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Quantum measurement via Born-Oppenheimer adiabatic dynamics
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The Born-Oppenheimer adiabatic approximation is used to describe the dynamic realization of wave-
function collapse in quantum measurement. In the adiabatic limit, it is shown that the wave function of the total
system formed by the measured quantum system plus the measuring apparatus can be factorized as an en-
tangled state with correlation between adiabatic quantum states and quasiclassical motion configurations of the
large system. When the apparatus effectively behaves as a classical object, this adiabatic entanglement leads to
the wave-function collapse, which creates an ideal quantum measurement process.
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In von Neumann’s quantum measurement theory,
wave-packet collapse~WPC! of a measured systemScan be
described as a dynamic evolution process through an ap
priate coupling with the measuring apparatusD ~detector!
@1#. But this approach brings with it a philosophical difficul
known as the von Neumann chain. A second detector sh
be introduced to monitor the first one so that the first one
be decohered classically, and for the same reason a third
a fourth one, and so on should be introduced until we fina
have a final detector, which is not described by quant
mechanics and thus gives definite outputs@2#. To overcome
this difficulty that physicists have to confront, the bounda
between the classical and quantum worlds should be ph
cally clarified so that the sequence of detectors could be
off reasonably@3#.

A direct way to avoid the introduction of the sequence
detectors after the first one is to take the macroscopic c
acter of the detectorD into account. This idea was propose
in 1972 by Hepp and Coleman with an explicit illustratio
@4#. The crucial major point in this approach was then cla
fied by Bell in a reasonable criticism@5#. In the spirit of this
approach, it was manifested via a simple exactly solva
model @the Hepp-Coleman~HC! model# that the WPC ap-
pears dynamically when the detector is a ‘‘large system’’ a
the number of its constituting blocks approaches infin
Later on, Namikiet al. generalized this work and put for
ward various new models for quantum measurement@6#.

In 1992, after analyzing the original HC model and
various generalizations, one of the authors~C.P.S.! found
that what underlies these models is a factorization struc
in the off-diagonal elements of the reduced density ma
for the measured system@7,8#. First, starting from a pure
state ofS, an appropriate interaction betweenS and D will
force the total system to evolve into a quantum entang
state@3,9# for SplusD. Then, by tracing out the variables o
D, the reduced density matrix ofS is obtained with the off-
diagonal elements proportional to decoherence factorsFm,n .
Finally, under the assumption that the detector is compo
of N particles, afactorization structureimplied in the WPC
models is exposed:Fm,n5) j 51

N f m,n
[ j ] . Here, each factorf m,n

[ j ]

has a norm less than unity. So the productFm,n of an infinite
number of such factors may approach zero asN→`. Corre-
1050-2947/2000/63~1!/012111~5!/$15.00 63 0121
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spondingly, the WPC phenomenon or quantum decohere
is dynamically described through the vanishing of the o
diagonal elements of the reduced density matrix. Recen
this factorization theory has been applied to the analysis
the universality of the environmental influences on a qu
tum computation process@10#.

The above discussion concerns only one of the mac
scopic and classical behaviors ofD. As regards the latter, a
particular situation is that a certain dynamic variable of t
detector takes a huge quantum number, e.g., the angular
mentum approaches infinity@7,11,12#. Here the point is, in
order to discuss the classical feature, the detector need n
composed of many particles. Actually one can assume it o
possesses a single degree of freedom. In this case, a qua
system regarded as a measuring apparatus differs from o
quantum systems in that it is a ‘‘large object,’’ which
effectively classical in a certain sense. In the subsequent
cussion, we assume the detector to be a ‘‘heavy syste
which is prepared in a quantum state beforehand but ha
approach the classical limit. In the classical limit, a partic
approximately possesses a definite trajectory and the rele
mean-square deviation of the observable is zero. We
return to this point and further explain it later. For the m
ment, we only point out that a quantum system interact
with a ‘‘heavy’’ system can decohere to realize a quant
measurement. This paper is devoted to a study of the cla
cal limit of a measuring apparatus only with reference to
quantum mechanics of the total system formed byS plus D.

In a very wide sense, any interaction between two qu
tum systems can cause an entanglement between them.
then creates a quantum measurement in a certain sense
is due to the fact that one quantum system in different sta
can act on another quantum system with different effe
correspondingly. But usually this entanglement and the
lated quantum measurement are not very ideal because
usual interaction cannot produce a clean one-to-one co
spondence between the states of the two systems. Ind
only a very particular interaction or its effective reductio
directly leads to an ideal entanglement and realize an id
quantum measurement. Nevertheless, we will prove in
following that if one of the two systems can be separa
adiabatically and behavesclassically, a general interaction
©2000 The American Physical Society11-1
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can result in an ideal entanglement and create the WPC
our discussion, quantum decoherence plays a crucial ro
the definition of the classical limit of the detector as well
in the realization of the wave-packet collapse of the m
sured system. Using the Born-Oppenheimer adiabatic
proximation @13,14#, we will show that, in the adiabatic
limit, the wave function of the total system formed by th
measured quantum system plus the measuring apparatu
be factorized as an entangled state with a correlation betw
adiabatic quantum states and quasiclassical motion con
rations of the large system. When the apparatus effectiv
behaves as a classical object~this is the case in the classic
limit !, one can draw information about the measured sys
from quasiclassical states~e.g., a moving and slowly spread
ing narrow wave packet which centers around a definite c
sical trajectory! of the detector. Thus this adiabatic entang
ment means decoherence of the coherent superpositio
quantum states of the measured system. It leads to the w
function collapse and creates an ideal quantum measure
process.

In the spirit of the Born-Oppenheimer~BO! approxima-
tion, we consider a total quantum system~‘‘molecular’’ !
with two sets of variables, a fast~‘‘electric’’ ! one q and a
slow ~nuclear! onex. Resolving the dynamics of the fast pa
q for a given motion of the slow part, we obtain certa
quantum states labeled byn for q. When thex part moves so
slowly that the internal transition of theq part is not excited
by the backaction of thex part, the left effective Hamiltonian
governingx involves an external scalar potentialVn(x). It is
noticed that there may be a magnetic-potential-like vec
potentialAn(x) induced by theq part @15#, but for our major
purpose here we need only consider the generic case wit
An(x). In fact, the following discussions do not concern t
cyclic evolution giving prominence to the effects of th
Berry phase@16#. If we assume that the motions of the slo
subsystem are ‘‘classical,’’ we naturally observe that, due
the backaction of the fast part, there are different indu
forcesFn52“xVn(x) exerting on the slow part. Then th
direct physical consequence is that the information of
‘‘fast’’ states labeled byn is recorded in the different motion
configurations of the slow part. An entanglement just ste
from this correlation.

Let us now analyze the quantum dynamics governed
the interaction between a quantum systemS with fast dy-
namic variableq and the detectorD, a large system with
slow variablex. Their Hamiltonians areHs5Hs(q) andHd

5Hd(x), respectively. In general, the interaction Ham
tonian is written asHI5HI(x,q). For a fixed value of the
slow variablex of D, the dynamics of the quantum system
determined by the eigenequation ofHq@x#5Hs(q)
1HI(x,q). The corresponding eigenvaluesVn@x# and eigen-
statesun&5un@x#& all depend onthe slow parameter x.

When the variablex changes slowly enough, the transitio
from an energy levelVn(x) to anotherVm(x) caused by the
variation of the HamiltonianHq@x# with x, can be physically
neglected. Specifically, this requires that the adiabatic co
tion @14#
01211
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z^nu$]xHI~x,q!%um&ẋz

uVm~x!2Vn~x!u2
!1 ~1!

hold for any two of the different energy levels$Vn(x)%
within the spatial domainR to which the slow variablex
belongs. LetuFn,a& be the full eigenfunction of the full
Hamiltonian H5Hd(x)1Hq@x# for the total system. The
BO approximation treats it as a partially factorized functi
uFn,a&5un& ^ ufn,a& with respect to the fast and slow var
ablesq andx. Here, the set of slow components$ufn,a&% and
the corresponding eigenvaluesvn,a can be obtained by solv
ing the effective eigen equation of the BO effective Ham
tonian,

Hn~x!5Hd~x!1Vn~x!. ~2!

After obtaining the complete set of eigenstates$un&
^ ufn,a&% of the total system, we can consider how the e
tanglement appears in adiabatic dynamic evolution.

Let the total system be initially in a stateuC(t50)&
5uw& ^ uf&, where the initial state of the system,uw&
5(ncnun&, is a coherent superposition of the adiabatic
genstates ofS, anduf& is a single pure state ofD. It will be
proved that, starting fromuw&, the adiabatic evolution of the
system will lead to the WPC in the quantum measurem
about an observableQ, which commutes with the Hamil-
tonianHq@x# and satisfiesQun&5lnun&. Expanding the total
initial stateuC(t50)& in terms of the complete set$un&
^ ufn,a&%, we obtain the evolution wave function at timet,

uC~ t !&5(
n

cnun& ^ udn~ t !&, ~3!

whereudn(t)&5exp@2iHnt#uf& are just those evolution state
starting from the same initial stateuf&, but driven by differ-
ent effective potentialsVn(x). The full wave functionuC(t)&
is obviously an entangled state, a superposition ofun&
^ udn(t)& with the correlations between different final stat
udn(t)& of D and different adiabatic eigenstates ofS.

This intuitive argument shows us that, even in the case
a quite general interaction, there can exist an entanglem
between the two quantum systems when one of them mo
so slowly that their dynamic variables can be adiabatica
factorized according to the BO approximation. This adiaba
formalism for quantum measurement is similar to the Ste
Gerlach~SG! experiment@17#, which detects the spin state
of an Ag atom on the ground state by observing the spa
distribution on a screen. In the SG experiment, the entan
ment is reflected by two correlations: the spin-up stateu↑&
corresponds to the spatial stateud�(t)& of the upper spot; the
spin-down stateu↓& corresponds to the spatial stateud↓(t)& of
the lower spot. It is noticed that the adiabaticity is crucial
produce such an entangled stateuC(t)&. To describe it in a
quantitative way, an adiabatic parameter was precisely in
duced recently@18#. Its dual version can be considered
certain perturbation series with different choices of the le
ing terms corresponding to the different perturbative Ham
tonians @18#. In this sense, the BO approximation can
1-2
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interpreted in the following way: the kinetic termP2/2M
acts as a perturbation for the ‘‘large object’’ with a larg
mass parameterM and a very small initial momentum. Thi
argument shows that the interaction between a large a
small objects implies a reasonable extension of the con
of quantum measurement.

It will be argued that, when the detector behaves cla
cally under the BO approximation, the entangled adiab
udn(t)& (n51,2, . . . ) may beorthogonal to one another, i.e
udn(t)& may be ‘‘classically distinguishable.’’ Then we ca
say the above-mentioned adiabatic measurement is i
since the WPC happens as a result of quantum decoher
of the reduced density matrix, namely a transition fro
rs(0)5uw&^wu characterizing the initial pure state tord(t)
5(nucnu2un&^nu describing a completely mixed state. T
show it, we will need the following expression of the gene
reduced density matrix of the measured system:

rs~ t !5TrD„uC~ t !&^C~ t !u…

5(
n

ucnu2un&^nu1 (
nÞm

cmcn* Fnmum&^nu^dn~ t !udm~ t !&.

~4!

Here the overlappingFnm5^dn(t)udm(t)& of the two detec-
tor states is called the decoherence factor. A complete d
herence is defined byFn,m50 while a complete coherence
defined byFn,m51(mÞn).

We are now in a position to study the dynamical realiz
tion of the WPC quantitatively. It boils down to considerin
in what case the decoherence factors become zero so tha
off-diagonal elements of the reduced density matrix van
simultaneously. We recall the following widely accept
viewpoint clearly stated by Landau and Lifshitz@19#: in the
classical limit, the expectation value of an observable fo
particular state~e.g., a coherent state or its squeezed v
sions! can recover its classical value form. Specifically,
takes Feje´r’s arithmetic mean of the partial sums of the Fo
rier series of its corresponding classical quantity@19#. In this
view, these particular states can well describe definite c
sical trajectories of a particle in this limit and the releva
mean-square deviation of the observable is zero. The m
of the position operator defines a classical path in suc
limit. Physically, the zero mean-square deviation of the
sition operator implies the zero width of each wave pac
^xudm(t)&, and the overlappingFn,m5^dn(t)udm(t)& of
wave packets of almost-zero width must vanish. In suc
semiclassical picture, the initial stateuw& can be regarded a
a very narrow wave packet for a heavy particle. Then
describe the detector by a moving wave packet with the c
ter along a classical pathx(t) on a manifold with local co-
ordinatesx. For a proper initial stateuw&, we will see that the
wave packet will split into several very narrow peaks w
the centers moving along different paths without efficie
overlaps. These quasiclassical paths are determined by
effective forcesFn52“xVn(x) through different motion
equations.
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To support the above physically intuitive argument, w
carry out an explicit calculation. We assumeHd(x)
5p2/2M and the interactionHI(x,q) is a smooth function of
x such that the effective potentialVn(x) is also satisfactorily
smooth. This assumption is reasonable since the adiab
condition of the BO approximations requires that the velo
ity ẋ'2@¹Vn(x)/Mt# ~if the initial velocity of D is zero!
should be small enough. So we can linearize the effec
potentials:Vn(x)'Vn(0)2Fnx, whereFn'2“Vn(0) are
the classical forces of backaction on the detectorD, which
correspond to different system states. Accordingly, we h
the effective Hamiltonians

Hn5
p2

2M
1Vn~0!2Fnx. ~5!

In the semiclassical picture, driven by different forcesFn ,
the detector will finally form some macroscopically disti
guishable spots on the detecting screen, each of whic
correlated to one of the adiabatic states.

To see the WPC in the measurement process clearly
assume that the detector is initially in the state of a Gaus
wave packet of widtha:

uf&5E S 1

2pa2D 1/4

e2x2/4a2
ux&dx ~6!

distributed along directionx and centered around the origin
point. Following the Wei-Norman method@20,21#, we first
factorize the evolution operatorUn(t)5exp@2iHnt# as
Un(t)[ean(t)p2

ebn(t)pegn(t)xemn(t) formally @21#. Then we
can exactly obtain the effective wave functionsudn(t)&:

^xudn~ t !&5S a2

2p3D 1/4S p

a21
i t

2M
D 1/2

3expF 2 iVn~ t !1 ixFnt2
@x2xn~ t !#2

4S a21
i t

2M D G , ~7!

whereVn(t)5Vn(0)t1(Fn
2t3/6M ).

It is seen from Eq.~9! that the Gaussian wave packe
^xudn(t)& are centered on the classical trajectoriesxn(t)
5 1

2 (Fn /M )t2 and have different group speedsvn
5(Fn /M )t, respectively, but they have the same wid
a(t)5a@11(t2/4M2a2)#1/2 spreading with time. It is obvi-
ous that the wave-packet centers move in the same way
classical particle of massM forced byFn . Here the quantum
character is reflected in the spreading of the wave pack
The macroscopic distinguishability of wave packets in qu
tum measurement requires that the distance between the
ters of two wave packets should be larger than the width
each wave packet, i.e.,

uFn2Fmu
M

t2@aS 11
t2

4M2a2D 1/2

. ~8!
1-3
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This condition is easily satisfied whent is sufficiently large.
To see how the decoherence happens quantitatively

compute the norm of the decoherence factor:Fmn(t), which
completely determines the extent of the quantum cohere
of the measured system. This is an overlapping integ
which we can explicitly integrate as follows:

uFmn~ t !u5expF2
~Fn2Fm!2t4

32M2a2
2

1

2
a2~Fn2Fm!2t2G .

~9!

One easily sees from this formula that the decoherence
cess indeed appears ast→`. The character timetmn of the
WPC is determined by the equationFmn(tmn)5e21, that is,

tmn52AMa@A4M2a612~Fn2Fm!222Ma3#. ~10!

We have associated the WPC or quantum decohere
problem with the adiabatic separation of the total syst
formed by the measured system plus the detector. We h
seen that under certain reasonable conditions, ideal enta
ment does happen adiabatically to meet the requirement
the result of a measurement should be classically obs
able . At this point, it is worth pointing out that in the adi
batic limit, the nondemolition interaction@22# can also effec-
tively realize a quantum measurement. In our discussion,
sides the use of the Born-Oppenheimer approximation w
adiabaticity, the other key point is the classical limit of t
detector. On the other hand, in the theory of continuo
quantum measurement there have been a lot of discuss
about the attainment of the classical limit, but in a differe
sense@23#. It is apparent that any quantum system coupl
to another ‘‘large’’ system cannot stay in a pure state and
dynamics must be described by a mixed state, or more
cifically, by a reduced density matrix with rank larger than
~in the case of a pure state, the rank is exactly 1!. Usually,
dealing with the environment with many degrees of freedo
one can apply the Master equation to describe the evolu
of the mixed state of a quantum system. But it should
noticed that the present ‘‘heavy’’ system may possess o
one single dynamic variable. Thus the corresponding Ma
equation description should be essentially different from t
used for an environment with many dynamic variables
many particles inside. Thus we think the question of how
use the Master equation to describe dissipation and deco
ence of a quantum system coupling to a ‘‘heavy’’ syste
with one single effective variable might be an intricate pro
lem, which is appropriate to be addressed in further wor

We also point out that the adiabatic entanglement p
sented here can be well understood in the picture of cou
channels@24#. In terms of certain ‘‘internal’’ states$un&%, the
total eigenfunctionCE(x,q) can be expressed asCE(x,q)
5(fn(x)un&. The channel wave functionfn(x) defined
here obeys thecoupled channel equations Hnfn(x)
01211
e

ce
l,

o-

ce

ve
le-
at
v-

e-
h

s
ns
t
g
ts
e-

,
n

e
ly
er
t
r
o
er-

-
.
-
d

5Efn(x) 1(mÞnHnmfm(x). When the channel coupling
Hm,n can be ignored physically, each internal stateun& cor-
relates to a channel statefn . The diagonal elementsHn play
a dominant role in measuring the internal states byfn . The
recent experiments@25,26# give support to the following ar-
gument: as long as the ‘‘which-way’’ information alread
stored in the detectorcould be read out, the interference
pattern implied by the off-diagonal elements in the reduc
density matrix would be destroyedwithout any data being
read out in practice. According to this argument, we ca
compare the environment-induced decoherence with
quantum measurement dealt with above and come to the
clusion that actually the environment surrounding the qu
tum system behaves as a detector to realize a ‘‘measurem
like’’ process. This is because the environmentnever needs
to read outthe data. Thus, the argument in this paper is a
valid for the analysis of decoherence problems in an in
fering quantum system coupling to the environment.

Before concluding this paper, we notice that the act
calculation in this paper is only carried out in a general c
without emphasizing its inherent experimental significan
To develop the present study so as to provide insight i
possible experiments, we should probe various coupling s
tems that permit the Born-Oppenheimer approximati
There are concrete problems such as the dynamics of
small spin–large spin interacting system, microcavity-mir
coupling dynamics with a classical source@27#, and the lo-
calization of a macroscopic object through adiabatic scat
ing, which can serve this purpose@2#. For instance, we con
sider the intracavity dynamics. In this case, there is a ca
with two end mirrors, one of which is fixed while the other
treated as a simple harmonic oscillator with a large mass
the radiofrequency range, when the cavity field is driven
macroscopic currents, the cavity field can be treated a
forced harmonic oscillator. This cavity field–mirror couplin
system can also be used to detect the photon number in
cavity. The detection can be realized by the motion of
mirror. Obviously, the motion of the mirror is slow with
respect to the oscillation of the cavity field. Thus we can u
the BO approximation to approach the quantum decohere
problem in the measurement of the cavity field. Most
cently, the special case of this model without a classi
source has been used to present a scheme for probing
decoherence of a macroscopic object@27#. In the presence of
a classical source, this cavity-field–mirror coupling syste
can be analyzed using the general approach that this p
provides.
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