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Phase separation of a trapped Bose-Fermi gas mixture: Beyond the Thomas-Fermi approximatio
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Phase separation of a Bose-Fermi gas mixture in a trapping potential is strongly influenced by the interaction
between the fermion and the boson. The stability condition for the mixture at zero temperature is deduced. It
is found that mixture stability depends on the fermion-boson interaction, the total number of the bosons and the
fermions, and the trapping frequencies. The stability conditions for the mixture at finite temperature are also
derived and discussed.

DOI: 10.1103/PhysRevA.64.043608 PACS number~s!: 03.75.Fi, 05.30.Fk, 67.40.Db
or
e

d
i

ga
in
r

om
f t

o
in

lin
n
rc
ga
ch
e

th

in
ts

n

ns

e
tie

ve

a
a
d
in

ow
o
r

e-
first
ero

tion
ix-
th
uced

dy
zero
re at

a

ion

and
ns
r of
the

ca-
I. INTRODUCTION

Since the realization of dilute alkali-metal atomic vap
condensates~BEC! in 1995@1#, large efforts have been mad
to study many-body effects and macroscopic properties
the gases, which may be more transparently demonstrate
BEC than in other many-body systems. For fermionic atom
vapor, however, it is difficult to achieve a degenerate
since the evaporative cooling of a pure fermionic gas is
effective at very low temperature. Theoretical and expe
mental advances discover a number of interesting phen
ena not accessible in the previous BEC systems. One o
most stunning progresses is the recent experimental dem
stration of a condensate mixture, in which two or more
ternal states of condensates coexist@2#. The realization of
bicondensate mixture is ascribed to the sympathetic coo
mechanism, i.e., the cooling is through the energy excha
between cold and thermal atoms. Most recently, DeMa
and Jin@3# report their observation of a degenerate Fermi
by using an evaporative cooling strategy. Although the te
niques use a two-component Fermi gas, the new experim
stimulates the experimental and theoretical study of
Bose-Fermi gas mixture@4–29#.

The two-component BEC mixture of dilute gases are
teresting from both theoretical and experimental viewpoin
Experiments have been conducted to study the creatio
topological excitations in two-component BEC gas@10#,
quantum tunneling effects@11#, metastable effects@12#, Rabi
oscillations @13#, the dynamics of component separatio
@14#, and relative phase coherence@15# in a binary mixture of
Bose gases. Theoretical work on trapped two-compon
BEC gases has included the static and stability proper
@16–19#, the dynamics of the relative phase@20,21#, and the
collective modes@22#, and the phase diagram and collecti
modes for spinor BEC@23,24#. As to the Bose-Fermi mix-
tures, the density profiles of the mixtures trapped in a h
monic potential at nonzero temperature under the Thom
Fermi approximation@25–28# have been investigated, an
the effects of phonon exchange on the fermion-fermion
teracting strength@29# are discussed at temperatures bel
the BEC transition. In most of the studies on the stability
the Bose-Fermi mixture, the effects of finite temperatu
have not been discussed.
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In this paper, we shall analyze the stability of a Bos
Fermi gases mixture at zero and finite temperature. We
study the stability of the Bose-Fermi gases mixture at z
temperature by using a variation method@30,31#, which pro-
vides us with an clear understanding of the phase separa
at zero temperature. We then study the properties of the m
tures at finite temperature. The stability conditions for bo
the homogeneous and inhomogeneous mixtures are ded
and discussed.

The paper is organized as follows. In Sec. II, we stu
phase separation of a trapped Bose-Fermi gas mixture at
temperature. The phase separation of the trapped mixtu
finite temperature is discussed in Sec. III. Section IV is
brief summary.

II. PHASE SEPARATION OF THE BOSE-FERMI GAS
MIXTURE AT ZERO TEMPERATURE

We study the Bose-Fermi gas mixture by using a variat
method. This method was first introduced in@30# to study the
BEC ground state of a Bose system in a harmonic trap,
later generalized to study BEC with attractive interactio
@31#. Throughout this section we assume that the numbe
boson is much larger than the fermions, in this situation,
distribution of the bosons remains unchanged.

To begin with, we consider a second-quantized grand
nonical Hamiltonian of interacting Bose and Fermi gases

H5Hb1H f1Vb f ,

Hb5E d3rf†~r !S 2\2¹2

2mb
2mb1

1

2
mbvbr 2Df~r !

1
gbb

2 E E d3rd3r 8f†~r !f†~r 8!d~r 2r 8!f~r 8!f~r !,

H f5E d3rc†~r !S 2\2¹2

2mf
2m f1

1

2
mfv f r

2Dc~r !,

Vb f5gb fE d3rd3r 8f†~r !c†~r 8!d~r 2r 8!c~r 8!f~r !,

~2.1!
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wheref(r ) andc(r ) denote boson and fermion field oper
tors with massesmb andmf , respectively. For weakly inter
acting dilute gases, the interactions between the bosoni
oms are modeled byd potentials and the interactions amon
the fermionic atoms may be neglected, since the interact
between atoms at very low temperature is suppressed
polarized systems.gbb and gba stand for boson-boson an
boson-fermion coupling constant, respectively:

gbb5
4p\2

mb
abb , gb f5

2p\2

mb f
ab f ,

abb (ab f) are thes-wave scattering length between bos
and boson~boson and fermion!, andmb f is a reduced mass o
the boson and the fermion. The chemical potentialsmb and
m f are determined through the conditions

Nb5 K E d3rf†~r !f~r !L , Nf5 K E d3rc†~r !c~r !L .

~2.2!

At T50, the self-consistent mean-field theory, assuming
all N bosonic particles in a gas populated the same s
denoted by single-particle wave-functionF(r ), leads to a
nonlinear Schro¨dinger equation~or the Gross-Pitaevski
equation! for F(r )5^f(r )&

F2
\2

2mb
¹21

1

2
mbvb

2r 21gbbnb~r !GF~r !5EbF~r !.

~2.3!

Here we omit quantitiesgb fnf(r ), because they are smalle
than gbbnb(r ) in the case ofNb@Nf . This is relevant to a
experiment on degenerate fermionic gas. In order to g
degenerate fermionic gas, the boson particles appear in
system only as a coolant. so the number of bosons is alw
much larger than the number of fermions. In the same
proximation as in the bosons, the fermionic wave function
given by a Slater determinant

C~r 1 ,r 2 , . . . ,r Nf
!

5
1

ANf ! 3
C1~r 1! C1~r 2! ••• C1~r Nf

!

C2~r 1! C2~r 2! ••• C2~r Nf
!

• • ••• •

• • ••• •

• • ••• •

CNf
~r 1! CNf

~r 2! ••• CNf
~r Nf

!

4 ,

~2.4!

whereC i(r ) is the single-particle states determined by t
Hartree-Fock self-consistent equation

F2
\2

2mf
¹21

1

2
mfv f

2r 21gb fnb~r !GC i~r !5EiC i~r !.

~2.5!

The density of the fermions is given by
04360
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nf~r !5(
a

uCa~r !u2, ~2.6!

wherea denotes the index of occupied states. In the se
classical~Thomas-Fermi! approximation, the particles are a
signed classical position and momenta, but the effects
quantum statistics are taken into account. Under this appr
mation, Eqs.~2.3! and~2.5! for the boson and fermion wav
function are equivalent to@25,32#

1

2
mbvb

2r 21gbbnb~r !5mb ,

\2

2mf
@6p2nf~r !#2/31

1

2
mfv f

2r 21gb fnb~r !5eF . ~2.7!

We obtain nb(r )51/gbb@mb2(1/2)mbvb
2r 2# from the first

line of Eqs~2.7!. Substitutingnb(r ) into the second line of
Eqs ~2.7!, we yield

\2

2mf
@6p2nf~r !#2/31

1

2
mfv f

2r 21
gb f

gbb
S mb2

1

2
mbvb

2r 2D
5eF . ~2.8!

This equation shows that the fermions experience a pote
minimum in the center of the trap ifgb f /gbb,mfv f

2/mbvb
2 .

In this case, the entire distribution behaves like a fermio
core within the Bose condensate. The fermion density i
constant throughout the Bose condensate ifgb f /gbb

5mfv f
2/mbvb

2 . Whereas the fermions are repelled from t
center of the trap and localized near the edge of the B
condensate, ifgb f /gbb.mfv f

2/mbvb
2 , i.e., a phase separa

tion occurs in this system. We would like to note that t
distribution of BEC remains unchanged in the above disc
sions, since we assume that the Bose system is much la
than the Fermi one. To drive Eq.~2.8!, we assume that the
Thomas-Fermi approximation~TFA! is valid. The coupling
constantgbb andgb f may take any value as long as the TF
is available, and the phase separation depends mainly
ratio gb f /gbb . In what follows we discuss the separation
the mixture from the other aspect. We note the solution
Eq. ~2.5! requires prior knowledge of the boson density pr
file nb5uF(r )u2. To obtain the density profile, we have t
solve the Gross-Pitaevskii Eq.~2.3!. There are a large num
ber of literatures devoted to solve the Gross-Pitaevskii
@33#, we here use a variation method@30,31# to solve the
problem. For a isotropic trapping potential, we may assu
the trial wave function forF(r ) in Eq.~2.3! to be

F~r !5ANbv3/4S mb

p\ D 3/4

e2mbvr 2/2\, ~2.9!

wherev is the effective frequency and is taken as a var
tional parameter. Substituting Eq.~2.9! into Eq. ~2.3!, we
obtained the ground-state energy
8-2
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Eb@F#5Eb~v!5
3

4
Nb\v1

3

4
Nb\

vb
2

v
1gbbNb

2S vmb

2p\ D 3/2

.

~2.10!

If Eb(v) is plotted as a function ofv , one sees that a stab
local minimum exists only up to a certain maximum numb
of atoms forgbb,0 @31#. The critical point occurs where

]Eb~v!

]v U
(v5vc ,Nb5Nbc)

50,

and

]2Eb~v!

]v2 v5vc ,Nb5Nbc
.0. ~2.11!

Here,vc stands for the variational parameter that minimiz
the ground-state energy. By using Eq.~2.10! we can get the
equation

\vc
22\vb

212gbbNbS mb

2p\ D 3/2

vc
5/250. ~2.12!

If there are no interactions between the bosons, i.e.,gbb50,
the solution of Eq.~2.12! is vc5vb . For weak boson-boson
interactionNbgbb!1, we may give the solution of Eq.~2.12!
by perturbative expansions. To first order ofgbb , this solu-
tion is

vc5vb2
gbbNb

\ S mbvb

2p\ D 3/2

. ~2.13!

Substitutingvc into Eq. ~2.9!, we obtain the distribution of
the boson systemuF(r )u25nb(r ). Subsequently, we can ge
the distribution of the fermions by solving the second eq
tion of Eqs.~2.7!. From the distribution of the fermions, w
may acquire the knowledge of phase separation.

There is a shortcut to study the phase separation of
system; i.e., for the fixed distribution of bosons
]2nf(r )/]r 2ur 50.0, there is no phase separation betwe
bosons and fermions, else a phase separation occurs. In
follows, we consider the case under the Thomas-Fermi
proximation and beyond the Thomas-Fermi approximatio

For the case under the Thomas-Fermi approximation,
phase separation condition can be derived by using the
ond equation of Eqs~2.7!, it is given that

gb f.
mfv f

2p3/2\5/2

2Nb~vcmb!5/2
. ~2.14!

This equation shows that the mixture stability depends on
total number of the bosons, the interaction strength betw
fermions and bosons and the interaction strength among
bosons. Physically, the fermions experience two potenti
one of them is the trapping potential and another comes f
the interaction between the bosons and the fermions. If
boson-fermion interaction does not change the minimum
the total potential~trapping potential plus effective potentia
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from boson-fermion interaction!, there is no phase separa
tion, else the phase separation occurs. For a possible ex
ment conducted in39K240K, we may estimate the critica
value forgb f , which was given in Eq.~2.14!. Assumingv f

;vc5v, defining a05A\/mbv, and takingNb5104, we
get the critical value forgb f is gb f

c 52.71231024\va0
3 . In

other words, if the boson-fermion coupling constant
greater thangb f

c , the phase separation occurs in the mixtu
In the above discussions, we calculate the distribution

the boson system by means of variation method, while
consider the fermion system under the Thomas-Fermi
proximation. In the following, instead of the Thomas-Fer
approximation, we give a full quantum-mechanical descr
tion for the fermions. We start with the expression of kine
energy density t(r )52@(\2)/(2mf)#( iC i* (r )¹2C i(r )
given in @34#

]t~r !

]r
5

~M12!\v f

nf
2/3~0!

nf
2/3~r !nf8~r !

1
\2

12mf
nf

2/3~r !nf8~r !E
0

r 1

nf
5/3~s!

]

]s
¹2nf~s!,

~2.15!

wherenf8(r )5]nf(r )/]r andM is a shell number, the she
below it is fully filled. By using Eq.~2.15!, the distribution
of the fermions may be derived to satisfy

\2

12

nf-~r !

nf~r !
1mfv f

2r 1gb f

]nb~r !

]r
50, ~2.16!

this is the equation that corresponds to the second line
Eqs.~2.7! for the case beyond the Thomas-Fermi approxim
tion. Integrating Eq.~2.16!, we may get a equation ofn9(r )
that characters the stability of the mixture, i.e.,

E gb f

]nb~r !

]r
nf~r !dr,2E mfv f

2rn f~r !dr. ~2.17!

Assuming

nb~r !;e2[(mbvc)/\] r 2
, nf~r !;e2[(mfV)/\] r 2

,

the condition for phase separation is

gb f.
p3/2\5/2~mbvc1mfV!v f

2

2mbmf
3/2vcV

5/2Nf

; ~2.18!

namely, if this condition holds, there is a phase separa
occurring in the mixture. The key difference between t
conditions~2.14! and ~2.18! are that the later one is propo
tional to 1/Nf . This fact results from how we treat the kinet
energy of the fermions in full quantum-mechanical fram
We would like to point out that the result Eq.~2.18! depends
on the trial distribution given below Eq.~2.17!. As Ref.@34#
shows, the Gaussian trial distribution is a good approxim
tion when there are hundred fermions in a trap. If we cho
8-3
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X. X. YI AND C. P. SUN PHYSICAL REVIEW A64 043608
vc;v f5v, Nb5104, Nf5102, we obtain gb f
c 55.56

31025\va0
2 , wherea0 is the same as in last paragraph.

III. PHASE SEPARATION OF THE BOSE-FERMI GAS
MIXTURE AT FINITE TEMPERATURE

In this section, we pay attention to discussing the ab
problem at finite temperature. For the boson and ferm
system, thermodynamical properties are trivial if there is
interaction between them. But in this case, the sympath
cooling scheme does not take any effects and the degen
fermions have not been achieved. The thermodynam
properties may be changed when the interaction between
fermions and bosons is turn on, then a new phenomenon
phase separation, may occur in this system. For a hom
neous fermion and boson mixture system, the Helmholtz
energy can be written as@35,36#

bF52
V

l2
3

f 52~zf !1
1

2
af fr fNfl f

21 ln~12zb!2
V

lb
3

g5/2~zb!

12abbrbNblb
21ab f~lb

21l f
2!NfNb /V, ~3.1!

where the indexf refers to the fermionic component, where
the indexb stands for the bosonic one,Ni is the number of
particles in componenti, l i5h/A2pmikBT denotes the ther
mal wave length of componenti, f n(z), andgn(z) represent
the Fermi and Bose integral, respectively.ai j is the s-wave
scattering length between componenti and j. Equation~3.1!
is based on the pseudopotential form of the atom-atom in
action, and may be assumed accurate when the syste
dilute, i.e.,r iaii

3 !1 andaii /l i!1, wherer i is the density of
the componenti. This condition is well satisfied for the
samples of alkali-metal atoms in experiments to d
@1,33,37,38#.

From Eq.~3.1!, we obtain the chemical potential for eac
component straightforwardly,

bmb5bmb
014abbrblb

21ab f~lb
21l f

2!Nf /V,

bm f5bm f
01af fr fl f

21ab f~lb
21l f

2!Nb /V, ~3.2!

wherem i
0 are the chemical potentials of ideal gas. There

three terms in the equation for the chemical potential~3.2!.
While the second term comes from the interaction within
component, the third term is from the interaction between
fermion and boson component. As known, a homogen
binary mixture is stable only when the symmetric matrixm̂
given by

m̂5F ]mb

]rb

]mb

]r f

]m f

]rb

]m f

]r f

G ~3.3!
04360
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is non-negatively definite. In other words, all eigenvalues
matrix m̂ given in Eq.~3.3! are nonnegative. Mathematically
for homogeneous fermion and boson mixture the stabi
conditions are

]mb

]rb
>0,

]m f

]r f
>0, ~3.4!

and

detF ]mb

]rb

]mb

]r f

]m f

]rb

]m f

]r f

G>0. ~3.5!

For ideal gas, we have rb5@1/(lb
3)#g3/2(zb), r f

5@1/(l f
3)# f 3/2(zf), this leads to

b
]m f

0

]r f
5

l f
3

f 1/2~zf !
, b

]mb
0

]rb
5

lb
3

g1/2~zb!
. ~3.6!

It follows from Eqs.~3.4! and ~3.5! that

4abblb
21

lb
3

g1/2~zb!
>0, ~3.7!

af fl f
21

l f
3

f 1/2~zf !
>0, ~3.8!

and

Z~T,ab f ,af f ,abb!5Z

5S 4abblb
21

lb
3

g1/2~zb!
D S af fl f

21
l f

3

f 1/2(zf )
D

2ab f
2 ~lb

21l f
2!2>0. ~3.9!

It is well known that a homogeneous imperfect gas w
attractive interaction is not stable. The fermions with attra
tive interaction could form a BCS state, which consists
two fermionic particles interacting with each other but n
with the other fermions from the Fermi gas, whereas bos
with attractive interaction could collapse into liquid. W
would like to note that we here discuss the system with
pulsive interactions, so the phenomena mentioned ab
cannot occur. It is obvious that the stability conditions~3.7!
and ~3.8! hold always forabb.0, af f.0. As Eqs.~3.7!–
~3.9! show, the stability conditions do not involve the den
ties of both components. At first sight, this seems to be c
fusion, in fact, there is no contradiction. One ca
demonstrate that at low density, the Helmholtz free energ
the Bogoliubov gas reduce to a quadratic form inNb and
Nf . To have a minimum, this form should be positiv
definite, i.e., detuu(]2F)/(]Nb]Nf)uu>0. Therefore, the
corresponding stability criterion involves only densit
independent constants. This condition is similar to t
stability conditions for the two-component Bose-Einste
condensate in a trapped untracold gas@17,39–44#. When
8-4
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T→`,l i→0, henceZ;1/rbr f . Thus, at high temperature
the homogeneous binary gas mixture is always sta
and no phase separation occurs. In the case consid
here, Fermi temperatureTF5@h2/(2mkB)#@(3Nf /8pV)#2/3

is much lower than BEC transition temperatu
Tc5@(h2)/(2pmKB)#@(Nb)/(2.612V)#2/3. Therefore, with
the temperature decreases, it first passes the BEC trans
point Tc . WhenT→Tc , g1/2(1)→`, we have

Z~T,ab f ,abb ,af f !;4abblb
2S af fl f

21
l f

3

f 1/2~zf !
D

2ab f
2 ~lb

21l f
2!2.

In particular, whenT!TF , the stability condition become
~settingmf5mb)

abbaf f2ab f
2 >0. ~3.10!

It does not depend on temperature and agrees with the
bility conditions of two-component BEC at zero temperatu
@39,44#. Although it is difficult to reach this regime of ver
low temperature, it attracts much more attention, beca
both superfluidity and shell effects are expected to occu
temperatures much smaller than the Fermi tempera
@6,45#. Z given by Eq.~3.9! as a function of the temperatur
is illustrated in Fig. 1. We see that the system is alwa
stable whenT→0 andT→`, and the system is unstable fo
Tc1,T,Tc2, where Tc1 and Tc2 are roots of
Z(T,abb ,ab f ,af f)50. In particular,Tc1 andTc2 depend on
ab f af f , andabb . As ab f decreases~for fixed abb andaf f),
Tc1 tends toTc2 ~in Fig. 1 going from dotted line to solid
line!. The critical temperatureTc1 and Tc2 characterize the
onset of the phase separation, which is quite different fr
the Bose-Einstein condensation and the degenerate ferm
The critical temperature of the BEC transition and of t
onset of degenerate fermionic gas depends mainly on
density of the systemNi /V( i 5b, f ). Especially, the BEC
and the degenerate fermionic gas may happen even ifab f
50. For the phase separation, however, nothing will hap
if ab f50. For a fixed temperature and the coupling const
ab f , Z vs abb and af f is shown in Fig. 2, which represen
the dependence of the stability on the interaction stren
inside each component.

Until now, we considered only a homogeneous Ferm
Bose gas mixture at finite temperature. In reality, howev
experiments with ultracold atoms are performed by trapp
and cooling atoms in an external potential that can be g
erally modeled by an isotropic harmonic oscillatorV(r )
5(m/2)v t

2r 2, wherev t is the trapping frequency. An exac
criterion for the stability of an inhomogeneous Bose-Fer
mixture should involve calculating the Helmholts free ener
as a function at all eigenstates of the trapping potential. F
tunately, in the system considered here, it is a good appr
mation to take use of the local-density approximation~LDA !,
which treats the system as being locally homogeneous.
LDA requires that the level spacing\v t of the trapping po-
tential is much smaller than the Fermi energy. Of course,
local-density approximation always breaks down at the e
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of the gas cloud where the density vanishes and the effec
Fermi energy becomes zero. Under the LDA, the stabi
conditions can still be calculated by means of the equati
derived above with the understanding that the effect
chemical potentials are spatially dependent through

mb5mb
02~1/2!mbvb

2r 2, m f5m f
02~1/2!mfv f

2r 2.

FIG. 1. Plot ofZ given by Eq.~3.9! as a function of temperature
T. The parameters chosen areNb51000, Nf510 000,abb50.05,
af f50.01. Dashed-dotted line,ab f50.3; dotted line,ab f50.02;
solid line,ab f50.01. The dotted line in the inset is the same as
dotted line in the figure, while the solid line in the inset is for th
gases in a trap with trapped frequency 166 Hz.

FIG. 2. Plot ofZ as a function ofaf f andabb . The parameters
chosen are temperatureT50.1TF , ab f50.2.
8-5
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Thus, a local stability condition is the same as given in E
~3.9! but replacingzi( i 51,2) by

z̃15z1e2(b/2)mbvb
2r 2

, z̃25z2e2(b/2)mfv f
2r 2

.

As the inset of Fig. 1 shows, the regime of temperature
which the system is unstable, decrease for the case ofrÞ0.
Physically, the total energy of the system increases when
in a trap compared with the case without trapped poten
Meanwhile, the chemical potentials decrease in this proc
within the TFA. The above changes in chemical potenti
and in the total energy are equal to a loss of particles in
system. In this sense, the system trapped in potentia
more stable than the case without the trapping potentials

Alternatively, as given in Ref.@35#, the local grand poten
tial for the mixture is

V~r !52kBT
1

lb
3 @g5/2~zb!22abbrb

2lb
2#1ab f~lb

21l f
2!rbr f

2kBTF 1

l f
3

f 5/2~zf !2
1

2
af fr f

2l f
2G , ~3.11!

where rb and r f stand for the density distributions of th
boson and fermion, respectively:

rb~r !5
1

lb
3

g3/2~jb!,

r f~r !5
1

l f
3

f 3/2~j f !,

with

jb5zb exp@2bVb~r !24abblb
2rb~r !22ab f~lb

21l f
2!r f~r !#,

j f5zf exp@2bVf~r !2af fl f
2r f~r !22ab f~l f

21lb
2!rb~r !#.

As usual, the chemical potential is determined by the n
malization relations

Nb5E d3rrb~r !,Nf5E d3rr f~r !. ~3.12!

For the axially symmetric trapping potential

Vi~r !5
1

2
miv i

2~x21y21l2z2! ~ i 5b, f !,

wheremi ,v i , andl are the mass, trapping frequency, a
the anistropy of the trapping frequency. The total grand
tential of the system may be calculated by intergrating
local grand potential over the whole volume. It is given th
04360
.

n

is
l.
ss
s
e
is

r-

-
e
t

V52
Wb

lb
3b5/2

@g5/2~zb!22abbBlb
21#

2
Wf

l f
3b5/2F f 5/2~zf !2

1

2
af fFl f

21G1
Wmab f

lb
3l f

3b5/2
M .

~3.13!

Here,

Wi5
4mi

2p3/2

l i
2v i

4 ~ i 5b, f !, Wm5
4mbmfp

3/2

lbl fvb
2v f

2
,

B5 (
i , j 51

` zb
i 1 j

@ i j ~ i 1 j !#3/2
, F5 (

i , j 51

`

~21! i 1 j
zf

i 1 j

@ i j ~ i 1 j !#3/2
,

M5 (
i , j 51

`

~21! j
zb

i zf
j

@ i j ~ i 1 j !#3/2
,

where the TFA is used in derivation of Eq.~3.13!. From the
total grand thermodynamic potential, the thermodynami
quantities such as the entropy, the specific heat can be ca
lated straightforwardly.

IV. SUMMARY

In this paper, we investigated Bose-Fermi gas mixture
zero and finite temperature. The temperature effects h
been taken into account. By the variation method, we
tained conditions for the phase separation at zero temp
ture, which agree with those found by other authors by
distinct method. For finite temperature, the conditions
phase separation is derived by analyzing thermodynamic
bility. These results show different behavior of phase sepa
tion at different temperature regimes. Furthermore, we
tend the discussion at zero temperature to the case for fi
temperature. It is found that phase separation may occu
traps easily relative to the case without trapping potent
This kind of phase separation results from the effects of tr
ping.
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