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Theory of four-wave mixing with matter waves without the undepleted pump approximation
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Starting from the Gross-Pitaevskii nonlinear Salinger equation, we derive a set of nonlinear coupled
equations describing four-wave mixing with matter waves and solve them analytically without utilizing the
undepleted pump approximation.

PACS numbdps): 03.75.Be, 03.75.Fi

[. INTRODUCTION ing the nonlinear equations. Some details used in obtaining
the analytical solutions are included in the Appendix. In Sec.
The realization of Bose-Einstein condensation in smallll, we provide a discussion on the results obtained without
atomic sample$1] has made it possible to provide us with using the undepleted pump approximation for four-wave
an atom lasef2], i.e., a source of atoms with the required Mixing with matter waves, and make comparisons between
long-range quantum coherence, and to extend nonlinear o@Ur results and those under the undepleted approximation.
tics to the “matter-wave” domairi3], i.e., to the field of Section IV concludes our paper with a summary.
nonlinear atom optick4,5]. In analogy to the optical case of

phase conjugation by four-wave mixing, Meystre and his co- Il. THEORY OF FOUR-WAVE MIXING

workers have developed a theory describing atomic phase WITH MATTER WAVES

conjugation[5] and four-wave mixing[6] from a Bose-

Einstein condensate. Their theory is not based on the Gross- A. Derivation of governing equations

Pitaevskii nonlinear Schdinger equation familiar in the de- In this subsection, we shall derive a set of equations gov-

scription of Bgse—Einstein condensates, but is based on ﬂ'@rning four-wave mixing with matter waves within the
nonlinear Schrdinger equation of atom optich]. In the  gamework of the Gross-Pitaevskii nonlinear Salirger
former equation, the effective nonlinearity results from equation. For a Bose-Einstein condensate in a trapping po-
short-range interactions between ground state atoms, whilg g U, the macroscopic wave functio satisfies the

in the latter case it results from the near-resonant dipoleg,oss-pitaevskii nonlinear Schtiager equatiori3,7,9
dipole interaction between ground and excited atoms. It was

thought that the former nonlinearity might not be strong A h2 5 )

enough to be utilized to observe four-wave mixing with mat- ih—==| = oy VT U+ U W[* |0, 1)

ter waves for existing Bose-Einstein condensates and hence

we had to resort to the latter one for such an observation. ) ] )

However, a recent theoretical calculation showed that thd/hereM is the atomic mass), describes the strength szthe
nonlinearity associated with the interactions between groungtom-atom interactionl{s>0 for sodium atomjs and|¥|

state atoms is large enough to observe four-wave mixind® the atomic number density. N _

with wave packets created from existing Bose-Einstein con- N order to investigate four-wave mixing with matter
densates. As a matter of fact, in a recent spectacular expeM/2ves, we consider the situation where there exist three
ment on four-wave mixing with matter waves, Deagal. overlapping wave packets with macroscopic wave functions
nicely demonstrated this conclusi¢8]. This important ex- ¥ and momentd; (j=1,2,3) and their interactions lead to
periment opens up, to the best of our knowledge, a new ardf€ creation of the four-wave mixing wave packet with its
in the study of interacting quantum fluids, and implicitly Macroscopic wave functio® , and its momentun®, that
shows how the physics of Bose-Einstein condensates hasSatisfies the momentum conservat{@)

multidisciplinary influence. In particular, it is sure to stimu-

late further ample theoretical study on four-wave mixing P,=P;— P+ Ps. (2
with matter waves and atomic phase conjugation based on

the Gross-Pitaevskii nonlinear Schifoger equation or its rpeafore the total macroscopic wave function in Bg.has
extension by including dissipations. In this paper, we shall,[he form W=W,+W,+W,+W, We further assume that

gromlthe ?JOSS'P';iEVka” nonlmearl .SCU"‘%?V e(tqtuatlon, each component of the total macroscopic wave function sat-
evelop a theary of the Tour-wave mixing with matler WaveSisfias jts own Gross-Pitaevskii nonlinear Sdtirmer equa-
without using the undepleted pump approximation. The Pa%on as follows:

per is organized as follows. Section Il is divided into two

subsections. The first one is devoted to the description of the )

four-wave mixing system and the derivation of correspond- i %: _ ﬁ—V2+U+U w2 | 3)
ing governing equations, and the second one deals with solv- at 2M ot m m
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where m=1,2,3,4. In dealing with the four-wave mixing of the waves 3 and 4. This structure causes the coupling
with matter waves in this paper, what we have in our mind isbetween waves 1 and 2 as shown in Ep), and the cou-
the same physical picture and the same situation as the onpbng between waves 3 and 4 as shown in Eb). In the
described in Ref[3]. Therefore we omit the schematic plot situation of the four-wave mixing experiment by Deeal.
of the four-wave mixing which is clearly shown in Fig. 1 of [3], waves 1 and 2 serve as the pump waves, wave 3 is the
Ref. [3], and derive the governing equations for the four-probe wave, and wave 4 denotes the created matter wave.
wave mixing in the form of differential equations with re- Equation(6) is a set of four equations coupled nonlinearly
spect to timet, different from the usual form in the field of together and hence is very difficult to be solved analytically.
optical four-wave mixing where the derivative is normal When two pump waves 1 and 2 are supposed to be much
with respect to a spatial variable. stronger than both the probe wave 3 and the created wave 4,
Substituting the total macroscopic wave functiohh  one can neglect the time variation of the pump waves and
=¥, +¥,+¥;+V, into Eqg. (1), ultilizing Egs. (2) and neglect the grating formed by waves 3 anghount to take
(3), and noting ¥ ,<exp(P,-r/h), we easily obtain, by theRin Eqg. (5) approximately as a time-independent quan-
keeping only the phase-matching terms, the following equatity R~(2U,/A)¥,¥3]. This is the so-called undepleted
tions: pump approximation. Great simplification results from such
v o an approximation since the above-mentioned approximated
O e Ris considered as a time-independent quantity and one needs
It TRV Qaa¥ys 177 =RV 00005, (49 only to solve Eq.(6b) which represents now two linear
coupled equations for waves 3 and 4. In this paper, we do not

V3 A resort to the undepleted pump approximation. This is done
! o R¥W,+ QW5 ot RW3+Q50y, (4b) by considering simultaneously the set of four nonlinear cou-

pling equations(6) governing four-wave mixing(FWM)
where with matter waves.

Uo
Q; :T(|‘I’i|2+|‘l’j|2), (59 B. Solving FWM equations without the undepleted
pump approximation

Some of the author®] have already developed a method
to deal with a number of nonlinear coupled equations. Such a
method is easily modified to solve E@) analytically. First,
In obtaining Eq.(4), we have restricted to plane-wave ap- it can be shown from Eq(6) that there exist the following
proximation for simplicity but it is also appropriate for the conserved quantitie¢see the Appendix for their detailed
experiments of Ref[3] in which the trap is switched off derivations:
before four-wave mixing processes. Equatidncan be fur-

2U,
R= == (VW3 +W3W,). (5b)

ther simplified to the form [P (1) [2+] ¥ o(1) [*=Nn10+ N0, (83
oL b
=0 =Ry i =Ry, (6a) W 3(0)[2+ W 4(1)[2=nagt N, (8b)
b b W (1)]24]| W 4(1)|2=n10+ Ny, 8¢
% peg, 1704 e, (6b) | W ()] “4 [ W 4(1)|*=n19+ Nyo (8c)
at at
2 2_
by letiing &=V exp(iftQudt), =12, @ WO +[W3(0)]"= Nzt ngo, (89)
=¥, expiftQdt), k=3,4. Note that|¥|=|d], |
=1,2,3,4, and also th& and();; in Eq. (5) can be expressed [P, (1)|2— | W 4(1)|2=nyo—Nyg, (8¢
in terms of®, as follows:
2U, 5 ) [P 1(1)[>= | ¥ 3(t)[*=n10— N30, (8f)
Qij:T(|®i| +]®]%), (74

wheren,=|¥ (t=0)|? denotes the initial number density
2U, of themth wave packetii=1,2,3,4). The last two equations
R= T((qu)z T3 Dy). (70) in Eqg. (8) are not independent of the other four equations in
Eq. (8) but are a direct consequence of them. Note that Eq.
Equation(6) is the set of nonlinear coupled equations de-(8) clearly manifests the particle-number conservation re-
scribing the four-wave mixing with matter waves within the quired by the four-wave mixing with matter wavgs], and
framework of the Gross-Pitaevskii nonlinear Salimger how the redistribution of four matter waves among them-
equation. selves is restricted by these conservation laws during the
The variableR represents explicitly the grating structure four-wave mixing process. Subtraction of E¢Be) and (8f)
formed by the mixing of waves 1 and 2 as well as the mixingimmediately leads to the relation
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{|W ()2 +] W 4(1) 2= [P o(1)] >~ | W5(1)[?}

9)

=(N1ot Ny—Nyp—Ngg)= 2_UOG'

The next step is to explicitly find out the functional de-
pendence of the grating structure characterized by the vari-

ableR on the timet. It can be proved from Eq$6), (7), and
(9) that 9 In Rigt=iG=const(see the Appendix for its deri-
vation), and hence

R=R, expiGt), (10
with the time-independent quantify, as
2U, . .
Ro=——A¥1(0)¥5(0)+¥5(0)W,(0)}. (11
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U o(t)exd —i(Q— G/2)t]
GW4(0)— 2REW,(0)

=W 4(0)CoSEL+i > sinét,
(149
W ,(t)ex —i(Qi,+ G/t
= ,(0)cosét— | ZRO%(O;; G¥4(0) sinét,
(14d

where Q;;=Q{"=2U(nio+njo)/%, £=\[Ro[*+(G/2)?,
the parameter§ andR, are given by Eqs(7) and (9), re-
spectively, and all of them are time-independent quantities
and are determined by the initial conditions. The above ana-
lytical expressions of the macroscopic wave functions have
already satisfied the corresponding initial conditions, for Eq.

Now we are ready to reduce a set of highly nonlinear equags) and its analytical solution§l4) explicitly describe the
tions in Eq.(6) into two subsets of linear coupled equations o yr-wave mixing with matter waves without the undepleted

as follows:
0D .
|7=Roexp(|6t)<b2, (129
0D, .
|7=R’5 exp —iGt)®,, (12b)
0Py .
|7:R0 exp(—iGt)d,; (139
0Dy .
i—=RpexpiGt)d3, (13b

ot

where ®;=V; exp(—iQagt), j=1,2, P, =V exp(=i;t),
k=3,4, and use has been made of the fact fhagtand 3,
are time-independent quantities by means of(Bgand their
definition in Eg.(5a). Note that in Egs(12) and (13), one

pump approximation within the framework of the Gross-
Pitaevskii nonlinear Schainger equation. They are the cen-
tral results of the present paper.

Ill. DISCUSSION OF THE FWM RESULTS

Let us first discuss further some points related to the un-
depleted pump approximation. This approximation is based
on the assumption that throughout the FWM process, two
pump waves 1 and 2 are much stronger than both the probe
wave 3 and the created wave 4. Hence if this assumption is
satisfied, both the macroscopic wave functions of the two
pumps can be taken as constant, and the grating structure
formed by mixing the probe wave 3 and the created wave 4
is compared with the much stronger grating formed by mix-
ing the two pumps. These two factors combined amounts
mathematically to take thR in Eq. (5) approximately as a
time-independent quantity, i.eR~(2Uy /%)W, V3 ~const
as we have mentioned before.

Obviously, the correctness of the undepleted pump ap-

subset of equations decoupled from another subset of equgroximation depends crucially on the assumption mentioned
tions, and the two subsets of equations are linear and haygsfore that the two pumps are much stronger than the other
identical mathematical structure. These linear coupled equago waves throughout the FWM process. Note that some
tions are solved and we get the analytical expressions of thgata of the FWM experiment by Denet al. [3] violate

macroscopic wave functions,

Wi(t)exd —i(Qgs+GI2)t]

= ,(0)cosét—i ZRO%(O;;G%(O) sinét,
(143
Wo(t)exd —i(Qgy— GI2)t]
— W ,(0)cosét+i G\IIZ(O)ZRS%(O) sinét,
(14b)

clearly such an assumption. For instance, one set of data
given in Ref. [3], p. 220, paragraph three, i¥N;
~4.8X10°,N,~5.3x 10°,N3~5.1x 10°,N,~1.8x 1(°.

We need to clarify two points concerning our results with-
out the undepleted pump approximation. First, the sum of the
number densities of the two pumps is conserved as shown in
Eqg. (88 but any one of the two pump densities does vary
with respect to time as shown in E@L4). This is signifi-
cantly different from the conclusion under the undepleted
approximation that angneof the wave functiongand hence
densitieg of the two pumps is assumed to be time indepen-
dent. Second, the fact that the amplitude of Bhexpression
in Eq. (10) characterizing the grating structure turns out to be
time independent does not imply that the pumps are unde-
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pleted. It only means that the grating structure formed byHence one, from Eg. (18, obtains N,/N

both the mixing of the pumps and the mixing of probe waveox (2Uq/%)2(N1gNogNsg) N~ %, a result derived under the

3 and signal wave 4, not by only one of them, manifests onlyundepleted approximation. This kind of nonlinear behavior is

the phase variation with respect to time. As a matter of factclearly manifested in the initial linear growth seen in Fig. 3

the part of the grating structure produced only by the mixingof Ref.[3] and has already been theoretically predicted in the

of the pumps does generally vary with respect to time, whiclrsame Ref[3].

is obvious by looking at the derivation of EqLO) in the Now, we are ready to point out two pronounced differ-

Appendix. ences between the result without the undepleted approxima-
To illustrate our theory on the four-wave mixing with tion in Eq. (16) and the one with the approximation in Eq.

matter waves, let us now discuss a simple but important sp&18). The first difference is as follows. The result under the

cial situation where there exists no matter-wave 4 at the beundepleted approximation manifests the dependence of the

ginning, and thus¥,(t=0)=0. In this specific case, we relative density N,/N on a unique Vvariable 7

obtain from Egs(9) and(11) =(N1oN,oN3o) N~ 5, and hence plotting the relative density
5 N, /N versus the variable is well defined. However, choos-
IR |2:(2U0 N ing the variablen as the abscissa in plotting the relative
0 ho) 0020 densityN,/N may not lead to a well-behaved curve for the
situation without using the undepleted approximation be-
2U, causeN, /N in this case, as shown in E¢L6), is not the
G=—— (N0~ N2~ Ngo). single-valued function of the variabte due to the existence

of the factorF depending on the variable
The paramete€ in Eq. (14) becomes

£7\JAN 1N+ (N3o— Nog— Ngg) °N~ 25

Ug 5

€= F VAnudnaot (Mo~ Neo—Ned™, (49 ANt (Nig= N N9

N+N>-N 2/9
and hencén,(7)=|¥ 4(7)|?] (N1oN2gN3z0)
2 =Q(N19,N20,N30) 7%°. (19
) 2Uo) N e 2F 16

n =| — T s ] .
A7 h 120130 Consequently, for every fixedy, N,/N may display scat-

_ o ) ) tered values depending on the values of the function
where 7 is the characteristic interaction time of the four- (N, N,o,N30) or on the total numbeN of atoms in the
wave mixing and it is proportional to the diameter of the condensate and its initial distribution among each wave

condensat¢3], and packet. In other words, the figure describing the relative den-
, sity N, /N versus the variable will probably display(some-
_ sirf(é7) (17) times, possibly widespread around a well-behaved curve.
C(én? The wide spread tends to occur at the place whereFthe

factor varies fast or the’s derivative is significan¢note that
Equation (16) explicitly expresses number density of the this can occur even if the variabkgis small but with a large
four-wave mixing signal and its nonlinear dependence on th€) value and it is easily confused with the spread coming
numbers of atoms in the initial wave packets. It is easilyfrom experimental errors. In addition, this non-single-valued
shown that Eq(16) in takingF~1, i.e., property ofN,/N on % might also explain the puzzle in Ref.
[3] that the observed conversion efficiendy /N takes dif-
ferent valuegsay, sometimes 10% and sometimes) &#tder
similar conditions. Referend@] attributes this difference to
the influence of some uncontrolled experimental conditions.
is the corresponding result under the undepleted pump agt is pointed out that even in the linear regime in Fig. 3 of
proximation. The number density of each momentum comRef. [3], there are some relatively large spreads, and we do
ponent of the condensate in E¢%6) and(18) can be taken not know whether the spreads originate from the above rea-
asnje~Njo/V, j=1,2,3, andny(7)~N4(7)/V. HereV is  son or from the experimental errors. However, what we are
the volume of the condensat;, is the initial total particle  sure of at present is that the variabjamay not be an appro-
number of thejth momentum component of the condensate priate abscissa in plotting the relative dendity/N if the
andN,(7) is the total particle number of the fourth momen- undepleted pump assumption fails.
tum component of the condensate at timen the Thomas- The second difference comes from the saturation effect
Fermi limit [3,8], the volume of the condensate<N*>, and  characterized by thE factor in Eq.(16). The relative density
r<NY5 whereN is the total particle number of the conden- N, /N evaluated by the results under the undepleted approxi-
sate independent of timg and can be put into fornN  mation fails to give a correct estimation if tifefactor devi-
=Ej3:1Nj0 in this specific case. The scaling<N>®in the  ates significantly from unity which occurs, roughly speaking,
Thomas-Fermi limit applies of course to the Thomas-Fermat largeN. Let us illustrate this point by using the expres-
model of atoms in a harmonic potential considered heresions of theF factor in Eqg.(17) and its argumenér in Eq.

2U,\?
Ny(7)= TO> N1gN20N307°, (18
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(19). For the typical data in Ref3], Njg~Nyg~Ngz<N and  mationN=N_,~3.6x 1. For the same parameters as those
hence ¢7 in Eq. (19) has approximately the relatioir  taken in the above estimation, we obtain~m(N/N )35,
~(Uo/h)N7/V=N®5, This relation clearly demonstrates This relation demonstrates thist-1.1x 10°, a typical value
that a largeN has a stronger tendency to make théactor  for the experiment of Ref3], leads toé 7~ =/2, which also
deviate from unity. illustrates that thd- factor in Eq.(16) should not generally

Let us give some further discussion on the saturation efbe taken to be unity for that experiment. However, it should
fect of the relative densitil,/N. The growth of the created be kept in mind that the above estimation is based on the
wave 4 is at the expense of decreasing both the probe wavec®ndition N~ Nyg~ N3~ N/3. It varies if this condition is
[see, for example, Eq8a] and the pump wave [lsee Eq. not satisfied.

(8c)] and, at the same time, of increasing another pump 2

[sg(_a, for example, Eq8e)]. It is seen from Eq(5b) that the IV. CONCLUSION

mixing of two waves(waves 1 and 2, or waves 3 and i4

roughly speaking more effective in contributing the grating In summary, the theory of four-wave mixing with matter
structure when these two waves have comparable magnwaves has been developed in this paper within the frame-
tudes. Consequently, the part of the grating structure formedork of the Gross-Pitaevskii nonlinear Sctinger equation.

by the mixing of the probe wave 3 and created wave 4 beWe have derived a set of four highly nonlinear-coupled
comes progressively more important Ng/N is growing  equations describing four-wave mixing with matter waves.
from zero magnitude towards approaching the order ofVe have obtained the analytical expressions of the macro-
N3/N, while the one formed by the mixing of the two pumps scopic wave functions for the two pump wave packets, the
having roughly equal magnitude initially becomes less androbe wave packet, and the four-wave mixing signal. Our
less effective in creating wave 4 during such a procesgiesults are those without making the undepleted pump ap-
which leads to a slower growth of wave 4, i.e., the saturatiorproximation, and are compared with the results under the
effect. Finally, such a growing period could cease and a reundepleted pump approximation. Our results also display
verse process sets in as the mixing of probe wave 3 anthat the variable;=(N3oN2N3) N~ 9> may not be an appro-
created wave 4 becomes strong enough to make them as twsiate abscissa in plotting the relative dendity/N if the

new pumps while the old pumps serve as the new probe anghdepleted pump assumption fails. The reason is that in this
new created waves in the reverse process. Such a reversase the figure ol,/N versusy may not be a well-defined
process may cause the already produced wave 4 to becomsrve but may show some kind gbossibly wid@ spread.

zero again(similiar in some sense to revivalsOf course,

this is possible only when the characteristic interaction time ACKNOWLEDGMENTS
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potential with a trap frequency;= w/27w. The Thomas-

Fermi limit results in the relation between the volurke APPENDIX

=47R%3 and the total atom numbét as follows: ) ) )
In this Appendix, we prove Eq$8)—(10). It is seen from

3/5
A | 15U Eq. (6) that
“ 3l L (20
Mot 0D, oy /.
—iR=—=/ ®O,=———/ &7, (Ala)
The characteristic interaction time is takenrasV¥%v with at at
the lowercase lettew=P/M denoting the characteristic
speed of the wave packets. We takg,~N,y~N3o~N/3 to 9Dy B LM .
estimateé 7= 7 which, by using Eq(15) and the above dis- —IR= gt Py=- at 4- (Alb)
cussion, becomes
o —25 These two equations immediately result in E¢8a) and
e 3 V5Uo| [ 15U, N5 (21) (8b), respectively, by noting thaw,|=|®/|, 1=1,2,3,4.
K e 3w |\ 47M o2 ' By using Eq.(6), we obtain
i =N_ i i ' 9| ®,|?
SettingN=N_, in the above equation, we arrive at i |(?t1| — R*®,0% + RO D, (A23)
47| 1000 37Tﬁv>5/3 150, |*°
N ~<— , (22 9
13 2 | P
VBUo/ | 4mMot i%= ~R*® D, +Rb4D? (A2b)

where the interaction strengthJo=47rh2§/M with a
~53aponr [10], o~27X60 Hz, v=P/M, and P~ 27k, Summing these two equations and utilizing fRexpression
k=27/(589 nm)[3]. Therefore,é& 7= gives a rough esti- in Eq. (7b), we arrive at
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9 proved by combining these two equations and noting again
ﬁ(|‘131|2+ | 4|?)=R(P D3 + D5 D y)* the fact thaf¥,|=|®,|, 1=1,2,3,4.
The proof of Eq.(10) is straightforward. Utilizing theR
—R* (P, P} +DED,) expression in Eq(7b), and the governing equatia®), one
yields
=0. (A3)
Following the same routine as above, we get i E_ q) E—HI)* &) I ( P @Jr * &
2Up ot |\ L oat 2 ot 4ot 3 ot
0 (D24 | D2 =iR(| D]+ | D>~ D[~ D) (A5)
E(|q)2| +|®%)=0. (Ad) 1 4 2 317

Equations(8c) and (8d) are a direct consequence of thesewhich leads to Eq(10) immediately. Equatiori11) follows
two equations, respectively. In addition, E§) is obviously  from Eq.(5b), one of theR expression equivalent to E(b).
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