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Quantum measurement via Born-Oppenheimer adiabatic dynamics
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The Born-Oppenheimer adiabatic approximation is used to describe the dynamic realization of wave-
function collapse in quantum measurement. In the adiabatic limit, it is shown that the wave function of the total
system formed by the measured quantum system plus the measuring apparatus can be factorized as an en-
tangled state with correlation between adiabatic quantum states and quasiclassical motion configurations of the
large system. When the apparatus effectively behaves as a classical object, this adiabatic entanglement leads to
the wave-function collapse, which creates an ideal quantum measurement process.
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In von Neumann’s quantum measurement theory, thepondingly, the WPC phenomenon or quantum decoherence
wave-packet collaps@VPC) of a measured syste®ican be is dynamically described through the vanishing of the off-
described as a dynamic evolution process through an approiagonal elements of the reduced density matrix. Recently,
priate coupling with the measuring apparafds(detectof  this factorization theory has been applied to the analysis of
[1]. But this approach brings with it a philosophical difficulty the universality of the environmental influences on a quan-
known as the von Neumann chain. A second detector shoul@dim computation proceg4.0].
be introduced to monitor the first one so that the first one can The above discussion concerns only one of the macro-
be decohered classically, and for the same reason a third ongsopic and classical behaviors Bf As regards the latter, a
a fourth one, and so on should be introduced until we finallyparticular situation is that a certain dynamic variable of the
have a final detector, which is not described by quantuntietector takes a huge quantum number, e.g., the angular mo-
mechanics and thus gives definite outpl@k To overcome  mentum approaches infinify7,11,19. Here the point is, in
this difficulty that physicists have to confront, the boundaryorder to discuss the classical feature, the detector need not be
between the classical and quantum worlds should be phystomposed of many particles. Actually one can assume it only
cally clarified so that the sequence of detectors could be ciyiossesses a single degree of freedom. In this case, a quantum
off reasonably 3]. system regarded as a measuring apparatus differs from other

A direct way to avoid the introduction of the sequence ofquantum systems in that it is a “large object,” which is
detectors after the first one is to take the macroscopic chaeffectively classical in a certain sense. In the subsequent dis-
acter of the detectdD into account. This idea was proposed cussion, we assume the detector to be a “heavy system,”
in 1972 by Hepp and Coleman with an explicit illustration which is prepared in a quantum state beforehand but has to
[4]. The crucial major point in this approach was then clari-approach the classical limit. In the classical limit, a particle
fied by Bell in a reasonable criticispa]. In the spirit of this  approximately possesses a definite trajectory and the relevant
approach, it was manifested via a simple exactly solvablgnean-square deviation of the observable is zero. We will
model[the Hepp-ColemartHC) mode] that the WPC ap- return to this point and further explain it later. For the mo-
pears dynamically when the detector is a “large system” andment, we only point out that a quantum system interacting
the number of its constituting blocks approaches infinity.with a “heavy” system can decohere to realize a quantum
Later on, Namikiet al. generalized this work and put for- measurement. This paper is devoted to a study of the classi-

ward various new models for quantum measurenight  cal limit of a measuring apparatus only with reference to the
In 1992, after analyzing the original HC model and its quantum mechanics of the total system formedSgylus D.
various generalizations, one of the auth¢&P.S) found In a very wide sense, any interaction between two quan-

that what underlies these models is a factorization structurgim systems can cause an entanglement between them. This
in the off-diagonal elements of the reduced density matrixhen creates a quantum measurement in a certain sense. This
for the measured systefi7,8]. First, starting from a pure is due to the fact that one quantum system in different states
state ofS an appropriate interaction betwe8nandD will  can act on another quantum system with different effects
force the total system to evolve into a quantum entangle@orrespondingly. But usually this entanglement and the re-
state[3,9] for SplusD. Then, by tracing out the variables of |ated quantum measurement are not very ideal because the
D, the reduced density matrix &is obtained with the off-  usual interaction cannot produce a clean one-to-one corre-
diagonal elements proportional to decoherence fadiqrs.  spondence between the states of the two systems. Indeed,
Finally, under the assumption that the detector is composegnly a very particular interaction or its effective reduction

of N particles, afactorization structurémplied in the WPC  directly leads to an ideal entanglement and realize an ideal
models is exposed?m‘n:HJNﬂfHﬂn. Here, each factofHﬂn quantum measurement. Nevertheless, we will prove in the
has a norm less than unity. So the prodagt, of an infinite  following that if one of the two systems can be separated
number of such factors may approach zerdNasc. Corre- adiabatically and behaveglassically a general interaction
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can result in an ideal entanglement and create the WPC. In [(n[{aH, (x q)}|m>5<|
our discussion, quantum decoherence plays a crucial role in X ’ < (h)
the definition of the classical limit of the detector as well as V(%) = Vi(X)]

in the realization of the wave-packet collapse of the mea- d f f the diff |
sured system. Using the Born-Oppenheimer adiabatic aﬂlo or any two of the different energy levels/n(x);}

o , . : . 'within the spatial domairR to which the slow variable
proximation [13,14], we will show that, in the adiabatic . .
limit, the wave function of the total system formed by the belongs. Let|®,,,) be the full eigenfunction of the ful

measured quantum system plus the measuring apparatus Hamiltonian H=H(x) +H,[x] for the total system. The
aq y P . g app B approximation treats it as a partially factorized function
be factorized as an entangled state with a correlation betwe

. . . . _ : Gf&)n 2 =|N)®| b, ) With respect to the fast and slow vari-
adiabatic quantum states and quasiclassical motion conflgtéblésq andx. Here. the set of slow componerits, )} and
. ’ n,a

rations of the large system. When the apparatus effectivel e corresponding eigenvalues, , can be obtained by solv-

behaves as a classical objéttis is the case in the classical ing the effective eigen equation of the BO effective Hamil-
limit), one can draw information about the measured systernian

from quasiclassical statés.g., a moving and slowly spread-

ing narrow wave packet which centers around a definite clas- Hp(X)=Hg(X) +V,(X). 2
sical trajectory of the detector. Thus this adiabatic entangle-

ment means decoherence of the coherent superposition gfter obtaining the complete set of eigenstat¢m)
quantum states of the measured system. It leads to the wave- ¢, ,)} of the total system, we can consider how the en-
function collapse and creates an ideal quantum measuremetainglement appears in adiabatic dynamic evolution.

process. Let the total system be initially in a statel'(t=0))
In the spirit of the Born-OppenheiméBO) approxima- =|¢)®|¢), where the initial state of the systenfip)
tion, we consider a total quantum systeffmolecular”) =3,.cqln), is a coherent superposition of the adiabatic ei-

with two sets of variables, a fagtelectric”) oneq and a  genstates 0§, and|¢) is a single pure state d@. It will be
slow (nuclea onex. Resolving the dynamics of the fast part proved that, starting frorfy), the adiabatic evolution of the
q for a given motion of the slow part, we obtain certain System will lead to the WPC in the quantum measurement
quantum states labeled Imyfor g. When thex part moves so  @bout an observabl®, which commutes with the Hamil-
slowly that the internal transition of thgpart is not excited tonianH[x] and satisfieQ[n)=X,|n). Expanding the total
by the backaction of the part, the left effective Hamiltonian Nitial stat¢W(t=0)) in terms of the complete sefjn)
governingx involves an external scalar potentigl(x). Itis ~ ©|%n.o)}, We obtain the evolution wave function at time
noticed that there may be a magnetic-potential-like vector

potentialA,(x) induced by they pgrt[lS], but for our majOf |\p(t)>zz caln)®|dn(1)), (3)
purpose here we need only consider the generic case without n

An(X). In fact, the following discussions do not concern the . ) )

cyclic evolution giving prominence to the effects of the Whereldn(t))=exf~iHt]|4) are just those evolution states
Berry phasd16]. If we assume that the motions of the slow starting fr'om the same initial state), but dnven' by differ-
subsystem are “classical,” we naturally observe that, due t&nt effective potential¥/,(x). The full wave functior| W (t))

the backaction of the fast part, there are different inducedS Obviously an entangled state, a superposition | f
forcesF,=—V,V,(x) exerting on the slow part. Then the ®|da(t)) with the gorrelatlon_s bet_wee_zn different final states
direct physical consequence is that the information of thddn(t)) of D and different adiabatic eigenstatesf

“fast” states labeled by is recorded in the different motion Th|s Intuitive argument shows us that, evenin the case of
a quite general interaction, there can exist an entanglement

Detween the two quantum systems when one of them moves
. so slowly that their dynamic variables can be adiabatically
Let us now analyze the quantum dynamics governed by, .,rized according to the BO approximation. This adiabatic
the interaction between a quantum syst&mith fast dy-  tqrmalism for quantum measurement is similar to the Stern-
namic variableq and the detectoD, a large system with  Gerjach(SG) experimen{17], which detects the spin states
slow variablex. Their Hamiltonians aréls=Hs(q) andHq  of an A; atom on the ground state by observing the spatial
=Hgy(x), respectively. In general, the interaction Hamil- gjstribution on a screen. In the SG experiment, the entangle-
tonian is written asH,;=H,(x,q). For a fixed value of the ment is reflected by two correlations: the spin-up state
slow variablex of D, the dynamics of the quantum system is corresponds to the spatial st@(t)) of the upper spot; the
determined by the eigenequation oHg[x]=Hs(q)  spin-down stat¢|) corresponds to the spatial stéatie(t)) of
+H,(x,q). The corresponding eigenvalu€g x] and eigen-  the lower spot. It is noticed that the adiabaticity is crucial to
statesn)=|n[x]) all depend orthe slow parameter.x produce such an entangled stédé(t)). To describe it in a
When the variabl& changes slowly enough, the transition quantitative way, an adiabatic parameter was precisely intro-
from an energy leveV,(x) to anotherV(x) caused by the duced recently{18]. Its dual version can be considered in
variation of the Hamiltoniar o[ x] with x, can be physically certain perturbation series with different choices of the lead-
neglected. Specifically, this requires that the adiabatic conding terms corresponding to the different perturbative Hamil-
tion [14] tonians[18]. In this sense, the BO approximation can be

from this correlation.
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interpreted in the following way: the kinetic terf?/2Mm To support the above physically intuitive argument, we
acts as a perturbation for the “large object” with a large carry out an explicit calculation. We assumid y(x)
mass parametevl and a very small initial momentum. This = p?/2M and the interactiok,(x,q) is a smooth function of
argument shows that the interaction between a large and»asuch that the effective potentisl,(x) is also satisfactorily
small objects implies a reasonable extension of the concepimooth. This assumption is reasonable since the adiabatic
of quantum measurement. condition of the BO approximations requires that the veloc-
It will be argued that, when the detector behaves classiity x~ —[vV, (x)/Mt] (if the initial velocity of D is zerd
cally under the BO approximation, the entangled adiabatighould be small enough. So we can linearize the effective
dn(t)) (n=1,2,...) may berthogonal to one another, i.e., potentials:V,(x)~V,(0)— F,x, where F,~—VV,(0) are
|dn(t)) may be “classically distinguishable.” Then we can the classical forces of backaction on the dete@pmwhich

say the above-mentioned adiabatic measurement is ideghrrespond to different system states. Accordingly, we have
since the WPC happens as a result of quantum decoherengg effective Hamiltonians

of the reduced density matrix, namely a transition from

ps(0)=|¢){¢| characterizing the initial pure state t(t) p?

=3,|ca/?In)(n| describing a completely mixed state. To Ho=op 1 Vn(0)—Fnx. ®
show it, we will need the following expression of the general

reduced density matrix of the measured system: In the semiclassical picture, driven by different fordes,

the detector will finally form some macroscopically distin-
guishable spots on the detecting screen, each of which is
ps() =Trp (W (1))(W (1)) correlated to one of the adiabatic states.
To see the WPC in the measurement process clearly, we
= |eal2In)n|+ X, cmc FamlmY(n|{(da(t)|dm(t)).  assume that the detector is initially in the state of a Gaussian
n n#m wave packet of widtta:

4

1 1/4 -
|¢>=f< ) e ¥7% x)dx (6)

2
Here the overlapping ,m=(dn(t)|dn(t)) of the two detec- 2ma

tor states is called the decoherence factor. A complete decorgyipted along direction and centered around the original

her_ence is defined by, ,=0 while a complete coherence is point. Following the Wei-Norman methd@0,21, we first

defined byFy ;= 1(mn). . ___factorize the evolution operatot),(t)=exgd—iH.t] as
We are now in a position to study the dynamical realiza- — en(0PeBn(DPEINUXgun() f v 1211 Th

tion of the WPC quantitatively. It boils down to considering Un(t)=e efnPernV¥esnt formally [21]. en we

in what case the decoherence factors become zero so that i €xactly obtain the effective wave functio(t)):

off-diagonal elements of the reduced density matrix vanish 5\ 14 112
simultaneously. We recall the following widely accepted<x|d (t)>:<_) m
viewpoint clearly stated by Landau and Lifshft9]: in the " 23 , It

classical limit, the expectation value of an observable for a + oM

particular state(e.g., a coherent state or its squeezed ver-

siong can recover its classical value form. Specifically, it ) ) [X—Xq(1)]?
takes Fejgs arithmetic mean of the partial sums of the Fou- xexp —iQn(t)+ixFpt— T it |’ @)
rier series of its corresponding classical quartit9]. In this 4| a2+ m)

view, these particular states can well describe definite clas-

sical trajectories of a particle in this limit and the reIevantWhereQ (t) =V, (0)t+ (F2t3/6M)

mean-square deviation of the observable is zero. The mean It is sneen frcr;m Eq (9)nthat thé Gaussian wave packets
of the position operator defines a classical path in such ?x|d (1)) are centere.d on the classical trajectoriegt)
limit. Physically, the zero mean-square deviation of the po-:l(rl‘: /M)t2 and have different group speeds
sition operator implies the zero width of each wave packet 2F ?M { tivelv. but thev h 9 tE P n'dth
(x|dm(t)), and the overlappingF, = (d,(t)|dn(t)) of =(Fn/M)t, respectively, but they have the same wi

wave packets of almost-zero width must vanish. In such g(t)za[1+(t2/4M “a?)]" spreading with time. It is obvi-

. . . L ) ous that the wave-packet centers move in the same way as a
semiclassical picture, the initial statg) can be regarded as classical particle ofpmasM forced byF . Here the quantur)‘/n

. "

3 e\é?:rr)i/bg?rzre(:)\éjve\tti\{gr pgac;( ?Tt] J\?irnavcg\?;’y kargflvev'itg ?ﬁ ; Cvgegharacter is reflected in the spreading of the wave packets.
ter alond a classical gbk(t) on agmanifolljd with local co- "he macroscopic distinguishability of wave packets in quan-

along patxt) . tum measurement requires that the distance between the cen-
ordinatesx. For a proper initial statpp), we will see that the_ ters of two wave packets should be larger than the width of
wave packet will split into several very narrow peaks with

the centers moving along different paths without efficienteaCh wave packet, i.e.,
overlaps. These quasiclassical paths are determined by the
effective forcesF,=—-V,V,(x) through different motion M
equations. M

2\

t’>al 1+

®

4M?a?
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This condition is easily satisfied wherns sufficiently large. =E¢,(X) +ZmznHam®@m(X). When the channel coupling
To see how the decoherence happens quantitatively, wd , , can be ignored physically, each internal statg cor-
compute the norm of the decoherence fackg(t), which  relates to a channel sta#, . The diagonal elements,, play
completely determines the extent of the quantum coherencg dominant role in measuring the internal statesghy The
of the measured system. This is an overlapping integrakecent experiment&5,26 give support to the following ar-

which we can explicitly integrate as follows: gument: as long as the “which-way” information already
stored in the detectocould be read ouytthe interference
(Fo—Fp2t* 1 ) - pattern implied by the off-diagonal elements in the reduced
|Fmn(t)|=expg — Taatal Za (Fh=Fp)7t7/. density matrix would be destroyadithout any data being

) read out in practice According to this argument, we can
compare the environment-induced decoherence with the
One easily sees from this formula that the decoherence préuantum measurement dealt with above and come to the con-
cess indeed appears as . The character time,,,, of the  clusion that actually the environment surrounding the quan-
WPC is determined by the equatiéi, (7)) =€ %, thatis, tum system behaves as a detector to realize a “measurement-
like” process. This is because the environmaster needs
to read outthe data. Thus, the argument in this paper is also
Tmn=2\Ma[ JAMZa5+ 2(F,— Fpy) 2—Ma’l. (10) valid for the analysis of decohergence problemg ir? an inter-

We have associated the WPC or quantum decoherenégrlng quantum system (_:oupllng to the environment.
Before concluding this paper, we notice that the actual

problem with the adiabatic separation of the total system R ; : )
ealculatlon in this paper is only carried out in a general case

formed by the measured system plus the detector. We ha& R ; oo
ithout emphasizing its inherent experimental significance.

seen that under certain reasonable conditions, ideal entangle-

ment does happen adiabatically to meet the requirement th P develop the present study so as to provide insight into

the result of a measurement should be classically obser Jossible experim_ents, we should probe_various coup_ling Sys-
able . At this point, it is worth pointing out that in the adia- ems that permit the Born-Oppenheimer approximation.

batic limit, the nondemolition interactidr22] can also effec- There are concrete problems such as the dynamics of the

tively realize a quantum measurement. In our discussion, bes_mall spin-large spin interacting system, microcavity-mirror

sides the use of the Born-Oppenheimer approximation witl‘?OUplmg dynamics with a classical sour@], and the lo-

adiabaticity, the other key point is the classical limit of the _calizati(_)n of a macrosc_opic object throu_gh adiabatic scatter-
' ng, which can serve this purpo§2|. For instance, we con-

detector. On the other hand, in the theory of continuous ider the intracavity dynamics. In this case, there is a cavit
guantum measurement there have been a lot of discussioRs yay § ' y

about the attainment of the classical limit, but in a different)[';/('atzttevéoaesnélj sni]rlr::)cl)(ras’hgpni;rii\(l:vglggI:Ztg):?/(\/jitvr\:ha"?atrgeeOr:;\esrslsln
sensg23]. It is apparent that any quantum system coupling he radiofrequency range, when the cavity field is driven by

to another “large” system cannot stay in a pure state and it§ . L
ge sy Y P acroscopic currents, the cavity field can be treated as a

dynamics must be described by a mixed state, or more Spé(r_)]rced harmonic oscillator. This cavity field—mirror couplin
cifically, by a reduced density matrix with rank larger than 1 : y piing
system can also be used to detect the photon number in the

(in the case of a pure state, the rank is exacjlyUsually, : : . .
dealing with the environment with many degrees of freedomcav'ty' The ldetecuon can t_)e realized by the. motion Of. the
Hurror. Obviously, the motion of the mirror is slow with

one can apply the Master equation to describe the ev0|utlorespect to the oscillation of the cavity field. Thus we can use

of the mixed state of a quantum system. But it should b e BO approximation to approach the quantum decoherence
noticed that the present “heavy” system may possess onl PP PP quantur
roblem in the measurement of the cavity field. Most re-

one single dynamic variable. Thus the corresponding Mast {;ently, the special case of this model without a classical

equation description should be essentially different from thasource has been used to present a scheme for probing the

used for an environment with many dynamic variables Ordecoherence of a macroscopic objE]. In the presence of
many particles inside. Thus we think the question of how to . . PIC ODJEXA]. pre:
classical source, this cavity-field—mirror coupling system

use the Master equation to describe dissipation and decohel- : :
ence of a quantum system coupling to a “heavy” Systerncan _be analyzed using the general approach that this paper
with one single effective variable might be an intricate prob_prowdes.

lem, which is appropriate to be addressed in further works.

We also point out that the adiabatic entanglement pre- This work was supported by a direct gr&Rtoject ID No.
sented here can be well understood in the picture of coupleg060150 from The Chinese University of Hong Kong. It
channelg24]. In terms of certain “internal” state§n)}, the  was also partially supported by the NSF of China. One of the
total eigenfunction¥(x,q) can be expressed akg(x,q) authors(C.P.S) wishes to express his sincere thanks to P. T.
=3 ¢,(X)|n). The channel wave functionp,(x) defined Leung, C. K. Law, and K. Young for many useful discus-
here obeys thecoupled channel equations Jb,(X) sions.
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