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Phase separation of a trapped Bose-Fermi gas mixture: Beyond the Thomas-Fermi approximation
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Phase separation of a Bose-Fermi gas mixture in a trapping potential is strongly influenced by the interaction
between the fermion and the boson. The stability condition for the mixture at zero temperature is deduced. It
is found that mixture stability depends on the fermion-boson interaction, the total number of the bosons and the
fermions, and the trapping frequencies. The stability conditions for the mixture at finite temperature are also
derived and discussed.
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[. INTRODUCTION In this paper, we shall analyze the stability of a Bose-
Fermi gases mixture at zero and finite temperature. We first
Since the realization of dilute alkali-metal atomic vapor study the stability of the Bose-Fermi gases mixture at zero
condensateBEC) in 1995[1], large efforts have been made temperature by using a variation meth@®,31], which pro-
to study many-body effects and macroscopic properties ofides us with an clear understanding of the phase separation
the gases, which may be more transparently demonstrated @& zero temperature. We then study the properties of the mix-
BEC than in other many-body Systems_ For fermionic atomidures at finite temperature. The stability conditions for both
vapor, however, it is difficult to achieve a degenerate gashe homogeneous and inhomogeneous mixtures are deduced
since the evaporative cooling of a pure fermionic gas is inand discussed.
effective at very low temperature. Theoretical and experi- The paper is organized as follows. In Sec. Il, we study
mental advances discover a number of interesting phenonthase separation of a trapped Bose-Fermi gas mixture at zero
ena not accessible in the previous BEC systems. One of tHémperature. The phase separation of the trapped mixture at
most stunning progresses is the recent experimental demofinite temperature is discussed in Sec. Ill. Section IV is a
stration of a condensate mixture, in which two or more in-brief summary.
ternal states of condensates coexBt The realization of
bicondensate mixture is ascribed to the sympathetic cooling ||. PHASE SEPARATION OF THE BOSE-FERMI GAS
mechanism, i.e., the cooling is through the energy exchange MIXTURE AT ZERO TEMPERATURE
between cold and thermal atoms. Most recently, DeMarco
and Jin[3] report their observation of a degenerate Fermi gas We study the Bose-Fermi gas mixture by using a variation
by using an evaporative cooling strategy. Although the techinethod. This method was first introduced 80] to study the
niques use a two-component Fermi gas, the new experimeREC ground state of a Bose system in a harmonic trap, and
stimulates the experimental and theoretical study of théater generalized to study BEC with attractive interactions
Bose-Fermi gas mixturg4—29. [31]. Throughout this section we assume that the number of
The two-component BEC mixture of dilute gases are in-boson is much larger than the fermions, in this situation, the
teresting from both theoretical and experimental viewpointsdistribution of the bosons remains unchanged.
Experiments have been conducted to study the creation of T0 begin with, we consider a second-quantized grand ca-
topological excitations in two-component BEC gfK], nonical Hamiltonian of interacting Bose and Fermi gases
guantum tunneling effec{d 1], metastable effec{d 2], Rabi
oscillations [13], the dynamics of component separations H=H,+H¢+Vypy,
[14], and relative phase cohererid®] in a binary mixture of
Bose gases. Theoretical work on trapped two-component s .t — 1 5
BEC gases has included the static and stability propertiesHb:f d>r¢’(r) 2m, T MpT 5 Mpwpl é(r)
[16—19, the dynamics of the relative phag20,21], and the
collective mode$22], and the phase diagram and collective Jbb 3 43 r 1t o , ,
modes for spinor BEG23,24). As to the Bose-Fermi mix- +7J fd rd>r’ ¢ (r)¢'(r')s(r—r")e(r")é(r),
tures, the density profiles of the mixtures trapped in a har-

h22

monic potential at nonzero temperature under the Thomas- _p2y2 1
Fermi approximatiorf25—28 have been investigated, and Hf:f d3r¢/ﬁ(r)< —,uf+—mfwfr2)¢(r),
the effects of phonon exchange on the fermion-fermion in- 2my 2

teracting strengtti29] are discussed at temperatures below

the BEC transition. In most of the studies on the stability of _ 34301 o 0 , ,

the Bose-Fermi mixture, the effects of finite temperature be—gbfj dird™r g (r) g (r) alr=r")s(r’) (r),
have not been discussed. (2.7)
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where¢(r) and(r) denote boson and fermion field opera-

tors with masses, andm;, respectively. For weakly inter- ni(r)=2, ¥, () (2.6
acting dilute gases, the interactions between the bosonic at- ¢

oms are modeled by potentials and the interactions among . . .
the fermionic atoms may be neglected, since the interaction‘é’her?“ denotes the |n.dex of _occqpled states. In the semi-
between atoms at very low temperature is suppressed i&iassicalThomas-Fermiapproximation, the particles are as-

polarized systemsy,, and g, stand for boson-boson and signed classica}l position an_d momenta, but the .effects qf
boson-fermion coupling constant, respectively: quantum statistics are taken into account. Under this approxi-

mation, Eqs(2.3) and(2.5) for the boson and fermion wave

Ah2 2mh? function are equivalent tf25,32
Ipob= M pbs  Got= Mot apf
2.2 -
app (aps) are theswave scattering length between boson 5 Mb@pl “+ GopMy(r) = Kb »
and bosor{boson and fermion andmy is a reduced mass of
the boson and the fermion. The chemical potentiajsand 2 1
¢ are determined through the conditions Z_mf[6772nf(r)]2/3+ Emfwf2f2+9bfnb(f):eF- (2.7

Np={ | d®rg' > N =< f d3ryt >
b U rénem ). N U We obtain ng(r) = Lgee] s — (1/2)mpw?r?] from the first
(22 line of Egs(2.7). Substitutingn,(r) into the second line of

At T=0, the self-consistent mean-field theory, assuming tha't:‘qs(z'n’ we yield
all N bosonic particles in a gas populated the same state

denoted by single-particle wave-functiab(r), leads to a ﬁ_ 2 23 } 2.2, 9bf B 1 2.2
nonlinear Schrdinger equation(or the Gross-Pitaevskii 2mf[67T N7 5 mywfr +gbb o™ 5 Mo@b
equation for ®(r)=(¢(r))

=€eg. (28)

2

1
- z—me2+ Embw§r2+gbbnb(r) O(r)=E,d(r).

This equation shows that the fermions experience a potential

(2.3 minimum in the center of the trap @y /go,<Miw?/Myw? .

In this case, the entire distribution behaves like a fermionic

Here we omit quantitieg,¢n¢(r), because they are smaller core within the Bose condensate. The fermion density is a
thangypny(r) in the case oN,>N;. This is relevant to a gnstant throughout the Bose condensate gif;/dyp
experiment on degenerate fermionic gas. In order to get imfw?/mbwﬁ. Whereas the fermions are repelled from the
degenerate fermionic gas, the boson particles appear in theter of the trap and localized near the edge of the Bose
system only as a coolant. so the number of bosons is alway(ﬁ)ndensate, i, /gpp> mfwfz/mbwﬁ, ie., a phase separa-

much larger than the number of fermions. In the same #Pfion occurs in this system. We would like to note that the

proximation as in the bos.ons, the fermionic wave function 'Sdistribution of BEC remains unchanged in the above discus-
given by a Slater determinant sions, since we assume that the Bose system is much larger
W(ryfp, o ) than the Ferm_i one. T(_) driye qu._s), we assume that_ the
f Thomas-Fermi approximati¢fiFA) is valid. The coupling
Vi(ry)  Wiry) - qu(er) T constantgy,, andgy,; may take any value as long as the TFA
is available, and the phase separation depends mainly on
Wo(ry)  Wyrp) -+ Walry) ratio gp/gp,. In what follows we discuss the separation of
1 ) ) ) the mixture from the other aspect. We note the solution of
= , Eq. (2.5 requires prior knowledge of the boson density pro-
INg! : : : file n,=|®(r)|%. To obtain the density profile, we have to
solve the Gross-Pitaevskii E(R.3). There are a large num-
¥ ¥ ¥ ber of literatures devoted to solve the Gross-Pitaevskii Eq.
L Nf(rl) Nf(rZ) Nf(er)_ [33], we here use a variation meth$d80,31] to solve the
(2.4) problem. For a isotropic trapping potential, we may assume
the trial wave function fob(r) in Eq(2.3) to be
whereW,(r) is the single-particle states determined by the

Hartree-Fock self-consistent equation 2l Mo 3/4 2
— —Mpwr
52 L O (r)=Npw (wh) e M , (2.9
" om, V24 Emfwfzr2+9bfnb(r) Wi(r)=EW(r).

(2.5 Wherew is the effective frequency and is taken as a varia-
tional parameter. Substituting E¢.9) into Eqg. (2.3, we
The density of the fermions is given by obtained the ground-state energy
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3 3w

Ep[P]= Eb(w)— Npfiw+ — Nbﬁ +gbbN2 tion, else the phase separation occurs. For a possible experi-
2.10 ment conducted itk — 4%, we may estimate the critical

' value forgys, which was given in Eq(2.14). Assumingws
If E,(w) is plotted as a function ab , one sees that a stable ~ .=, defining a,= VA/myw, and takingN,=10*, we
local minimum exists only up to a certain maximum numberget the critical value fogy; is gg;=2.712x 10‘4ﬁwa0 In
of atoms forg,,<0 [31]. The critical point occurs where other words, if the boson-fermion coupling constant is

greater thargg, the phase separation occurs in the mixture.

wmb>3/2 from boson-fermion interactionthere is no phase separa-

IEp(@) -0 In the above discussions, we calculate the distribution of
IO | (e N=N )_ ’ the boson system by means of variation method, while we
b e consider the fermion system under the Thomas-Fermi ap-
and proximation. In the following, instead of the Thomas-Fermi
approximation, we give a full quantum-mechanical descrip-
PPEp(w) tion for the fermions. We start with the expression of kinetic
5 w= w0y Ny=Ny > O- (2.1)  energy density t(r)=—[(A2)/(2m¢)]Z;¥* (r)V2¥(r)
Jw given in[34]

Here, w. stands for the variational parameter that minimizes A (M+2)ho 2

the ground-state energy. By using E8.10 we can get the = (rni(r)
equation ar n?’%0) f
ho?- ot 20N 2| wSPm0. (@21 LI fr sy
wi—hop+2gpNp 7| @ =0 (212 +mnf (r)n¢(r) 0%(9_5 n¢(s),
If there are no interactions between the bosons,dg+0, (2.19

the solution of Eq(2.12) is w.= w,,. For weak boson-boson ) i
interactionN,gy,<1, we may give the solution of Eqe.12 ~ Whereng(r)=dn(r)/or andM is a shell number, the shell
by perturbative expansions. To first ordergg,, this solu-  below itis fully filled. By using Eq.(2.19), the distribution

tion is of the fermions may be derived to satisfy
2 "
9oNp [ Mpwp | ¥ e ng(r) ny(r) _
wc:wb_T(m (2.13 12 n,(r) + M + gpy pramialY (2.19

Substitutingw, into Eq. (2.9), we obtain the distribution of this is the equation that corresponds to the second line of
the boson systertb(r)|2=n,(r). Subsequently, we can get Egs.(2.7) for the case beyond the Thomas-Fermi approxima-
the distribution of the fermions by solving the second equation. Integrating Eq(2.16), we may get a equation of’(r)

tion of Egs.(2.7). From the distribution of the fermions, we that characters the stability of the mixture, i.e.,

may acquire the knowledge of phase separation.

There is a shortcut to study the phase separation of the J' Iny(r)
system; i.e., for the fixed distribution of bosons if by
a°n¢(r)/ar?|,_ >0, there is no phase separation between
bosons and fermions, else a phase separation occurs. In whgsuming
follows, we consider the case under the Thomas-Fermi ap-
proximation and beyond the Thomas-Fermi approximation. np(r)~e (Mewd/ilr? - (py g [(mi@)/alr?,

For the case under the Thomas-Fermi approximation, the
phase separation condition can be derived by using the sethe condition for phase separation is
ond equation of Eq$§2.7), it is given that

nf(r)dr<—fmfwfrnf(r)dr. (2.17

722 mpwe+ miQ) o?
3/2ﬁ 5/2 gbf>

; (2.18
(2 14) Zmbm?/szQSQNf

mww

0 Ny ey 2
namely, if this condition holds, there is a phase separation
This equation shows that the mixture stability depends on theccurring in the mixture. The key difference between the
total number of the bosons, the interaction strength betweeconditions(2.14) and(2.18 are that the later one is propor-
fermions and bosons and the interaction strength among th@nal to 1N; . This fact results from how we treat the kinetic
bosons. Physically, the fermions experience two potentialssnergy of the fermions in full quantum-mechanical frame.
one of them is the trapping potential and another comes froriVe would like to point out that the result E.18 depends
the interaction between the bosons and the fermions. If then the trial distribution given below E@2.17). As Ref.[34]
boson-fermion interaction does not change the minimum oéhows, the Gaussian trial distribution is a good approxima-

the total potentialtrapping potential plus effective potential tion when there are hundred fermions in a trap. If we choose
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w.~wi=w, Ny=10", N;=10°, we obtain g5=5.56 is non-negatively definite. In other words, all eigenvalues of

X 10" %% waj, wherea, is the same as in last paragraph.  matrix 4 given in Eq.(3.3) are nonnegative. Mathematically,
for homogeneous fermion and boson mixture the stability

conditions are
I1l. PHASE SEPARATION OF THE BOSE-FERMI GAS

MIXTURE AT FINITE TEMPERATURE dup o
—_— =)=

=0-—=0, (3.9
In this section, we pay attention to discussing the above Ipp Ips

problem at finite temperature. For the boson and fermion d
system, thermodynamical properties are trivial if there is nof"
interaction between them. But in this case, the sympathetic

cooling scheme does not take any effects and the degenerate % %
fermions have not been achieved. The thermodynamical det Ipp 9Py ~0. 3.5
properties may be changed when the interaction between the s g
fermions and bosons is turn on, then a new phenomenon, the dpy  Ips

phase separation, may occur in this system. For a homoge-
neous fermion and boson mixture system, the Helmholtz fre€or ideal gas, we have pb:[ll()\g)]g3,2(zb), Pi

energy can be written 485,36 =[2/(\3)1f3x(zs), this leads to
9 0 )\3 9 0 )\3

v 1 2 v ke R B N F WY

BF=— Ffsz(zf)Jr ZanpiNeA i+ In(1—2z) _FQSIZ(Zb) dps  fup(zs) dpp  Gu2(Zp)
2 b
) 5 o It follows from Egs.(3.4) and(3.5) that
+Zabbprb)\b+abf()\b+)\f)Nbe/V, (31)
Np
day N2+ ———=0, 3.

where the index refers to the fermionic component, whereas AL ES) @7
the indexb stands for the bosonic onb; is the number of 5
particles in componerit \;=h/27m;kgT denotes the ther aff)\f2+ f =0, 3.9

mal wave length of componentf,(z), andg,(z) represent
the Fermi and Bose integral, respectivedy. is the s-wave
scattering length between componerindj. Equation(3.1) and
is based on the pseudopotential form of the atom-atom inter-
action, and may be assumed accurate when the system &(T,aps,ars,app) =2
dilute, i.e.,piaﬁ<1 anda;; /\;<1, wherep; is the density of
the component. This condition is well satisfied for the =
samples of alkali-metal atoms in experiments to date
[1,33,37,38

From Eq.(3.1), we obtain the chemical potential for each
component straightforwardly,

f1/2(24)

\S ) A3
bag i+ ——|| ag\ P+ ——
bbb 91/2Zp) o f1/2(z,)

—aZ(A\2+1?)2=0. (3.9

It is well known that a homogeneous imperfect gas with
attractive interaction is not stable. The fermions with attrac-
Bitp=Bup+ 4ayppph i+ ap N2+ NNV, tive interaction could form a BCS state, which consists of
two fermionic particles interacting with each other but not
0 ) 5 2 with the other fermions from the Fermi gas, whereas bosons
Bui=Bui+agphi+api(Npg NN /V, (3.2 ith attractive interaction could collapse into liquid. We
would like to note that we here discuss the system with re-

where? are the chemical potentials of ideal gas. There ardUlsive interactions, so the phenomena mentioned above
three terms in the equation for the chemical poter(@a). ~ cannot occur. It is obvious that the stability conditid8s7)
While the second term comes from the interaction within the2"d (3.8 hold always foray,>0, a;>0. As Egs.(3.7—
component, the third term is from the interaction between thé3-9 show, the stability conditions do not involve the densi-
fermion and boson component. As known, a homogenoul€s of both components. At first sight, this seems to be con-

binary mixture is stable only when the symmetric mat,fzix fusion, in fact, there is no contradiction. One can
given by demonstrate that at low density, the Helmholtz free energy of

the Bogoliubov gas reduce to a quadratic formNp and
N;. To have a minimum, this form should be positive

dup Iy definite, i.e., déf(d?F)/(dN,dN;)||=0. Therefore, the
- | app 9p¢ corresponding stability criterion involves only density-
n= p p (3.3 independent constants. This condition is similar to the

Mt oK stability conditions for the two-component Bose-Einstein

dpy  Ips condensate in a trapped untracold dag,39—44. When
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T—o,\j—0, henceZ~1/p,ps. Thus, at high temperature, 80

the homogeneous binary gas mixture is always stable

and no phase separation occurs. In the case considere

here, Fermi temperatur@-=[h?/(2mkg)][(3N;/87V)]%3

is much lower than BEC transition temperature 60

Te=[(h?/(27mKg) [ (Np)/(2.612/)]1%®. Therefore, with 301

the temperature decreases, it first passes the BEC transitic ] 207

point T.. WhenT—T., gy(1)—, we have 101
40 - 0 |\ —

)\3
aff7\f2+ ! )

Z(T,ap¢,8pp,a51) ~4app\j f1/2(z)

2 2 2 -
_abf()\b+)\f)2. 20

In particular, whenT<<Tg, the stability condition becomes
(settingm;=my,)

Z(arbitrary units)

abbaff_angO. (31@ el

It does not depend on temperature and agrees with the stz /
bility conditions of two-component BEC at zero temperature -20 4 i
[39,44. Although it is difficult to reach this regime of very

low temperature, it attracts much more attention, becaust

both superfluidity and shell effects are expected to occur at
temperatures much smaller than the Fermi temperature 40
[6,45]. Z given by Eq.(3.9) as a function of the temperature

is illustrated in Fig. 1. We see that the system is always Temperature T (in units of 0.1T )

stable whenT—0 andT—oe, and the system is unstable for

T <T<T., where T, and T, are roots of FIG. 1. Plot ofZ given by Eq.(3.9) as a function of temperature
Z(T,ap,ap:,a5;) =0. In particular,T,; and T, depend on T. The parameters chosen axg=1000, Ny=10 000, a,,=0.05,

aps aif, andabb_ As Aps decreaseéfor fixed app and aff), aff=0.01. Dashed-dotted “n@-bf:O.S; dotted Iine,abf=0.02;

T., tends toT, (in Fig. 1 going from dotted line to solid solid Iin_e,an:0.0l_. The dot_ted line in_ tht_a in§et is the same as the
line). The critical temperaturd@,, and T, characterize the dotted 'Ilne in the _flgure, while the solid line in the inset is for the
onset of the phase separation, which is quite different fron@ases in a trap with trapped frequency 166 Hz.

the Bose-Einstein condensation and the degenerate fermions.

The critical temperature of the BEC transition and of theof the gas cloud where the density vanishes and the effective
onset of degenerate fermionic gas depends mainly on thEermi energy becomes zero. Under the LDA, the stability
density of the systenN;/V(i=b,f). Especially, the BEC conditions can still be calculated by means of the equations
and the degenerate fermionic gas may happen even;if derived above with the understanding that the effective
=0. For the phase separation, however, nothing will happeshemical potentials are spatially dependent through

if a,;=0. For a fixed temperature and the coupling constant

api, Z VS a,p andags is shown in Fig. 2, which represents 0 ) 0 )

the dependence of the stability on the interaction strength b= fp— (L2Mywit?,  pp=pu?—(LU2)miwir?.

inside each component.

Until now, we considered only a homogeneous Fermi-
Bose gas mixture at finite temperature. In reality, however,
experiments with ultracold atoms are performed by trapping
and cooling atoms in an external potential that can be gen-
erally modeled by an isotropic harmonic oscillate(r)

T T T T T T T
0 1 2 3 4 5

VA A A A )
A

=(m/2)wt2r2, wherew; is the trapping frequency. An exact 7 4200

criterion for the stability of an inhomogeneous Bose-Fermi o &

mixture should involve calculating the Helmholts free energy 2044

as a function at all eigenstates of the trapping potential. For- L Bies

tunately, in the system considered here, it is a good approxi-
mation to take use of the local-density approximatibbA ),
which treats the system as being locally homogeneous. The
LDA requires that the level spacirfgw, of the trapping po-
tential is much smaller than the Fermi energy. Of course, the FIG. 2. Plot ofZ as a function ol anday,,. The parameters
local-density approximation always breaks down at the edgehosen are temperatufe=0.1T¢, a,;=0.2.
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Thus, a local stability condition is the same as given in Eq. W,
(3.9 but replacingz(i=1,2) by Q=- m[gs,z(zb) —2a,,BA, 1]
b
~ 2 ~ 2
212219_(B/Z)mbwbr2, Zzzzze_(B/Z)mfwfrz- f 1 —1 Winas
- —)\?,35/2 foa(ze) = sanFae 7|+ —)\g)\?BSIZ :

As the inset of Fig. 1 shows, the regime of temperature in
which the system is unstable, decrease for the case-6r. (3.13
Physically, the total energy of the system increases when it is

in a trap compared with the case without trapped potential.

Meanwhile, the chemical potentials decrease in this procesgere,

within the TFA. The above changes in chemical potentials

and in the total energy are equal to a loss of particles in the

system. In this sense, the system trapped in potentials is Am2ar3l2 Armnem. 732
more stable than the case without the trapping potentials. W= — (i=b,f), Wy=—2ou—
Alternatively, as given in Ref35], the local grand poten- NMo? Aphfwiw?

tial for the mixture is

1 - - .z
Q(r)=—keT—[s/2(2p) ~ 28ppPpA51+ Ap(N5+NF) pop B=X ————, F=> (-1f——
o1 31 0sr2 bbPbA b+ Ap(Ap+NF) ppps |,j2:l[ij(i+j)]3/2 i’jzzl( ) DIESNE

1 1 5 2
—kgT )\_?fS/Z(Zf)_EaffPf)\f , (3.1

where p, and p; stand for the density distributions of the
boson and fermion, respectively:

where the TFA is used in derivation of E(.13. From the
_ i total grand thermodynamic potential, the thermodynamical
po(r)= )\293’2( éb)s quantities such as the entropy, the specific heat can be calcu-
lated straightforwardly.

1
r): _f )1
pi( N 32 & IV. SUMMARY

_ In this paper, we investigated Bose-Fermi gas mixture at
with zero and finite temperature. The temperature effects have
been taken into account. By the variation method, we ob-
b=2p XL — BVp(r) —4apphopp(r) —2api(Ng+ N ps(r)],  tained conditions for the phase separation at zero tempera-
ture, which agree with those found by other authors by a

&=2 exr{—,BVf(r)—aff)\?pf(r)—Zabf()\fﬂxﬁ)pb(r)]. distinct methoq. Eor fir_lite temperature, the condition; for
phase separation is derived by analyzing thermodynamic sta-

bility. These results show different behavior of phase separa-
tion at different temperature regimes. Furthermore, we ex-
tend the discussion at zero temperature to the case for finite
temperature. It is found that phase separation may occur in

— | g4 _ | g4 traps easily relative to the case without trapping potential.
No fd Fo(1): Ny fd Fi(1)- (312 This kind of phase separation results from the effects of trap-

ping.

As usual, the chemical potential is determined by the nor
malization relations

For the axially symmetric trapping potential
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