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Semiconductor-cavity QED in high-Q regimes with g-deformed bosons
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The high-density Frenkel excitons, which interact with a single-mode cavity field, are investigated in the
framework of theg-deformed boson. It is shown that tliedeformed bosonic commutation relations are
satisfied naturally by the exciton operators in the high-density limit. An analytical expression of the physical
spectra of the excitons is obtained by using the dressed states of the cavity field and the excitons. We also give
the numerical study and compare the theoretical results with the experimental results.
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[. INTRODUCTION the semiconductor-cavity QED in higQ-regimes. What will
be investigated here is the case where the total molecule
It's well known that the system of the excitons is a qua-numberN is very large but not infinite by using the method
siparticle system. In case of the low density, the excitons aréf the g-deformed boson algebra. That is, we shall consider
approximately treated as bosons that obey Bose statistidbe effects of orde©(1/N). As it turns out, the commutation
[1-3]. But when the density of the excitons becomes relativagelations for the exciton operators will no longer obey the
higher, the excitons, which somewhat deviate the bosoni€ommutation relations of the Heisenberg-Weyl algebra but
model, are no longer ideal bosons. There are two ways dhe g-deformed bosonic commutation relations
dealing with this problem: one way is to put these deviations
into the effective inte_raction between the_ hypothetical ideal [by,bll,=bybl—qblb,=1, 1)
bosons and the exciton operators as still presented by the arresa TaTe e
bosonic operatorp4,5]. Another way is the implementation
of the atomic operatorgs—8], which naturally gives rise to Where the deformation constagidepends on the total atom
the question of whether a system of excitons is equivalent thumber.
an atomic system. This paper is organized as follows. In Sec. Il we first
The concept of thq-deformed boson was extensi\/e|y ap- deduce theq-deformed commutation relations of the exciton
plied in physics due to thg-deformed boson realization of Operators in the higl cavity in the case of the large but
the quantum group theory by different authors ten years agdinite lattice molecule numbeX. In Sec. I1I, by keeping only
Since then, many physicists made great efforts to find its redhe first-order term of M, we model the Frenkel excitons in
physical implementatiof9—13]. For example, they did some @ microcavity as a dressegdeformed boson system. In Sec.
phenomenological investigations to fit the deformed spectrd, the quantum approach of the angular momentum is used
of the rotation and oscillation for molecules and nu¢legd—  to obtain the eigenvalues and eigenfunction of the system
16]. In our opinion, those investigations can be regarded agnder the first-order approximation. The stationary physical
merely phenomenological explanations, because thesgpectrum of the system is calculated in Sec. V. Finally we
g-deformed structures were postulatedihocand no under- summarize our results with some comments.
lying microscopic mechanism was presented in advance.
In this paper, it will be shown that a physical and natural
realization of theg-deformed boson is provided by the exci-
ton operators, which were proposed recently by Gardiner Gardiner’s starting poirftL7] to introduce the exciton op-
[17] for the description of Bose-Einstein condensationerators is to consider a system of the weakly interacting Bose
(BEC). Here the deformation parametis well-defined by  gas. Without losing generality, we consider a thin molecular
the total molecule numbeN rather than its phenomenologi- crystal film containing\ identical two-level molecules inter-
cal explanation given in the investigations in the past. In factacting resonantly with a single-mode quantum field. The in-
the similar quasiparticles scheme for the particle-numbetermolecular interaction is neglected in the low-molecular
conservation was already introduced by Girardeau and Arexcitation. We assume that all molecules have equivalent
nowitt almost 40 years agfd8]. The relationship between mode positions, so they interact with the cavity field by the
the Gardiner’s phonons and these quasiparticles has been dixme coupling constamt. By using Dicke mode[20], we

cussed in a recent commef®t9]. We find that when the could write the Hamiltonian in the rotating wave approxima-
density of the exciton&he particles excited in upper state  tion as follows:

low enough, it returns naturally to the ideal boson case. Ac-
cording to that theory, we could give a good explanation to

Il. Q-DEFORMED BOSONIC ALGEBRA FOR EXCITON

H=1Q(S,+a'a)+#hk(aS, +a's_), )
*URL: http://www.itp.ac.cfi’suncp. Electronic address: wherea anda' are the annihilation and creation operators of
suncp@itp.ac.cn the quantum cavity field, respectively, and

1050-2947/2001/62)/0238025)/$15.00 63 023802-1 ©2001 The American Physical Society



YU-XI LIU, C. P. SUN, S. X. YU, AND D. L. ZHOU PHYSICAL REVIEW A63 023802

N N by,bl1q=bgbl—qbbl=1, 8b
S,= 2 s/(n), S.=3 s.(n), (3) LPa:Bala=bdq ™Abby o

n=1 n=1 with q=1—27. This is exactly a typicat-deformed com-
mutation relation. A&N—oo or g— 1, the usual commutation
relation of Heisenberg-Weyl algebra is regained.

In the above discussion about the phonon excitation, we

where s,(n) = (|en><en| - |gn><gn|)/2as+(n) = |en><gn| , and
s_(n)=|g,){e,| are quasispin operators of théh molecule.

Statesle,) and|g,) denote the excited state and the ground . . P
state of thenth molecule. have linearized the commutatdr=f(b'b;#») so that a

We consider the second quantization of the above mode _-deformed commutation rule was obtained. Essentially this

Let b} andb, denote the creation and annihilation operatorsmeanzaltlon establishes a physical reaiization of the

£ th lecules in th ited ! andb h -deformed algebra. However, if the total particle numier
0 .t € molecu e.s.ln_t e excited statg; andb, are the € s not large enough, theh cannot be approximated by a
ation and annihilation operators of the molecules in thaIi

o oo inear function. From the commutation relations betwéen
ground state. The simplified Hamiltonian after the secon ndb.. bt
quantization is written 4rra

H=%Q(blb.—blby+a'a)+#k(ablbg+H.c). (4 [h,bg]:_%bg, [h,bq]zébq, (9)
Note that the total molecular numbise=b b+ bJb, is con-
served. For convenience we defige= 1/N with large par-
ticle numberN.

In the thermodynamical limiN— <, the Bogoliubov ap-
proximation[21,27 is usually applied, in which the ladder

operatorsh! by of the ground state are replaced by aum- Based on the above analysis about the algebraic structure
ber VN, whereN_ is the average number of the initial con- of exciton operators, we consider the case of the relatively
densated atoms. As a result Hamiltonian E4).describes a  high density of molecules in the excited state for the Hamil-
system of two coupled harmonic oscillators tonian (2).
Since the second quantization forms $f and S_ are

S, = bz,bg andS_= bgbe, respectively, it is straightforward
helo prove that the collective operatdds /N andS_//N are
approximately considered as the simple bosonic operators as
N—oo, These collective operators are called exciton opera-
Jors. But in case of the relatively high density of molecules
In the excited state with finitdl, since many molecules are in

we see that the algebra of exciton operators is a rescaling of
algebra SW2) with factor N.

Ill. THEORETICAL MODEL

Hp=%Q(blbe+a'a)+AkNg(abl+H.c). (5

However, this approximation destroys a symmetry of t
Hamiltonian Eq.(4), i.e., the conservation of the total par-
ticle number is violated because [df,H,]#0.

To avoid this problem, the exciton operators are define

as:
the excited state the bosonic approximation can no longer
1 1 work well. The Hamiltonian(2) can be rewritten in terms of
bq=\/—Nb;be, bg=\/—ﬁbgbl (6)  g-deformed bosons as the following effective Hamiltonian
H=%Q(a'a+blby) +7%g(a’b,+bla), (10)

according to Gardinefl7]. These operators act invariantly
on the subspac¥™ spanned by basg®;n)=|N—n,n)(n  whereg= Nk andq-deformed boson operatobg, b sat-

=0,1, ... N), where Fock states isfy the g-deformed commutation relation
1 by.bile=1, (12)
Imn)=—==bI"b"0) (Mn=012...) [Paglq
vmin! where
span the Fock spadé,, of a two-mode boson. 2
A straightforward calculation leads to the following com- g=1- <. (12
. . . . N
mutation relation between the exciton operalgrand its
Hermitian conjugate: It should be emphasized here that the deformation parameter
5 g is determined by the lattice molecule number and is no
by,bi1=1— —blb.,=f(blb,; 7)), (7)  longer phenomenological.
[0q.bg] NeTe (baba; 7 Up to the first-order approximation, tlgedeformed boson
operatorsh! andb, could be expressed as
with f(x;7)=\1+2(1-2x)n+ n°— 5. Keeping only the P q . P
lowest order ofy for a very large total particle number, the bbb
commutator above becomes bi=b"+ SN (13)
1o T
[bg,bg]l=1—27bgby (8a) - bbb y
or q— + 2N (14

023802-2



SEMICONDUCTOR-CAVITY QED IN HIGHQ REGIMES. . ..

in terms of the normal bosonic operatds$ and b. As a
consequence the Hamiltoniath in Eq. (10) is rewritten in
the form of perturbation

PHYSICAL REVIEW A 63 023802

! —(a'b—ab"). (19

1 t +
Jx=§(a b+ab"), J,= >

We rewrite the Hamiltonian Eq16)

H=Ho+H’, (15) Ho=#ON+2%gJd,= QN+ 2hge (72 el (72

(20)
in terms of anSO(3) rotation e (™Y of #(QN+2gJ,).

Note that the excitation number operatér=a‘a+b'b is a
constant under ang O(3) rotation and

where

Ho=%Q(a'a+b'b)+%g(a’b+b'a), (16)

N+l
2

P=0+ 05+ 30= (21)

2
h

= Tt Tt Tt
H'= 2N (20bb’bb+gab'bb+ga’b’bb).  (17) is the total angular momentum operator. The common eigen-
states of)? andJ, are

. . . X (aT)j+m(bT)j—m
It is clear that the first term o’ describes the attractive

exciton-exciton collisions due to the bi-exciton effect and the /(j +m)!(j—m)!
last two terms ofH’ describe the decrease of the exciton-

photon coupling constants due to the phase-space filling efvhere the eigenvalues of ttié andJ, are, respectively,

fect [24]. N N N

ngym:_fa"'lg' (23)

ljm)= |0), (22)

IV. APPROXIMATE ANALYTICAL SOLUTIONS The eigenfunctions),, and the eigenvalues()) of H, can

To solve the Schidinger equation governed by Hamil- be easily constructed as
tonian Eq.(15), we shall make use of the quantum angular w23
q ( ) q g |l//JQm>:e i ’2"v|1m>,

(0)—
momentum theory23]. Ejm=hQN+2higm. (24
Up to the first-order approximation, the eigenvalue$iof

According to the Schwinger representation of the angular
momentum by using two bosons, we can build the angulagre obtained as

momentum operators . )
Ejm: EJ(%)+ <] m| eI('n'/Z)JyH ’ efl(ﬂ'/Z)Jy“m), (25)

with their corresponding eigenfunctions given by

jn[H"[jk)
|¢]k>_|(//1(8)> 2 <E(0) E(O) |l//10)>

1
J=5(a'a-b'b), J,=a'b, J_=ab’. (18

(26)

From the ladder operatoms a' of the cavity field and the We calculate the matrix elements of the perturbation Hamil-
exciton operator® andb’ then tonianH':

. h
(jm’|e'™?yH"e” "T’ZJy|Jm)— Q\/(J+m)(1+m DXN(G—m+1)(j—m+2)8pn_om + NQ\/(j+m+1)(j+m+2)

h
XNG=m)(j—m=1) o+ m(ZQ—g)\/(i —m)(j+m+ )X (—m=1)0ms1m

h h
+ m(29+9)\/(i —m)(j+m+1)X [+ M) Sy g+ m(ZQJrg)\/(J +m)(j-m+1)

h i
X(j+m=1) e+ (22 =@V M) (=M D)X (j=m) Sy + 715 (2+0)

h h
XM G+m=1)mm + 75 Q=G =M —mM=1) & + NQ(JZ—mZ) Omm -
(27)
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Therefore the eigenvalues bf are
25

% %
Ejm=/QN+2mfig+ NQ(jz— m?) + m(ﬂ+g)(j +m)

20

h
X(G+m=D+ Q=g (-m(-m=1). (28  *f

10 -

In general, we could obtain all the eigenfunctiond-ofinder
the first-order approximation by using Eq24), (26), and
(27). So the time evolution operator of the system is written
as:

1520 1540 1560 1580 1600 1620 1640

w i FIG. 1. The physical spectru® w) is plotted as a function of
U(t):e—nH/ﬁ: 2 zj e—ltEjm/h|¢jm><¢jm|_ (29 o in the case of)=1562 MeV, N=100, g=20 MeV, andy

2j=0 m=— =0.1 MeV.

V. FLUORESCENCE SPECTRUM OF THE EXCITONS system. If(m’j’[by|jm)#0, then we have’=j+; and
m’=m—%. So Eq.(33) can be rewritten as

We firstly give an analytic expression for the physical
spectrum of theg-deformed excitons in terms of the Fock
state of the quantum field and the excitons. The standard S 2y

definition of the physical spectrum [&5] j;m Y2+ (0= o) - 12m)?
><|<i|'ﬂj|>|2|<l//j||b:r4|¢’(j—1/2)m>|2- (33

t t
- —(y=i)(t—tp) o= (y+io)(t—ty)
S(w)_zyfodtlfodtze we G, The eigenvalues determine the position of the spectral com-
(300 ponent and(i| ;)| 2(wjlbil ¥ - 1ym)|? determine the in-

tensity of the spectral lines.

where y is the half-bandwidth of spectrometer that is being  under the experimental condition of Ré®6], the bare

used to measure the spectrum, anid time length of the  excitons could be prepared by resonant femtosecond pulse

excitation in the cavity. Provided an arbitrary initial stéite pumping. If we prepare the initial stafie in the subspace of

of the system, the dipole correlation function is N=1, then Eq.(34) shows that the emission spectrum of
N=1 to N=0 transition has double peaks structure, which
is exactly equal to that of the two-level atomic system. When

G(ty,t)=(i|UT(t)b{U(t) UT(t))bgU(ty)]i) the pumping power is increased, the emission spectrum is
quite different from the case of the two-level atomic system.
:j k%n <¢jl|ba|wkm><‘//km|bq|¢jn> For example, if the system is initially prepared in the sub-

spaceN'=2, then we have:
X (il ) @ynliy €' iimize ™ eimknts - (31)

with wjl,km:(Ejl_Ekm)/ﬁ and wjn,km:(Ejn_Ekm)/ﬁ' 12 +
Here the approximate evolution operatd(t) in Eqg. (29),
keeping only the first order of B, has been used and in the °f
following calculation the bosonic expansion of the
g-deformed exciton operators, Eq4.3)—(14), will also be
used. It's evident thgtis determined only by the initial state
li}. So we have

_ 2y N2 e n 2
et UL LT L
(32

|-

1500 1525 1550 1575 1600 1625 1650

) . ) FIG. 2. The physical spectru® w) is plotted as a function of
Noting that we have omitted the transient terms and slowly, when the molecular numb&t= 10 000 and other parameters are

variation terms. This equation gives the stationary physicalhe same as those in Fig. NE1562 MeV, g=20 MeV, y=0.1
spectrum in terms of the eigenvalues and eigenstates of thaev).
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2
S(0)=3 !

2 y2+(w_wlm)2><|<i|¢1|>|2|<¢/fl.|b;|¢§m>|2

(39

With = 1) (1/2)m - AS expected, from this equation we see

PHYSICAL REVIEW A 63 023802

VI. CONCLUSION

It has been shown that Frenkel excitons with relative high
density obey naturally thg-deformed commutation relation
keeping the first order of V. Based on this observation the
quantum theory of the angular momentum is employed here

immediately that there are six peaks in the emission speao obtain the eigenvalues and eigenfunctions, i.e., the dressed

trum whenA/=2.
Although there are three different initial states, they will

states of the cavity field and tleedeformed excitons of the
exciton system under the same approximation. Compared

result in similar shapes of spectra. As an example, in Fig. vith the usual approach to the Frenkel exciton dynamics our

we plot the physical spectrurB(w) as a function of the
frequencyw when|j=1m=0) is taken as the initial state.

Hamiltonian is Hermitian and closed in form. And above all,
the deformation parameteris no longer phenomenological

In contrast, the emission spectrum from a strong pumpednd is determined by the total molecular number. An analyti-

two-level system possesses a triplet strucf@ instead of
the sextet structure manifested here.

cal expression for the stationary physical spectrum for the
excitons is obtained with the help of the dressed states of the

When the molecular number of the system is increasedzavity field and the excitons.

e.g., there are 10 000 molecules in the system, the other co
ditions are the same as that in Fig. 1, the coupling betwee

n_
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