sec. III th
differential cross section for the elastic and inelastic scat
ing of the electron by atomic BEC is given. In Sec IV th
energy loss of the incident electron in the inelastic scatte
process, i.e., the stopping power, is discussed by conside
the c.m. state and the internal electronic state of an atom
the Bose-Einstein condensed state being excited separ
and simultaneously. Furthermore, the stopping power
found to scale asN0

7/5 as the binary collision interaction be
tween the condensed atoms is taken into account and sca
N0

2 for an ideal BEC with thes-wave scattering length bein
zero. In Sec. V the main results are summarized.

II. SCATTERING OF AN INCIDENT ELECTRON
BY AN ATOMIC BEC

In this section we study the scattering of an incident el
tron by a pure BEC sample consisting ofN0 identical alkali-
metal atoms with nucleus chargeZe and massM. In second
quantization notation, the ground canonical Hamiltonian
scribing atomic BEC reads

HBEC5E d3RY Ĉ1~RY !F2
\2

2M
¹21Vtrap~RY !

1
1

2
U0Ĉ1~RY !Ĉ~RY !GĈ~RY ! , ~2.1!

where Vtrap(RY )5 1
2 M (v1

2R1
21v2

2R2
21v3

2R3
2), with angular

frequenciesv1 , v2 , andv3 , is the external trapping poten
tial for a single particle whose c.m. displacement from
center of the trap is located atRY (R1 ,R2 ,R3). Here the sub-
scripts 1, 2, and 3 are used to denotex, y, andz components
of the corresponding quantities, respectively. WhereasU0
54p\2as /M is the contact interaction induced by the b
nary collision characterized by thes-wave scattering length

as , Ĉ1(RY ) and Ĉ(RY ) are the boson field operators whic
create or annihilate an atom at the positionRY , respectively,
and fulfill the standard bosonic commutation relati

@Ĉ(RY 8),Ĉ1(RY )#5d(RY 2RY 8).
Under the Hartree-Fock approximation@24#, for the con-

densed atoms confined to the 3D harmonic-oscillator po
tial, we can suppose thatcn,ml

(RY )[^RY un,ml& is the single-

particle wave function of an atom in the c.m. stateun&
[un1 ,n2 ,n3& and internal state uml&, where un,ml&
5un& ^ uml&, uml& with l 50,1,2, . . . denote the configura
tions of the atomic ground state, the first excited state,
second excited state, . . . , respectively. Therefore the cre
ation operatorBn,ml

1 which creates an atom in the c.m. sta

un& and internal stateuml& can be defined as

Bn,ml

1 5E d3RY cn,ml
~RY !C1~RY !. ~2.2!
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In this way, applying the atomic creation operator, t
ground stateuCg& occupied byN0 alkali-metal atoms can be
expressed as

uCg&5
1

AN0!
~B0,m0

1 !N0u0,0&, ~2.3!

where the stateu0,0& denotes the c.m. and internal vacuu
states of the atomic BEC sample and should be considere
the direct product formu0,0&5u0&c.m.̂ u0& inter.

Now let us turn our attention to the discussion on t
scattering of an incident electron by the atomic BEC samp
Suppose that the incident electron with massme and charge
(2e) has momentum\kY i and is scattered by the interactio
with alkali-metal atomic BEC into momentum\kY f . The in-
teraction of the incident electron with the atomic BEC rea
HI5( i 51

N0 Vi , in which Vi is the interaction of the inciden
electron with thei th atom and has the following form:

Vi52
Ze2

urY2XY i u
1(

j 51

Z
e2

urY2xY i j u
, ~2.4!

whererY is the position of the incident electron,XY i andxY i j are
the positions of thei th nucleus and thej th electron of the
atom, and where the spin-spin and spin-orbit interactio
have been ignored.

Under these interactions, the incident electron will
scattered by the condensed atoms and, any atom in the
can be excited from the ground state to one of its exci
states. Hence the BEC sample either remains in its gro
state uCg& or is excited to one of its excited states. Th
former is called the elastic scattering process because
incident electron energy remains constant and the late
known as the inelastic scattering process since the incid
electron will transfer part of its kinetic energy to the atom
BEC.

The initial state of the incident electron and atomic BE
system can be written as the following direct product form

uf i&5ukY i& ^ uCg&, ~2.5!

where ukY i& refers to the initial state of the incident electro
with momentum\kY i , which is usually expressed asukY i&
5L23/2 exp@ikYi•rY# using the box normalization.

It is of great interest to consider the final stateuf f&
5ukY f& ^ uC f& of the system withukY f&5L23/2 exp@ikY f•rY# the
final state of the incident electron anduC f& the atomic BEC
state after the scattering process. In the present pape
cases in which the incident electron excites more than
atom simultaneously are neglected and for simplicity
only consider the single-particle excitation process. Thus,
ing the atomic creation operators, the excited stateuC f& of
the atomic BEC can be chosen as
4-2
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uC f&5
1

A~N0211dn,0dm1 ,m0
!!

Bn,ml

1 ~B0,m0

1 !N021u0,0&.

~2.6!

Since we only discuss the case of fast electron scatter
in which the velocity of the incident electron is suppos
larger than that of the bound electrons~typically, of the order
c/137, wherec is the speed of light!, we can treat the presen
problem using the time-dependent perturbation theory
should be noted that the main requirement for the validity
the Born approximation isZe2/\n i!1, wheren i5\ki /me is
the initial velocity of the incident electron. In the opposi
limit, where Ze2/\n i@1, the Born approximation is no
longer valid, and the system may make many succes
transitions. Then higher approximations must be conside
or one applies other methods such as the method of
Green function, the method of partial waves, and class
approximation, etc. In general, the scattering of a slow e
tron from an atom may lead to the exchange effects or
rearrangement of atomic electrons, which is not conside
in this paper. For the fast electron scattering under invest
tion, in the first Born approximation we can immediate
write the differential cross sectionds/dV in the following
form:

ds

dV
5S meL

3

2p\2D 2 kf

ki
u~HI ! i f u2, ~2.7!

where ki[ukY i u, kf[ukY f u, and (HI) i f 5^f f uHI uf i&
5^f f u( i 51

N0 Vi uf i& is the matrix element between the initi
and final states of the system under the interactionHI .

In order to evaluate the differential cross section, it
necessary to calculate the matrix element (HI) i f

~HI ! i f 5
1

L3 E d3rY exp@ iqY •rY#^C f u(
i 51

N0 F2S Ze2

urY2XY i u
D

1(
j 51

Z
e2

urY2xY i j u
G uCg&, ~2.8!

in which qY 5kY i2kY f denotes the change of the wave vector
the incident electron in the scattering process. It is direc
integrated overrY to give the equation

~HI ! i f 5
4pe2

q2L3 (
i 51

N0

^C f uF (
j 51

Z

exp~ iqY •xY i j !

2Z exp~ iqY •XY i !G uCg&. ~2.9!

In obtaining this, we have used the integr
*d3rY exp(iqY•rY)/r54p/q2.

It is useful to rewrite Eq.~2.9! as
04360
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~HI ! i f 5
4pe2

q2L3 (
i 51

N0

^C f uexp~ iqY •XY i !

3F (
j 51

Z

exp~ iqY •rY i j !2ZG uCg&, ~2.10!

whererY i j 5xY i j 2XY i is the relative coordinate of thej th elec-
tron bound by thei th atom. For thei th atom we make use o
the coordinate transformation between the relative mot
and atomic c.m. motion forZ electrons and nucleus,

RY i5XY i1(
j 51

Z
me

M
rY i j , ~2.11!

whereRY i is the c.m. coordinate of thei th atom. Furthermore
we can write the equation exp(iqY•XY i)5exp(iqY•RY i) under the
approximation exp@i(j51

Z me/MqY•rYij#>1, since the sum is ap
proximately zero. The reason is twofold. On the one hand
is known that the alkali-metal atoms are all hydrogenli
atoms, that is, they all have only one valence electron out
the closed shell, and their inner rare-gas configurations
spherically symmetric. Thus, Eq.~2.11! can be approxi-
mately expressed asRY i5XY i1(me /M ) r̃Y i with r̃Y i being the
relative position of the valence electron of thei th atom. On
the other hand, because the mass of electron is much sm
than the mass of the alkali-metal atoms@e.g.,me /M is of the
order of 1024, 1025, and 1026 for lithium ~Li !, sodium~Na!,
and rubidium ~Rb!, respectively#, the quantity ( j 51

Z me /
MqY •rY i j can be neglected in comparison withqY •rY i j , so that
exp@(j51

Z (me/M)qY•rYij#>1. This leads to the result

exp~ iqY •XY i !F (
j 51

Z

exp~ iqY •rY i j !2ZG
>exp~ iqY •RY i !F (

j 51

Z

exp~ iqY •rY i j !2ZG . ~2.12!

In doing so, Eq.~2.10! can be further rewritten as

~HI ! i f 5
4pe2

q2L3 (
i 51

N0

^C f uexp~ iqY •RY i !

3F (
j 51

Z

exp~ iqY •rY i j !2ZG uCg&, ~2.13!

which is the starting point of the following discussions o
the differential cross sections.

III. THE DIFFERENTIAL CROSS SECTION

In this section we will calculate the differential cross se
tion for the elastic and inelastic scattering processes. We
troduce the form factor of a single atom defined by

Fl~qY !5
1

Z
^ml u(

j 51

Z

exp~ iqY •rY j !um0&. ~3.1!
4-3
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For the elastic scattering process no energy is transfe
from the incident electron to the atomic BEC, which mea
that the final state of atomic BEC is the same as its ini
state withki5kf . Then, from Eq.~2.13!, we have

~HI ! i f 5
4pe2N0Z

q2L3 ^0uexp~ iqY •RY !u0&@F0~qY !21#, ~3.2!

where the subscripti, which denotes different atoms in th
state of BEC, has been dropped because only the sin
particle excitation process is considered.

For the inelastic process, the c.m. and internal states o
atom can be excited separately or simultaneously@see Eq.
~2.13!#. Thus using the state given by Eq.~2.6!, one gets

~HI ! i f 5
4pe2AN0Z

q2L3 ^nuexp~ iqY •RY !u0&Fl~qY !

~ lÞ0 or nÞ0!. ~3.3!

Substituting Eqs.~3.2! and~3.3! into Eq.~2.7!, the expres-
sions for the elastic and inelastic differential cross secti
become

dsel
~0,0→0,0!

dV
5

4N0
2Z2a0

2

~qa0!4 z^0uexp~ iqY •RY !u0& z2u@F0~qY !21#u2,

~3.4!

ds inel
~0,0→n,l !

dV
5

4N0Z2a0
2kf

~qa0!4ki
z^nuexp~ iqY •RY !u0& z2uFl~qY !u2

~ lÞ0 or nÞ0!. ~3.5!

In Eqs.~3.4! and ~3.5!, a05\2/mee
2 is the Bohr radius.

From Eqs.~3.4! and ~3.5! one finds that for the elasti
scattering of electrons by the atomic BEC, the differen
cross section is proportional to the square of the numbe
condensed atoms; in other words, a dramatic enhanceme
the differential cross section appears, hence this pro
could be called the ‘‘coherent scattering’’ of electron by t
atomic BEC in analogy with the scattering of photons a
atoms by atomic BEC@8,21#. For the inelastic scattering pro
cesses, this kind of ‘‘coherence’’ is absent. Moreover,
should be noted that for both elastic and inelastic scatte
process, the c.m. states of the condensed atoms play an
portant role because of the influence of the squared mod
of the matrix elementŝnuexp(iqY•RY )u0& on the corresponding
differential cross section.

Now let us turn our attention to calculating the quant
z^nuexp(iqY•RY )u0&z2 by means of the theory of a displace
number state@25#. To this end we first outline the propertie
of the displaced number states for a one-dimensional~1D!
harmonic oscillator described by the HamiltonianH
5\v(a†a1 1

2 ), in which a† anda are the creation and an
nihilation operators, respectively. The displaced number s
ua,m& associating with the harmonic oscillator is defined a

ua,m&5D̂~a!um&, ~3.6!
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where um& is the eigenstate of the Hamiltonian of the 1
harmonic oscillator under consideration,D̂(a) is the dis-
placed operator and takes the form

D̂~a!5exp~aa†2a* a!, ~3.7!

that satisfies the equations

D̂~a!aD̂†~a!5a2a, D̂~a!a†D̂†~a!5a†2a* , ~3.8!

in which the quantitya denotes the translational paramet
which may be real or complex. It can be easily found that
the case ofm50, the displaced number stateua,0& is the
well-known coherent state.

Furthermore, as an interesting application of the displa
number state, the following equation has been obtained@25#

z^ l uD̂~a!um& z25
exp~2uau2!uau2~ l 2m!m!

l !
Lm

l 2m~ uau2!

~ for l>m!, ~3.9!

whereLm
l 2m(x) is the associated Laguerre polynomial wi

argumentx.
To evaluate the result ofz^nuexp(iqY•RY )u0&z2, we rewrite the

matrix element̂ nuexp(iqY•RY )u0& as

^nuexp~ iqY •RY !u0&5) j ^nj uexp~ iq jRj !u0& ~ j 51,2,3!,

~3.10!

in which the subscriptj 51, 2, and 3 corresponds to thex, y,
and z components of the corresponding physical quantiti
Notice that in the 3D external trapping potential, the follow
ing relations:

Rj5A1

2
~aj

†1aj !L j , L j5A \

Mv j
~ j 51,2,3!,

~3.11!

D̂ j~a j !5exp~ iq jRj !, a j5 iq jL j ~ j 51,2,3!, ~3.12!

can be obtained immediately. HereL j5A\/Mv j with j
51, 2, and 3 are the geometric mean size of the c.m. gro
state, and also the characteristic length of the trap. As a c
sequence of the theory of the displaced number state,
have

z^nuexp~ iqY •RY !u0& z25)
j

1

~nj !!
ua j u2nj exp~2ua j u2!

5)
j

1

~nj !!
S qj

2L j
2

2 D nj

expS 2
qj

2L j
2

2 D
~ j 51,2,3!. ~3.13!
4-4
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Based on this equation, the differential cross section
the elastic and inelastic scattering can be explicitly rewrit
as

dsel
~0,0→0,0!

dV
5

4N0
2Z2a0

2

~qa0!4 u@F0~qY !21#u2)
j

expS 2
qj

2L j
2

2 D ,

~3.14!

ds inel
~0,0→n,l !

dV
5

4N0Z2a0
2kf

~qa0!4ki
)

j

1

~nj !!
S qj

2L j
2

2 D nj

3expS 2
qj

2L j
2

2 D uFl~qY !u2. ~3.15!

IV. THE STOPPING POWER
IN THE SCATTERING PROCESS

In the inelastic scattering process, the kinetic energy o
incident electron passing through the atomic BEC would
transferred to the condensate by exciting the c.m. state o
internal state of atomic BEC. Therefore the stopping pow
i.e., the energy loss of the incident electron, play a key r
and can be obtained by means of the differential cross
tion for the inelastic scattering process.

In this paper, as is usually the case in scattering proble
we are interested in the energy loss of the incident elec
along the path. We write2dE/dx, which takes the form

2
dE

dx
5r0(

n,l
~En,l2E0,0!E

qmin

qmaxds inel
~0,0→n,l !

dq
dq, ~4.1!

wherer0 is the density of atomic BEC trapped in the exte
nal potential,En,l denotes the energy of an atom being t
c.m. stateun& and internal stateuml&, and the quantitiesqmin
andqmax are the integral limits.

Note that q25uqY u25u(kY i2kY f)u25ki
21kf

222kikf cosu,

whereu is the angle betweenkY i and kY f . From this relation
we can obtain that

ds inel
~0,0→n,l !

dq
5

2pq

kikf

ds inel
~0,0→n,l !

dV
. ~4.2!

Using this equation together with Eq.~3.5!, Eq. ~4.1! can
be expressed as

2
dE

dx
5

8pr0N0Z2

a0
2ki

2 (
n,l

~En,l2E0,0!

3E
qmin

qmax
z^nuexp~ iqY •RY !u0& z2uFl~qY !u2

dq

q3 .

~4.3!

In order to evaluate the stopping power, it is useful to rew
the energy difference (En,l2E0,0) in Eq. ~4.3! as (En,l
2E0,0)5(« l2«0)1( «̃n2 «̃0), where« l is the energy corre-
sponding to thel th internal stateuml& and «̃n is the energy
04360
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corresponding to thenth c.m. stateun&. Then for the case
where only the internal state is excited, i.e.,n50 in Eq.
~4.3!, we find

2
dE

dxU
n50

5
4pr0N0Ze4

men i
2 E

qmin

qmax
z^0uexp~ iqY •RY !u0& z2

dq

q
,

~4.4!

wheren i5\ki /me is the initial velocity of the incident elec
tron. In this calculation, the famous result

(
l

~« l2«0!uFl~qY !u25
1

Z

\2q2

2me
, ~4.5!

presented by Gottfried and Bethe@26#, has been used.
Making use of the result given by Eq.~3.13! and arrang-

ing n15n25n350, Eq. ~4.4! becomes

2
dE

dxU
n50

5
4pr0N0Ze4

men i
2 F E

qmin

qmax
expF2

1

2
~q1

2L1
21q2

2L2
2

1q3
2L3

2!
dq

q G G . ~4.6!

The final result of this equation depends on the detailed fo
of potential function.

For the case withl 50 in Eq. ~4.3!, which implies that
only the c.m. state is excited, we get

2
dE

dxU
l 50

5
4pr0N0Z2e4

men i
2

me

M E
qmin

qmax
uF0~qY !u2

dq

q
, ~4.7!

where we have used the result

(
n

~ «̃n2 «̃0!z^nuexp~ iqY •RY !u0& z25
\2q2

2M
, ~4.8!

which can be explicitly obtained in the spirit of Gottfried an
Bethe@26#.

For the case that the c.m. state and internal state are
cited simultaneously, using the decomposition of the eq
tion (En,l2E0,0)5(« l2«0)1( «̃n2 «̃0) together with Eqs.
~4.5! and ~4.8!, the quantity2dE/dx can be expressed as

2
dE

dx
5

4pr0N0Z2e4

men i
2 F E

qmin

qmaxS me

M (
l

uFl~qY !u2

1
1

Z (
n

z^nuexp~ iqY •RY !u0& z2D dq

q G . ~4.9!

Note that (nz^nu exp(iqY•RY )u0&z251, which may be
directly derived from Eq.~3.13!. The physical interpretation
of this result is rather obvious because the te
(nz^nu exp(iqY•RY )u0&z2 stands for the sum of the probabilitie
that the c.m. ground state is excited to all excited states,
it must equal to 1. Based on the same consideration,
know that( l uFl(qY )u251 as well. This allows Eq.~4.9! to be
further simplified to
4-5
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2
dE

dx
5

4pr0N0Ze4

men i
2 S 11

meZ

M D F E
l min

qmaxdq

q G . ~4.10!

Following the Bethe’s treatment with respect to the lim
qmin andqmax, that is,qmin5ki2kf andqmax52ki , we obtain

2
dE

dx
5

4pr0N0Ze4

men i
2 S 11

meZ

M D lnS 2men i
2

I D , ~4.11!

whereI is a semiempirical parameter, which is related to
average excitation energy. This is just the stopping powe
the scattering process.

Equations~4.6!, ~4.7!, and~4.11! correspond to the stop
ping power for the case where the internal and c.m. states
excited separately and simultaneously. From these exp
sions, it is evident that both the form factor and the quan
z^nuexp(iqY•RY )u0&z2 determine the value of the stopping powe

Having obtained the expression of the stopping powe
the inelastic scattering process, we show below the dep
dence of the stopping power on the number of the conden
atoms. To our knowledge, this is an interesting feature
tinguishing the atomic BEC from the normal target obje
For an ideal atomic BEC~where as50! trapped in a 3D
harmonic-oscillator potential under consideration, the d
sity of the atomic BEC can be written asr0
5(2p)3/2(N0 /L1L2L3). Thus the stopping power is propo
tional to the square of the number of the condensed ato
i.e., 2(dE/dx)}N0

2. However, when the binary collision in
teractionU054p\2as /M with a nonzeros-wave scattering
lengthas is taken into account, the density of the condens
atoms becomesr05m/U0 as the temperature approach
zero @27#, where m is the chemical potential. For the 3D
trapping potential used in this paper, the chemical potentiam
takes the following form@28#:

m5
\

2 SAM

\
15asN0v1v2v3D 2/5

, ~4.12!

which can reduce to the results given by Baym and Peth
and Timmermanset al. @27# for the spherically and azimuth
ally symmetric potentials.

From Eq.~4.12!, one further gets

r05
m

U0
5

1

8pas
S 15asN0

L1
2L2

2L3
2D 2/5

. ~4.13!

Substituting Eq.~4.13! into Eq. ~4.11!, we obtain the desired
result

2
dE

dx
5

1

as
S 15as

L1
2L2

2L3
2D 2/5N0

7/5Ze4

2men i
2 S 11

meZ

M D lnS 2men i
2

I D .

~4.14!

From this expression we conclude that the stopping po
scales as the75 power ofN0 , i.e., 2dE/dx}N0

7/5. This con-
clusion also holds true for the case of the c.m. and inte
states being excited separately.

Now, as an example, we calculate the stopping power
assuming that the atomic BEC is trapped in a 3D spheric
04360
e
in

re
s-

y
.
n
n-
ed
-

.

-

s,

d

k

er

al

y
ly

symmetric harmonic-oscillator potential, i.e.,v15v25v3

5v and L15L25L35L5A\/Mv. In this case, Eq.~4.6!
reduces to

2
dE

dxU
n50

5
4pr0N0Ze4

men i
2 E

qmin

max

expF2
1

2
q2L2G dq

q
.

~4.15!

Let y5q2, then

E
qmin

qmax
expF2

1

2
q2L2G dq

q
5E

qmin
2

qmax
2 1

2
expF2

yL2

2 G dy

y
,

and we have

2
dE

dxU
n50

5
4pr0N0Ze4

men i
2 F ln

2men i
2

I

1 (
k51

` S 2
L2

2 D k ~qmax
2k 2qmin

2k !

k!k G . ~4.16!

If q satisfies the condition\2q2/2M!\v, the leading term
in the right-hand side of Eq.~4.16! becomes2dE/dxun50

54pr0N0Ze4/men i
2 ln 2meni

2/I. Moreover, it can be shown
that uFl(qY )u2 will approach unity asq→0. Then under this
condition, Eq.~4.7! can be approximately expressed as

2
dE

dxU
l 50

5
4pr0N0Z2e4

men i
2

me

M
ln

2men i
2

I
. ~4.17!

Obviously, theZ dependence of the stopping power
Eqs.~4.16! and~4.17! is different, since the total-energy los
of the incident electron is (1/Z)(\2q2/2me) when only the
internal state is excited and\2q2/2M when only the c.m.
state is excited.

As shown above, we find that the scattering of electro
by an atomic BEC may be used to determine the numbe
condensed atoms and the density of the atomic BEC by m
suring elastic scattering cross section and the stopp
power.

V. SUMMARY

In conclusion, we have studied the scattering of an in
dent electron by a Bose-Einstein condensate of alkali-m
atoms and obtained the differential cross section for the e
tic and inelastic scattering processes. For the former, i
shown that the elastic scattering differential cross sectio
proportional to the square of the number of the conden
atoms, which indicates the intrinsic coherent property of
atomic BEC, and we may therefore call this kind of elas
scattering ‘‘coherent scattering’’ because of the dramatic
hancement of the scattering cross section. For the later
calculated the stopping power by considering the inter
and c.m. states being excited separately and simultaneo
and the dependence on the number of the condensed a
4-6



n
e

h
le
p
a
m

ith
e

of

Re-

SCATTERING OF ELECTRONS BY A BOSE- . . . PHYSICAL REVIEW A 64 043604
N0 is found to be two power ofN0 for an ideal atomic BEC
(as50) and 7

5 power of N0 for a nonideal BEC (asÞ0),
respectively. This is an interesting feature of atomic BEC a
can be used to distinguish the atomic Bose-Einstein cond
sate from normal targets.

The limitations of the present paper are as follows. T
exchange effects of the incident electron and atomic e
trons, the rearrangement of atomic electrons, and the s
spin and spin-orbit interactions in the scattering process h
been neglected. However, in practice, these interactions
an

ys

S.

.

E

ev
r,

er
,

04360
d
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e
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in-
ve
ay

give rise to different influences on the scattering result w
the different range of velocity of the incident electron. Som
further discussions will be performed under the condition
relaxing these limitations.
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