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Canonical quantum teleportation
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Canonically conjugated observables such as position and momentum and phase and number are found to
play a threefold role in quantum teleportation. First, the common eigenstate of two commuting canonical
observables like phase difference and number sum provides the quantum channel between two systems.
Second, a similar pair of canonical observables from another two systems is measured in the Bell-operator
measurements. Finally, two translations generated by the canonically conjugated observables of a single sys-
tem constitute the local unitary operation to recover the unknown state. In addition, the necessary and sufficient
condition is presented for a reliable quantum teleportation of finite-level systems.

PACS numbgs): 03.67.Hk, 03.65.Bz, 03.65.Ca, 42.50.Dv

Quantum teleportatioft], a disembodied transmission of where|x,,); is an eigenstate of; with eigenvaluex;, and
st sate, s been depenstaed n Sever SOEITET), i an eigenstae G wih egenvalug;. System 2
- : . . ; is in an unknown stat to be teleported to the first sys-

[3-5]. Along with the resulting discussiori$,7] about its &h)s P Y

. o te
experimental realization, many other aspects such as genera

scheme$8—10 and some applicatiofd 1] of quantum tele- . ) A A~
portation have also been investigated. All these investigapos't'on differencex, —x3 and the momentum SupL+p3is
tions so far emphasize mainly tisatesof the systems. In performed on systems 2 and 3. This me_asurement projects
this paper we shall show the fundamental roles played by th&YStems 2 and 3 to one of the common eigenstataspos)
canonically conjugatedc.c) observablesin the drama of Of P2+ ps andx;—X3z With X;3 and py3 taking values on the
quantum teleportation in order to reveal the physical contentéeal line uniformly. Accordingly, system 1 is transformed
of its basic ingredients. into the state(?ll:j;}l, where
Generally speaking, quantum teleportation consists of
three basic stepsi) to prepare two systems in an Einstein-
Podolsky-RoseEPR entangled state or a Bell state and
send them to two different places to establish a quantum
channelii) at one place, to perform the so-called joint Bell- with p;3=p;,— P23, X13= X1+ X3. At this central stage, the
operator measurements with respect to one system involva@leasured observables are exactly two commuting canonical
in the EPR entanglement and a third system at an unknowsbservables: momentum sum and position difference. Ac-
state to be transferrediji) at another place, to perform nec- cording to the outcomes,3,p,; of the measurement and
essary unitary operations to the other system involved in th@aluesx,,,p;, known from the state preparation, one is able
EPR entanglement according to the outcome of the Belltg perform the unitary operatiof). to system 1. System 1 is
operator measurements. By this means the unknown state fisen at the unknown state though no one knows what the
transferred from one place to another. unknown state is.
In the case of continuous variables, three similar systems Sincep,, andp,; are the momentum sums of correspond-
1, 2, and 3 are considered, that are described by canonicglg systemsp;s=p;,— pos is naturally the momentum dif-
observables,,p, (a=1,2,3) satisfying canonical commu- ference between systems 1 and 3. Similatly=X;,+ X3
tation rules can be viewed as the position difference between systems 1
and 3. The unitary operatiod., being made up of two
o successive translations up to a phase factor, has therefore a
[Xa:Ppl=16a (a,b=1,23. (1) natural physical meaning: it compensates plsition differ-
ence and momentum differencbetween systems 1 and 3.
) ] This obvious fact was already noticed in Rig], where the
Systems 1 and 2 are prepared in a common eigenstate of thgeportation of continuous variables was first proposed.
position differencex; —x, and the momentum sum, +p, We see clearly that the c.c. observables, position and mo-
corresponding to eigenvalues, andp4, [12]: mentum in this case, play a threefold role in the drama of
quantum teleportation of continuous variables. First, the
. common eigenstate of two commuting canonical observ-
X12;P12) =€ 'PP2|X15)1®[P12)2, (20 ables, e.g., the position difference and the momentum sum,
provides the quantum channel between two systems. Second,
the same commuting canonical pair of another two systems
*Electronic address: suncp@itp.ac.cn; Internet www site:is measured in the Bell-operator measurement. Finally the
http://www.itp.ac.cn/suncp c.c. observables of a single system generate two translations,

Then a kind of Bell-operator measurement measuring the

O.= e*ipzsxlze*iplagleixlsﬁl 3)
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which make up the unitary operation to recover the unknowrand number cannot be explicitly manifested through their
state. So quantum teleportation deserves the ramenical commutator. The quantum phase and number have a very
guantum teleportation complicated commutatdrl8] due to the fact that the phase
Given one pair of c.c. observables one may design ongariable has a curved configure space because of its period-
possible canonical quantum teleportation with exactly thosécity, which is also the origin of the rational-number-type
three steps. Notice that in the procedure of quantum telepospectrum of quantized phase differerfi2@]. Only when the
tation the real position and momentum cannot be used basnitary operations instead of Hermitian observables are con-
cause localization of the particle is required. In fact in thesidered does the canonical relationship between the phase
recent experimental realization of quantum teleportation ofind number manifest itsel24]. As shown explicitly in Egs.
continuous variable$4], a pair of c.c. observables of the (2) and (3) it is also the operations represented by unitary
photon field, phase quadrature, and number quadrature haeperators instead of the observables represented by Hermit-
been used. ian operators that play the main role in the case of continu-
At first glance, in the case of the finite-level systems theous variables.
three steps of quantum teleportation seem to be three unre- As is well known, the unitary operations generated by
lated procedures: Bell-state preparation, Bell-operator megsosition and momentum that represent the translations in the
surementd13], or nonlocal measuremen(8], and special momentum and configuration spaces, respectively, satisfy
unitary operations, whose physical meanings need clarifyinghe Weyl form of the commutation relation
We shall then demonstrate that there is also a pair of c.c. o A i
observables that plays the same threefold role for finite-level eXPeiPXg~ixpg~ipX— gixp, (6)
systems. As it turns out, one observable is the number op-
erator and the other one is the phase operator of a finite-levdlhis kind of relation also indicates the canonical relation-
system. ship, even more intrinsically than the commutator. This is
For an infinite-level system as simple as a quantum harbecause the exponential phase and number operators also
monic oscillator, a Hermitian phase operator does not exissatisfy a similar relation
[14-14. After a series of efforts to solve this problgi7—
20] it was clear recently that the quantum phase of a har-
monic oscillator can only be described by means of the phase
difference between two systems with a rational-number-typdn this sense the quantum phase and number operator are c.c.
spectrum and the quantized phase difference obeys a quag_bservables. The exponential phase—dlfference_ and r_1umber-
tum addition rule[20,21]. Among the early approaches to difference operators of two quantum harmonic oscillators
this dilemma, the truncated Hilbert space approach proposed{so satisfy this kind of relation, which yields another pair of
by Pegg and Barneftl8] describesin de factothe phase C-C. observablef24]. .
variable of a finite-level system instead of a harmonic oscil- As relation (6) indicates, the operatae™P represents a
lator with infinite energy levels. This approach was also in-translation byx in the configuration space, so relati¢r)
vestigated in some detail by othdZ2,23. ensures that the exponential phase operaidt”» also rep-
For an slevel systemA, the number operataN, has resents a translation by (modulars) of the number. Simi-
spectrumZ,={0,1, ... s—1} and its eigenstateln), with  larly, the exponential number operatef’"A represents a
ne Zs span the Hilbert space of the system. In this Hilberttranslation by? (modular 27) of the quantum phase. These
space, taking the phase window[&s27), one can define the are exactly the physical contents of these two unitary opera-
exponential phase operator as tions.
The quantum phase and phase differences were found to
inPa_ observe a quantum addition rulé) [20], which assures an-
€ A_mgzs m+na(ml, neZs. @ other quantum phase or phase difference with the same kind
of spectrum. The quantum addition of phase operafys
Here the statgks+n), is identified with the statdn),  andPg of two s-level systemdA andB, since they are com-

wheneverk is an integer. This identification seems to be myting, is simplyP,— Pg="P,— Ps modular 2r. Similarly,

combination of number operators from different systems.

\ : . . . - i F N=
The so-defined exponential operator is obviously umtaryquantum number sum can be defined AR+ Np=Ny

which leads to a Hermitian phase operafarwith spectrum + Mg modulars. Because the quantum phase difference and
—_ P Pe R P number sum are commuting, they possess common eigen-
E.={2mn/sim=0,1, ... s—1} and eigenstates

states

el HNAeinPAe*i 0NAe*in77A= elnd. 7)

1 > e "n),, 6feE.. (5) |6as:Nag) =€ 478 00p)a® [Nag)s tS)

|0)a=
\/g neZg
where | 0,8) 4 is the eigenstate 0P, with eigenvaluefag
The motivation to define a Hermitian phase operator is,e E5 and |nag)g is the eigenstate afVg with eigenvalue
analogous to the well-known canonical position and momenn,ge Zg. They form a complete and orthonormal basis of
tum, to find the c.c. partner for the number operator. How-systemsA and B. These two observables are measurable in
ever, the canonical relationship between the quantum phaske framework of nonlocal measuremefi®s.
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Now that a complete analog between the well-known c.c. 1
observables, position and momentum, and the less obviously [Wag)=—= >, |m)a@|mg (10)
c.c. observables, quantum phase and number, has been estab- Vs mez
lished, we can formulate the quantum teleportation of finite-
level systems in the same canonical manner. As a quantufgPrresponding to zero number difference and zero phase
channel of the quantum teleportation of finite-level systemsSUM- The observables measured in the second stefgre
systemsA and B are prepared in a common eigenstate+Pc and NVg—Nc. And the final operation EQ9) to re-
|6a5;nap) Of their quantum phase difference and numbercover the unknown state remains unchanged. This scheme is
sum. exactly the original teleportation of systems with more than
Suppose that anotherlevel systemC is in an unknown two levels discussed in Reffl]. One notes that whes= 2
state| ¢) that will be teleported to the systefn To this end ~ the quantum phase difference and number sum are identical
we perform a joint measurement of the quantum phase difvith quantum phase sum and number difference, respec-
ferencePs —Pe and the number sum/+ A of the sys- tively; therefore, these two teleportation schemes are identi-

: o | in the case o§=2.
temsB and C. With probability 142, the total state of the ca
whole system|®)=|fxs:Nas)®| b)c is projected to state Now we try to take a general pure state of systeéxand

OT|¢> (00 Nac ), where B as our quantum channel. Any normalized state can be ex-
sI¥/ATAVBCTIBCI /s pressed a3| V¥ ,g), where operatoll acts only on system

with Tr(TTT)=s. Then we perform a general Bell-operator

measurement on systerBsandC. This is equivalent to pro-

Etg

— a—ingch —inpcPani 0acN;
Os=e Tectase TactheTacta ©) jection to some orthonormal basis of systeBandC,
; 1
With 05c= Opg+ Ogc @andnyc=nag— g after the measure- Kol = m
. )=— R OylMm)c, 11
ment. The number sumy - takes a value iZg and the phase kit Js mgzS Ims® Olmc @D
difference 0 takes values irE, with equal probability,
which label thes? outcomes of the measurements. wheres? operators®y, act only on a single system and sat-

After knowing these phase differencegs, fsc and num-  sfy the following normalization conditions
ber sumsn,g,ngc, one can perform a unitary transforma-

tion Og to systemA so that the unknown state of systein Ty NRL
appears at the other end of the quantum channel. We note THOWO ) =Sde o, kK LITeZs (12
that operation0 is made up of an exponential phase opera- )
tor and an exponential number operator up to a phase factofNumbersk,l label all possible outcomes of the measure-
From the discussions above we know that these two operdlents. Given outcomels| of the measurements, appearing
tions represent a phase translation by vallgsand a num-  With equal probability, syster is found to be in state
ber translation by values, . Becaus&d,c can be regarded
as the phase difference amgc as the number difference STV ag) @) c=TO | d)a, (13
between system& and C, the meaning of these two unitary
operations becomes clear: before the unknown state can kghere operato®,, is now acting on systemd. The only
recovered the phase difference and number difference beequirement for a reliable quantum teleportation is therefore
tween systemé andC must be compensated. to haveTO}; unitary, which infers thal must be reversible.
Consider the simple case of two-level systems, where werom Eq.(12) one obtains T(T'T) *]=s, which is com-
identify state[0) with [T) and statg1) with [|). As in the patible with Tr(TTT)=s iff T is unitary. Therefore to have
quantum channel we prepare systeAnandB in the state as  To[ unitary is equivalent to having all the operatdrsand
in Eq. (8) with 5=, Nag=1. Four possible outcomes of ¢, unitary. This is the necessary and sufficient condition for
the Bell-operator measurements on syst@andC are la- 5 reliable quantum teleportation. In other words the quantum
beled by phase differencésc=0,7 and number sumMgc  channel must be a maximum entangled state and the mea-
=0,1. We can see that four corresponding unitary operationgyrements must be projections to maximum entangled states.
O, in Eq. (9) applied to systenA are exactly the same as The recovering operation at the final stage is simplyT'
those in Ref[1]. depending on the outcomes of the measurements.
Canonical transformations, which preserve the canonical Erom orthonormal basék;|) one can construct two com-
commutators among observables as in Eq.or relations  muting canonical observables like the phase difference and
such as Eq(7) of corresponding unitary operations, can benymber sum, whose common eigenstates are exactly these
performed to c.c. observables. Some canonical transformgsases. As a result, the measured observables in the second
tions can result in some new forms of quantum teleportastep of the quantum teleportation may be different from the
tions. The simplest case is to make a canonical transformaspservables determined in the guantum channel. For ex-
tion only to systemB, for example,Pg——Pg and Mg ample, the quantum channel may be provided by the com-
—)_NB, Wh|Ch reSUItS in quantum teleportation. as fO||0WS. mon eigenstate Of the quantum phase sum and number d|f_
The quantum channel is a common eigenstate,of Pz and  ference, and the quantum phase difference and number sum
Np—Ng, e.g., state are Bell operators. By this means one can also teleport an
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unknown state from one place to another. The general In conclusion, quantum teleportation is characterized by
scheme discussed in R¢fl0] is included here as a special c.c. observables completely: The quantum channel is pro-
example. vided by the common eigenstate of two commuting canoni-
The continuous variables case can be analyzed similariygal observables, the Bell-operator measurement measures a
Let us fix our measurements at the second step to the projegimilar pair of canonical observables, and the recovering op-
tions to state$x,s,p,3). All the pure states that can be used €ration consists of two translations generated by the c.c. ob-
as quantum channels should have the foﬂfgoDTlnh servables. By applying suitable canonlcal transformations to
®|n), whereD is an arbitrary unitary operator acting on the c.c. obser_vables, one can design new _schemes_(_)f quan-
system one only. The operation at the final stagtliD, tum teleportation. The necessary and sufficient condition for

Uhereh @ Uty operao acing on Sysiem on wih3<iaHe uanun cepeaono e sytems e e 3.
elements (M|M|n)=(Xy3,p23M,N), where |m,n)=|m), 9 q

®|n), denotes the number-state bases witm going from operator measurements be projections to maximum en-
e Vot tangled states. The nonexistence of certain c.c. observables
zero to infinity. When the elements dd are taken as

(M[D|n)Y=(x1.p1 M), the teleportation of continuous makes quantum teleportation using these variables impos-

variables discussed at the bedinning is reaained. This di sible. All these investigations concern the ideal quantum
crete formulation of the uantu?n chagnnel ugto a r;Ormalizeﬁ_eleportation. In real experiments where nonideal elements
. d P must be considered, it becomes ambiguous as to how to char-
tion constant was noted in R¢R5].

When we consider three quantum harmonic oscillatorsﬂCtenze guantum teleportation. In this aspect some efforts

althouah the auantized phase differences between any two GBve been made6]. The attention to the c.c. observables in
9 d P y %uantum teleportation may help to establish such kinds of

them are _weII dgﬁned, itis |m_p035|ble 0 p_erform a quantumcriteria both for the continuous and discrete variables.
teleportation using the quantized phase difference and num-

ber sum. This is because the exponential phase operator of a One of the authorgS.Y. gratefully acknowledges the
single oscillator, which should be employed to compensate aupport of the K.C. Wong Education Foundation, Hong
number difference at the final stage of the quantum teleporKong. This work was also partially supported by the NSF of

tation, does not exist. China.
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