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Semiconductor-cavity QED in high-Q regimes with q-deformed bosons
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The high-density Frenkel excitons, which interact with a single-mode cavity field, are investigated in the
framework of theq-deformed boson. It is shown that theq-deformed bosonic commutation relations are
satisfied naturally by the exciton operators in the high-density limit. An analytical expression of the physical
spectra of the excitons is obtained by using the dressed states of the cavity field and the excitons. We also give
the numerical study and compare the theoretical results with the experimental results.
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I. INTRODUCTION

It’s well known that the system of the excitons is a qu
siparticle system. In case of the low density, the excitons
approximately treated as bosons that obey Bose stati
@1–3#. But when the density of the excitons becomes relat
higher, the excitons, which somewhat deviate the boso
model, are no longer ideal bosons. There are two ways
dealing with this problem: one way is to put these deviatio
into the effective interaction between the hypothetical id
bosons and the exciton operators as still presented by
bosonic operators@4,5#. Another way is the implementatio
of the atomic operators@6–8#, which naturally gives rise to
the question of whether a system of excitons is equivalen
an atomic system.

The concept of theq-deformed boson was extensively a
plied in physics due to theq-deformed boson realization o
the quantum group theory by different authors ten years a
Since then, many physicists made great efforts to find its
physical implementation@9–13#. For example, they did som
phenomenological investigations to fit the deformed spe
of the rotation and oscillation for molecules and nuclei@14–
16#. In our opinion, those investigations can be regarded
merely phenomenological explanations, because th
q-deformed structures were postulatedad hocand no under-
lying microscopic mechanism was presented in advance

In this paper, it will be shown that a physical and natu
realization of theq-deformed boson is provided by the exc
ton operators, which were proposed recently by Gardi
@17# for the description of Bose-Einstein condensati
~BEC!. Here the deformation parameterq is well-defined by
the total molecule numberN rather than its phenomenolog
cal explanation given in the investigations in the past. In fa
the similar quasiparticles scheme for the particle-num
conservation was already introduced by Girardeau and
nowitt almost 40 years ago@18#. The relationship between
the Gardiner’s phonons and these quasiparticles has been
cussed in a recent comment@19#. We find that when the
density of the excitons~the particles excited in upper state! is
low enough, it returns naturally to the ideal boson case.
cording to that theory, we could give a good explanation
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the semiconductor-cavity QED in high-Q regimes. What will
be investigated here is the case where the total mole
numberN is very large but not infinite by using the metho
of the q-deformed boson algebra. That is, we shall consi
the effects of orderO(1/N). As it turns out, the commutation
relations for the exciton operators will no longer obey t
commutation relations of the Heisenberg-Weyl algebra
the q-deformed bosonic commutation relations

@bq ,bq
†#q[bqbq

†2qbq
†bq51, ~1!

where the deformation constantq depends on the total atom
number.

This paper is organized as follows. In Sec. II we fir
deduce theq-deformed commutation relations of the excito
operators in the high-Q cavity in the case of the large bu
finite lattice molecule numberN. In Sec. III, by keeping only
the first-order term of 1/N, we model the Frenkel excitons i
a microcavity as a dressedq-deformed boson system. In Se
IV, the quantum approach of the angular momentum is u
to obtain the eigenvalues and eigenfunction of the sys
under the first-order approximation. The stationary physi
spectrum of the system is calculated in Sec. V. Finally
summarize our results with some comments.

II. Q-DEFORMED BOSONIC ALGEBRA FOR EXCITON

Gardiner’s starting point@17# to introduce the exciton op
erators is to consider a system of the weakly interacting B
gas. Without losing generality, we consider a thin molecu
crystal film containingN identical two-level molecules inter
acting resonantly with a single-mode quantum field. The
termolecular interaction is neglected in the low-molecu
excitation. We assume that all molecules have equiva
mode positions, so they interact with the cavity field by t
same coupling constantk. By using Dicke model@20#, we
could write the Hamiltonian in the rotating wave approxim
tion as follows:

H5\V~Sz1a†a!1\k~aS11a†S2!, ~2!

wherea anda† are the annihilation and creation operators
the quantum cavity field, respectively, and
©2001 The American Physical Society02-1
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Sz5 (
n51

N

sz~n!, S65 (
n51

N

s6~n!, ~3!

where sz(n)5(uen&^enu2ugn&^gnu)/2,s1(n)5uen&^gnu, and
s2(n)5ugn&^enu are quasispin operators of thenth molecule.
Statesuen& and ugn& denote the excited state and the grou
state of thenth molecule.

We consider the second quantization of the above mo
Let be

† andbe denote the creation and annihilation operat
of the molecules in the excited state.bg

† andbg are the cre-
ation and annihilation operators of the molecules in
ground state. The simplified Hamiltonian after the seco
quantization is written

H5\V~be
†be2bg

†bg1a†a!1\k~abe
†bg1H.c.!. ~4!

Note that the total molecular numberN5be
†be1bg

†bg is con-
served. For convenience we defineh51/N with large par-
ticle numberN.

In the thermodynamical limitN→`, the Bogoliubov ap-
proximation @21,22# is usually applied, in which the ladde
operatorsbg

† ,bg of the ground state are replaced by ac num-
berANc, whereNc is the average number of the initial con
densated atoms. As a result Hamiltonian Eq.~4! describes a
system of two coupled harmonic oscillators

Hb5\V~be
†be1a†a!1\kANc~abe

†1H.c.!. ~5!

However, this approximation destroys a symmetry of
Hamiltonian Eq.~4!, i.e., the conservation of the total pa
ticle number is violated because of@N,Hb#Þ0.

To avoid this problem, the exciton operators are defin
as:

bq5
1

AN
bg

†be , bq
†5

1

AN
bgbe

† ~6!

according to Gardiner@17#. These operators act invariant
on the subspaceVN spanned by basesuN;n&[uN2n,n&(n
50,1, . . . ,N), where Fock states

um,n&5
1

Am!n!
be

†mbg
†nu0& ~m,n50,1,2, . . . !

span the Fock spaceH2b of a two-mode boson.
A straightforward calculation leads to the following com

mutation relation between the exciton operatorbq and its
Hermitian conjugate:

@bq ,bq
†#512

2

N
be

†be5 f ~bq
†bq ;h!, ~7!

with f (x;h)5A112(122x)h1h22h. Keeping only the
lowest order ofh for a very large total particle number, th
commutator above becomes

@bq ,bq
†#5122hbq

†bq ~8a!

or
02380
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@bq ,bq
†#q5bqbq

†2qbqbq
†51, ~8b!

with q5122h. This is exactly a typicalq-deformed com-
mutation relation. AsN→` or q→1, the usual commutation
relation of Heisenberg-Weyl algebra is regained.

In the above discussion about the phonon excitation,
have linearized the commutatorh[ f (b†b;h) so that a
q-deformed commutation rule was obtained. Essentially t
linearization establishes a physical realization of t
q-deformed algebra. However, if the total particle numberN
is not large enough, thenh cannot be approximated by
linear function. From the commutation relations betweenh
andbq ,bq

†

@h,bq
†#52

2

N
bq

† , @h,bq#5
2

N
bq , ~9!

we see that the algebra of exciton operators is a rescalin
algebra SU~2! with factor N.

III. THEORETICAL MODEL

Based on the above analysis about the algebraic struc
of exciton operators, we consider the case of the relativ
high density of molecules in the excited state for the Ham
tonian ~2!.

Since the second quantization forms ofS1 and S2 are
S15be

†bg andS25bg
†be , respectively, it is straightforward

to prove that the collective operatorsS1 /AN andS2 /AN are
approximately considered as the simple bosonic operator
N→`. These collective operators are called exciton ope
tors. But in case of the relatively high density of molecul
in the excited state with finiteN, since many molecules are i
the excited state the bosonic approximation can no lon
work well. The Hamiltonian~2! can be rewritten in terms o
q-deformed bosons as the following effective Hamiltonian

H5\V~a†a1bq
†bq!1\g~a†bq1bq

†a!, ~10!

whereg5ANk andq-deformed boson operatorsbq , bq
† sat-

isfy the q-deformed commutation relation

@bq ,bq
†#q51, ~11!

where

q512
2

N
. ~12!

It should be emphasized here that the deformation param
q is determined by the lattice molecule number and is
longer phenomenological.

Up to the first-order approximation, theq-deformed boson
operatorsbq

† andbq could be expressed as

bq
†5b†1

b†b†b

2N
, ~13!

bq5b1
b†bb

2N
. ~14!
2-2
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in terms of the normal bosonic operatorsb† and b. As a
consequence the HamiltonianH in Eq. ~10! is rewritten in
the form of perturbation

H5H01H8, ~15!

where

H05\V~a†a1b†b!1\g~a†b1b†a!, ~16!

H85
\

2N
~2Vb†b†bb1gab†b†b1ga†b†bb!. ~17!

It is clear that the first term ofH8 describes the attractiv
exciton-exciton collisions due to the bi-exciton effect and
last two terms ofH8 describe the decrease of the excito
photon coupling constants due to the phase-space filling
fect @24#.

IV. APPROXIMATE ANALYTICAL SOLUTIONS

To solve the Schro¨dinger equation governed by Hami
tonian Eq.~15!, we shall make use of the quantum angu
momentum theory@23#.

According to the Schwinger representation of the angu
momentum by using two bosons, we can build the angu
momentum operators

Jz5
1

2
~a†a2b†b!, J15a†b, J25ab†. ~18!

From the ladder operatorsa, a† of the cavity field and the
exciton operatorsb andb† then
02380
e
-
f-

r
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Jx5
1

2
~a†b1ab†!, Jy5

1

2i
~a†b2ab†!. ~19!

We rewrite the Hamiltonian Eq.~16!

H05\VN̂12\gJx5\VN̂12\ge2 i (p/2)JyJze
i (p/2)Jy

~20!

in terms of anSO(3) rotation ei (p/2)Jy of \(VN̂12gJx).
Note that the excitation number operatorN̂5a†a1b†b is a
constant under anySO(3) rotation and

J25Jx
21Jy

21Jz
25

N̂

2
S N̂

2
11D ~21!

is the total angular momentum operator. The common eig
states ofJ2 andJz are

u jm&5
~a†! j 1m~b†! j 2m

A~ j 1m!! ~ j 2m!!
u0&, ~22!

where the eigenvalues of theJ2 andJz are, respectively,

j 5
N
2

,m52
N
2

,•••,
N
2

. ~23!

The eigenfunctionsc jm
0 and the eigenvaluesEjm

(0) of H0 can
be easily constructed as

uc jm
0 &5e2 ip/2Jyu jm&, Ejm

(0)5\VN12\gm. ~24!

Up to the first-order approximation, the eigenvalues ofH
are obtained as

Ejm5Ejm
(0)1^ jmuei (p/2)JyH8e2 i (p/2)Jyu jm&, ~25!

with their corresponding eigenfunctions given by

uc jk&5uc jk
(0)&1 (

nÞk

^ jnuH8u jk&

Ejk
(0)2Ejn

(0)
uc jn

(0)&. ~26!

We calculate the matrix elements of the perturbation Ham
tonianH8:
^ jm8ueip/2JyH8e2 ip/2Jyu jm&5
\

4N
VA~ j 1m!~ j 1m21!3A~ j 2m11!~ j 2m12!dm22,m81

\

4N
VA~ j 1m11!~ j 1m12!

3A~ j 2m!~ j 2m21!dm12,m81
\

4N
~2V2g!A~ j 2m!~ j 1m11!3~ j 2m21!dm11,m8

1
\

4N
~2V1g!A~ j 2m!~ j 1m11!3~ j 1m!dm11,m81

\

4N
~2V1g!A~ j 1m!~ j 2m11!

3~ j 1m21!dm21,m81
\

N
~2V2g!A~ j 1m!~ j 2m11!3~ j 2m!dm21,m81

\

4N
~V1g!

3~ j 1m!~ j 1m21!dm,m81
\

4N
~V2g!~ j 2m!~ j 2m21!dm,m81

\

N
V~ j 22m2!dm,m8 .

~27!
2-3
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Therefore the eigenvalues ofH are

Ejm5\VN12m\g1
\

N
V~ j 22m2!1

\

4N
~V1g!~ j 1m!

3~ j 1m21!1
\

4N
~V2g!~ j 2m!~ j 2m21!. ~28!

In general, we could obtain all the eigenfunctions ofH under
the first-order approximation by using Eqs.~24!, ~26!, and
~27!. So the time evolution operator of the system is writt
as:

U~ t !5e2 i tH /\5 (
2 j 50

`

(
m52 j

j

e2 i tE jm /\uc jm&^c jmu. ~29!

V. FLUORESCENCE SPECTRUM OF THE EXCITONS

We firstly give an analytic expression for the physic
spectrum of theq-deformed excitons in terms of the Foc
state of the quantum field and the excitons. The stand
definition of the physical spectrum is@25#

S~v!52gE
0

t

dt1E
0

t

dt2e2(g2 iv)(t2t2)e2(g1 iv)(t2t1)G~ t1 ,t2!,

~30!

whereg is the half-bandwidth of spectrometer that is bei
used to measure the spectrum, andt is time length of the
excitation in the cavity. Provided an arbitrary initial stateu i &
of the system, the dipole correlation function is

G~ t1 ,t2![^ i uU†~ t2!bq
†U~ t2!U†~ t1!bqU~ t1!u i &

5 (
j ,k,l ,m,n,

^c j l ubq
†uckm&^ckmubquc jn&

3^ i uc j l &^c jnu i &eiv j l ,kmt2e2 iv jn,kmt1 ~31!

with v j l ,km5(Ejl 2Ekm)/\ and v jn,km5(Ejn2Ekm)/\.
Here the approximate evolution operatorU(t) in Eq. ~29!,
keeping only the first order of 1/N, has been used and in th
following calculation the bosonic expansion of th
q-deformed exciton operators, Eqs.~13!–~14!, will also be
used. It’s evident thatj is determined only by the initial stat
u i &. So we have

S~v!5 (
j ,l ,k,m

2g

g21~v2v j l ,km!2
3u^ i uc j l &u2z^c j l ubq

†uckm& z2.

~32!

Noting that we have omitted the transient terms and slo
variation terms. This equation gives the stationary phys
spectrum in terms of the eigenvalues and eigenstates o
02380
l

rd
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system. If ^m8 j 8ubq
†u jm&Þ0, then we havej 85 j 1 1

2 and
m85m2 1

2 . So Eq.~33! can be rewritten as

S~v!5 (
j ,l ,m

2g

g21~v2v j l ,( j 21/2)m!2

3u^ i uc j l &u2z^c j l ubq
†uc ( j 21/2)m& z2. ~33!

The eigenvalues determine the position of the spectral c
ponent andu^ i uc j l &u2u^c j l ubq

†uc ( j 2
1
2 )m&u2 determine the in-

tensity of the spectral lines.
Under the experimental condition of Ref.@26#, the bare

excitons could be prepared by resonant femtosecond p
pumping. If we prepare the initial stateu i & in the subspace o
N51, then Eq.~34! shows that the emission spectrum
N51 to N50 transition has double peaks structure, whi
is exactly equal to that of the two-level atomic system. Wh
the pumping power is increased, the emission spectrum
quite different from the case of the two-level atomic syste
For example, if the system is initially prepared in the su
spaceN52, then we have:

FIG. 1. The physical spectrumS(v) is plotted as a function of
v in the case ofV51562 MeV, N5100, g520 MeV, and g
50.1 MeV.

FIG. 2. The physical spectrumS(v) is plotted as a function of
v when the molecular numberN510 000 and other parameters a
the same as those in Fig. 1 (V51562 MeV, g520 MeV, g50.1
MeV!.
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S~v!5(
l ,m

2g

g21~v2v lm!2
3u^ i uc1l&u2z^c1l ubq

†uc 1
2 m& z2

~34!

with v lm5v1l ,(1/2)m . As expected, from this equation we s
immediately that there are six peaks in the emission sp
trum whenN52.

Although there are three different initial states, they w
result in similar shapes of spectra. As an example, in Fig
we plot the physical spectrumS(v) as a function of the
frequencyv when u j 51,m50& is taken as the initial state
In contrast, the emission spectrum from a strong pum
two-level system possesses a triplet structure@27# instead of
the sextet structure manifested here.

When the molecular number of the system is increas
e.g., there are 10 000 molecules in the system, the other
ditions are the same as that in Fig. 1, the coupling betw
the molecules and the cavity field is weak. In this case th
are only two peaks in the emission spectrum as shown in
2 and the Bose approximation is valid.
,

pli
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VI. CONCLUSION

It has been shown that Frenkel excitons with relative h
density obey naturally theq-deformed commutation relation
keeping the first order of 1/N. Based on this observation th
quantum theory of the angular momentum is employed h
to obtain the eigenvalues and eigenfunctions, i.e., the dre
states of the cavity field and theq-deformed excitons of the
exciton system under the same approximation. Compa
with the usual approach to the Frenkel exciton dynamics
Hamiltonian is Hermitian and closed in form. And above a
the deformation parameterq is no longer phenomenologica
and is determined by the total molecular number. An anal
cal expression for the stationary physical spectrum for
excitons is obtained with the help of the dressed states of
cavity field and the excitons.
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