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Canonical quantum teleportation
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Canonically conjugated observables such as position and momentum and phase and number are found to
play a threefold role in quantum teleportation. First, the common eigenstate of two commuting canonical
observables like phase difference and number sum provides the quantum channel between two systems.
Second, a similar pair of canonical observables from another two systems is measured in the Bell-operator
measurements. Finally, two translations generated by the canonically conjugated observables of a single sys-
tem constitute the local unitary operation to recover the unknown state. In addition, the necessary and sufficient
condition is presented for a reliable quantum teleportation of finite-level systems.

PACS number~s!: 03.67.Hk, 03.65.Bz, 03.65.Ca, 42.50.Dv
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Quantum teleportation@1#, a disembodied transmission o
quantum state, has been demonstrated in several experim
both for finite-level systems@2# and continuous variable
@3–5#. Along with the resulting discussions@6,7# about its
experimental realization, many other aspects such as ge
schemes@8–10# and some applications@11# of quantum tele-
portation have also been investigated. All these invest
tions so far emphasize mainly thestatesof the systems. In
this paper we shall show the fundamental roles played by
canonically conjugated~c.c.! observablesin the drama of
quantum teleportation in order to reveal the physical conte
of its basic ingredients.

Generally speaking, quantum teleportation consists
three basic steps:~i! to prepare two systems in an Einstei
Podolsky-Rosen~EPR! entangled state or a Bell state an
send them to two different places to establish a quan
channel;~ii ! at one place, to perform the so-called joint Be
operator measurements with respect to one system invo
in the EPR entanglement and a third system at an unkn
state to be transferred;~iii ! at another place, to perform nec
essary unitary operations to the other system involved in
EPR entanglement according to the outcome of the B
operator measurements. By this means the unknown sta
transferred from one place to another.

In the case of continuous variables, three similar syste
1, 2, and 3 are considered, that are described by cano
observablesx̂a ,p̂a (a51,2,3) satisfying canonical commu
tation rules

@ x̂a ,p̂b#5 idab ~a,b51,2,3!. ~1!

Systems 1 and 2 are prepared in a common eigenstate o
position differencex̂12 x̂2 and the momentum sump̂11 p̂2
corresponding to eigenvaluesx12 andp12 @12#:

ux12;p12&5e2 i p̂1x̂2ux12&1^ up12&2 , ~2!
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where ux12&1 is an eigenstate ofx̂1 with eigenvaluex12 and
up12&2 is an eigenstate ofp̂2 with eigenvaluep12. System 3
is in an unknown stateuc&3 to be teleported to the first sys
tem.

Then a kind of Bell-operator measurement measuring
position differencex̂22 x̂3 and the momentum sump̂21 p̂3 is
performed on systems 2 and 3. This measurement proj
systems 2 and 3 to one of the common eigenstatesux23;p23&
of p̂21 p̂3 and x̂22 x̂3 with x23 andp23 taking values on the
real line uniformly. Accordingly, system 1 is transforme
into the stateO c

†uc&1, where

Oc5e2 ip23x12e2 ip13x̂1eix13p̂1 ~3!

with p135p122p23,x135x121x23. At this central stage, the
measured observables are exactly two commuting canon
observables: momentum sum and position difference.
cording to the outcomesx23,p23 of the measurement an
valuesx12,p12 known from the state preparation, one is ab
to perform the unitary operationOc to system 1. System 1 is
then at the unknown state though no one knows what
unknown state is.

Sincep12 andp23 are the momentum sums of correspon
ing systems,p135p122p23 is naturally the momentum dif-
ference between systems 1 and 3. Similarlyx135x121x23
can be viewed as the position difference between system
and 3. The unitary operationOc , being made up of two
successive translations up to a phase factor, has therefo
natural physical meaning: it compensates theposition differ-
enceand momentum differencebetween systems 1 and 3
This obvious fact was already noticed in Ref.@3#, where the
teleportation of continuous variables was first proposed.

We see clearly that the c.c. observables, position and
mentum in this case, play a threefold role in the drama
quantum teleportation of continuous variables. First,
common eigenstate of two commuting canonical obse
ables, e.g., the position difference and the momentum s
provides the quantum channel between two systems. Sec
the same commuting canonical pair of another two syste
is measured in the Bell-operator measurement. Finally
c.c. observables of a single system generate two translat
:
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which make up the unitary operation to recover the unkno
state. So quantum teleportation deserves the namecanonical
quantum teleportation.

Given one pair of c.c. observables one may design
possible canonical quantum teleportation with exactly th
three steps. Notice that in the procedure of quantum tele
tation the real position and momentum cannot be used
cause localization of the particle is required. In fact in t
recent experimental realization of quantum teleportation
continuous variables@4#, a pair of c.c. observables of th
photon field, phase quadrature, and number quadrature
been used.

At first glance, in the case of the finite-level systems
three steps of quantum teleportation seem to be three u
lated procedures: Bell-state preparation, Bell-operator m
surements@13#, or nonlocal measurements@3#, and special
unitary operations, whose physical meanings need clarify
We shall then demonstrate that there is also a pair of
observables that plays the same threefold role for finite-le
systems. As it turns out, one observable is the number
erator and the other one is the phase operator of a finite-l
system.

For an infinite-level system as simple as a quantum h
monic oscillator, a Hermitian phase operator does not e
@14–16#. After a series of efforts to solve this problem@17–
20# it was clear recently that the quantum phase of a h
monic oscillator can only be described by means of the ph
difference between two systems with a rational-number-t
spectrum and the quantized phase difference obeys a q
tum addition rule@20,21#. Among the early approaches t
this dilemma, the truncated Hilbert space approach propo
by Pegg and Barnett@18# describesin de facto the phase
variable of a finite-level system instead of a harmonic os
lator with infinite energy levels. This approach was also
vestigated in some detail by others@22,23#.

For an s-level systemA, the number operatorNA has
spectrumZs5$0,1, . . . ,s21% and its eigenstatesun&A with
nPZs span the Hilbert space of the system. In this Hilb
space, taking the phase window as@0,2p), one can define the
exponential phase operator as

einPA5 (
mPZs

um1n&A^mu, nPZs . ~4!

Here the stateuks1n&A is identified with the stateun&A
wheneverk is an integer. This identification seems to
trivial enough for a single system, but it is crucial for th
combination of number operators from different system
The so-defined exponential operator is obviously unita
which leads to a Hermitian phase operatorPA with spectrum
Js5$2mp/sum50,1, . . . ,s21% and eigenstates

uu&A5
1

As
(

nPZs

e2 inuun&A , uPJs . ~5!

The motivation to define a Hermitian phase operator
analogous to the well-known canonical position and mom
tum, to find the c.c. partner for the number operator. Ho
ever, the canonical relationship between the quantum ph
02231
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and number cannot be explicitly manifested through th
commutator. The quantum phase and number have a
complicated commutator@18# due to the fact that the phas
variable has a curved configure space because of its pe
icity, which is also the origin of the rational-number-typ
spectrum of quantized phase difference@20#. Only when the
unitary operations instead of Hermitian observables are c
sidered does the canonical relationship between the p
and number manifest itself@24#. As shown explicitly in Eqs.
~2! and ~3! it is also the operations represented by unita
operators instead of the observables represented by He
ian operators that play the main role in the case of conti
ous variables.

As is well known, the unitary operations generated
position and momentum that represent the translations in
momentum and configuration spaces, respectively, sa
the Weyl form of the commutation relation

eixp̂eipx̂e2 ix p̂e2 ipx̂5eixp. ~6!

This kind of relation also indicates the canonical relatio
ship, even more intrinsically than the commutator. This
because the exponential phase and number operators
satisfy a similar relation

eiuN AeinPAe2 iuN Ae2 inPA5einu. ~7!

In this sense the quantum phase and number operator ar
observables. The exponential phase-difference and num
difference operators of two quantum harmonic oscillat
also satisfy this kind of relation, which yields another pair
c.c. observables@24#.

As relation ~6! indicates, the operatoreixp̂ represents a
translation byx in the configuration space, so relation~7!
ensures that the exponential phase operatore2 inPA also rep-
resents a translation byn ~modulars) of the number. Simi-
larly, the exponential number operatoreiuNA represents a
translation byu ~modular 2p) of the quantum phase. Thes
are exactly the physical contents of these two unitary ope
tions.

The quantum phase and phase differences were foun
observe a quantum addition rule~u! @20#, which assures an
other quantum phase or phase difference with the same
of spectrum. The quantum addition of phase operatorsPA
andPB of two s-level systemsA andB, since they are com-
muting, is simplyPA2̇PB[PA2PB modular 2p. Similarly,
to preserve the spectrum of the number operator,
quantum-number sum can be defined asNA1̇NB[NA
1NB modulars. Because the quantum phase difference a
number sum are commuting, they possess common ei
states

uuAB ;nAB&5e2 iNAPBuuAB&A^ unAB&B , ~8!

where uuAB&A is the eigenstate ofPA with eigenvalueuAB
PJs and unAB&B is the eigenstate ofNB with eigenvalue
nABPZs . They form a complete and orthonormal basis
systemsA and B. These two observables are measurable
the framework of nonlocal measurements@3#.
0-2
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Now that a complete analog between the well-known c
observables, position and momentum, and the less obvio
c.c. observables, quantum phase and number, has been
lished, we can formulate the quantum teleportation of fin
level systems in the same canonical manner. As a quan
channel of the quantum teleportation of finite-level system
systemsA and B are prepared in a common eigensta
uuAB ;nAB& of their quantum phase difference and numb
sum.

Suppose that anothers-level systemC is in an unknown
stateuf&C that will be teleported to the systemA. To this end
we perform a joint measurement of the quantum phase
ferencePB2̇PC and the number sumNB1̇NC of the sys-
temsB and C. With probability 1/s2, the total state of the
whole systemuF&5uuAB ;nAB& ^ uf&C is projected to state
O s

†uf&A}^uBC ;nBCuF&, where

Os5e2 inBCuABe2 inACPAeiuACNA ~9!

with uAC5uAB1uBC andnAC5nAB2nBC after the measure
ment. The number sumnBC takes a value inZs and the phase
differenceuBC takes values inJs with equal probability,
which label thes2 outcomes of the measurements.

After knowing these phase differencesuAB ,uBC and num-
ber sumsnAB ,nBC , one can perform a unitary transform
tion Os to systemA so that the unknown state of systemC
appears at the other end of the quantum channel. We
that operationOs is made up of an exponential phase ope
tor and an exponential number operator up to a phase fa
From the discussions above we know that these two op
tions represent a phase translation by valuesuAC and a num-
ber translation by valuesnAC . BecauseuAC can be regarded
as the phase difference andnAC as the number differenc
between systemsA andC, the meaning of these two unitar
operations becomes clear: before the unknown state ca
recovered the phase difference and number difference
tween systemsA andC must be compensated.

Consider the simple case of two-level systems, where
identify stateu0& with u↑& and stateu1& with u↓&. As in the
quantum channel we prepare systemsA andB in the state as
in Eq. ~8! with uAB5p, nAB51. Four possible outcomes o
the Bell-operator measurements on systemsB andC are la-
beled by phase differenceuBC50,p and number sumnBC
50,1. We can see that four corresponding unitary operat
O2 in Eq. ~9! applied to systemA are exactly the same a
those in Ref.@1#.

Canonical transformations, which preserve the canon
commutators among observables as in Eq.~1! or relations
such as Eq.~7! of corresponding unitary operations, can
performed to c.c. observables. Some canonical transfor
tions can result in some new forms of quantum telepo
tions. The simplest case is to make a canonical transfor
tion only to systemB, for example,PB→2PB and NB
→2NB , which results in quantum teleportation as follow
The quantum channel is a common eigenstate ofPA1̇PB and
NA2̇NB , e.g., state
02231
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mPZs

um&A^ um&B ~10!

corresponding to zero number difference and zero ph
sum. The observables measured in the second step arPB

1̇PC and NB2̇NC . And the final operation Eq.~9! to re-
cover the unknown state remains unchanged. This schem
exactly the original teleportation of systems with more th
two levels discussed in Ref.@1#. One notes that whens52
the quantum phase difference and number sum are iden
with quantum phase sum and number difference, resp
tively; therefore, these two teleportation schemes are ide
cal in the case ofs52.

Now we try to take a general pure state of systemsA and
B as our quantum channel. Any normalized state can be
pressed asTuCAB&, where operatorT acts only on systemA
with Tr(T†T)5s. Then we perform a general Bell-operat
measurement on systemsB andC. This is equivalent to pro-
jection to some orthonormal basis of systemsB andC,

uk; l &5
1

As
(

mPZs

um&B^ Oklum&C , ~11!

wheres2 operatorsOkl act only on a single system and sa
isfy the following normalization conditions

Tr~OklO k8 l 8
†

!5sdkk8d l l 8 , k,k8,l ,l 8PZs . ~12!

Numbersk,l label all possible outcomes of the measu
ments. Given outcomesk,l of the measurements, appearin
with equal probability, systemA is found to be in state

s2^k; l uTuCAB& ^ uf&C5TO kl
† uf&A , ~13!

where operatorOkl is now acting on systemA. The only
requirement for a reliable quantum teleportation is theref
to haveTO kl

† unitary, which infers thatT must be reversible.
From Eq.~12! one obtains Tr@(T†T)21#5s, which is com-
patible with Tr(T†T)5s iff T is unitary. Therefore to have
TO kl

† unitary is equivalent to having all the operatorsT and
Okl unitary. This is the necessary and sufficient condition
a reliable quantum teleportation. In other words the quant
channel must be a maximum entangled state and the m
surements must be projections to maximum entangled sta
The recovering operation at the final stage is simplyO klT

†

depending on the outcomes of the measurements.
From orthonormal basesuk; l & one can construct two com

muting canonical observables like the phase difference
number sum, whose common eigenstates are exactly t
bases. As a result, the measured observables in the se
step of the quantum teleportation may be different from
observables determined in the quantum channel. For
ample, the quantum channel may be provided by the co
mon eigenstate of the quantum phase sum and number
ference, and the quantum phase difference and number
are Bell operators. By this means one can also telepor
0-3
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SIXIA YU AND CHANG-PU SUN PHYSICAL REVIEW A 61 022310
unknown state from one place to another. The gen
scheme discussed in Ref.@10# is included here as a speci
example.

The continuous variables case can be analyzed simila
Let us fix our measurements at the second step to the pro
tions to statesux23,p23&. All the pure states that can be use
as quantum channels should have the form(n50

` D†un&1

^ un&2 where D is an arbitrary unitary operator acting o
system one only. The operation at the final stage isM†D,
where M is a unitary operator acting on system one w
elements ^muM un&5^x23,p23um,n&, where um,n&5um&1
^ un&2 denotes the number-state bases withm,n going from
zero to infinity. When the elements ofD are taken as
^muDun&5^x12,p12um,n&, the teleportation of continuou
variables discussed at the beginning is regained. This
crete formulation of the quantum channel up to a normali
tion constant was noted in Ref.@25#.

When we consider three quantum harmonic oscillato
although the quantized phase differences between any tw
them are well defined, it is impossible to perform a quant
teleportation using the quantized phase difference and n
ber sum. This is because the exponential phase operator
single oscillator, which should be employed to compensa
number difference at the final stage of the quantum telep
tation, does not exist.
, a

cu
,

, H

-

J.
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In conclusion, quantum teleportation is characterized
c.c. observables completely: The quantum channel is p
vided by the common eigenstate of two commuting cano
cal observables, the Bell-operator measurement measu
similar pair of canonical observables, and the recovering
eration consists of two translations generated by the c.c.
servables. By applying suitable canonical transformations
the c.c. observables, one can design new schemes of q
tum teleportation. The necessary and sufficient condition
a reliable quantum teleportation of finite systems is to hav
maximum entangled state as a quantum channel and the
operator measurements be projections to maximum
tangled states. The nonexistence of certain c.c. observa
makes quantum teleportation using these variables imp
sible. All these investigations concern the ideal quant
teleportation. In real experiments where nonideal eleme
must be considered, it becomes ambiguous as to how to c
acterize quantum teleportation. In this aspect some eff
have been made@26#. The attention to the c.c. observables
quantum teleportation may help to establish such kinds
criteria both for the continuous and discrete variables.
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