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Theory of four-wave mixing with matter waves without the undepleted pump approximation
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Starting from the Gross-Pitaevskii nonlinear Schro¨dinger equation, we derive a set of nonlinear coupled
equations describing four-wave mixing with matter waves and solve them analytically without utilizing the
undepleted pump approximation.

PACS number~s!: 03.75.Be, 03.75.Fi
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I. INTRODUCTION

The realization of Bose-Einstein condensation in sm
atomic samples@1# has made it possible to provide us wi
an atom laser@2#, i.e., a source of atoms with the require
long-range quantum coherence, and to extend nonlinear
tics to the ‘‘matter-wave’’ domain@3#, i.e., to the field of
nonlinear atom optics@4,5#. In analogy to the optical case o
phase conjugation by four-wave mixing, Meystre and his
workers have developed a theory describing atomic ph
conjugation @5# and four-wave mixing@6# from a Bose-
Einstein condensate. Their theory is not based on the Gr
Pitaevskii nonlinear Schro¨dinger equation familiar in the de
scription of Bose-Einstein condensates, but is based on
nonlinear Schro¨dinger equation of atom optics@5#. In the
former equation, the effective nonlinearity results fro
short-range interactions between ground state atoms, w
in the latter case it results from the near-resonant dip
dipole interaction between ground and excited atoms. It w
thought that the former nonlinearity might not be stro
enough to be utilized to observe four-wave mixing with m
ter waves for existing Bose-Einstein condensates and h
we had to resort to the latter one for such an observat
However, a recent theoretical calculation showed that
nonlinearity associated with the interactions between gro
state atoms is large enough to observe four-wave mix
with wave packets created from existing Bose-Einstein c
densates. As a matter of fact, in a recent spectacular ex
ment on four-wave mixing with matter waves, Denget al.
nicely demonstrated this conclusion@3#. This important ex-
periment opens up, to the best of our knowledge, a new
in the study of interacting quantum fluids, and implicit
shows how the physics of Bose-Einstein condensates h
multidisciplinary influence. In particular, it is sure to stim
late further ample theoretical study on four-wave mixi
with matter waves and atomic phase conjugation based
the Gross-Pitaevskii nonlinear Schro¨dinger equation or its
extension by including dissipations. In this paper, we sh
from the Gross-Pitaevskii nonlinear Schro¨dinger equation,
develop a theory of the four-wave mixing with matter wav
without using the undepleted pump approximation. The
per is organized as follows. Section II is divided into tw
subsections. The first one is devoted to the description of
four-wave mixing system and the derivation of correspo
ing governing equations, and the second one deals with s
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ing the nonlinear equations. Some details used in obtain
the analytical solutions are included in the Appendix. In S
III, we provide a discussion on the results obtained witho
using the undepleted pump approximation for four-wa
mixing with matter waves, and make comparisons betw
our results and those under the undepleted approxima
Section IV concludes our paper with a summary.

II. THEORY OF FOUR-WAVE MIXING
WITH MATTER WAVES

A. Derivation of governing equations

In this subsection, we shall derive a set of equations g
erning four-wave mixing with matter waves within th
framework of the Gross-Pitaevskii nonlinear Schro¨dinger
equation. For a Bose-Einstein condensate in a trapping
tential U, the macroscopic wave functionC satisfies the
Gross-Pitaevskii nonlinear Schro¨dinger equation@3,7,8#

i\
]C

]t
5S 2

\2

2M
¹21U1U0uCu2DC, ~1!

whereM is the atomic mass,U0 describes the strength of th
atom-atom interaction (U0.0 for sodium atoms!, and uCu2
is the atomic number density.

In order to investigate four-wave mixing with matte
waves, we consider the situation where there exist th
overlapping wave packets with macroscopic wave functio
C j and momentaPj ( j 51,2,3) and their interactions lead t
the creation of the four-wave mixing wave packet with
macroscopic wave functionC4 and its momentumP4 that
satisfies the momentum conservation@3#

P45P12P21P3 . ~2!

Therefore the total macroscopic wave function in Eq.~1! has
the form C5C11C21C31C4. We further assume tha
each component of the total macroscopic wave function
isfies its own Gross-Pitaevskii nonlinear Schro¨dinger equa-
tion as follows:

i\
]Cm

]t
5S 2

\2

2M
¹21U1U0uCmu2DCm , ~3!
©2000 The American Physical Society04-1
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where m51,2,3,4. In dealing with the four-wave mixin
with matter waves in this paper, what we have in our mind
the same physical picture and the same situation as the
described in Ref.@3#. Therefore we omit the schematic plo
of the four-wave mixing which is clearly shown in Fig. 1 o
Ref. @3#, and derive the governing equations for the fou
wave mixing in the form of differential equations with re
spect to timet, different from the usual form in the field o
optical four-wave mixing where the derivative is norm
with respect to a spatial variable.

Substituting the total macroscopic wave functionC
5C11C21C31C4 into Eq. ~1!, ultilizing Eqs. ~2! and
~3!, and notingCm}exp(iPm•r /\), we easily obtain, by
keeping only the phase-matching terms, the following eq
tions:

i
]C1

]t
5RC21V34C1 ; i

]C2

]t
5R* C11V34C2 , ~4a!

i
]C3

]t
5R* C41V12C3 ; i

]C4

]t
5RC31V12C4 , ~4b!

where

V i j 5
2U0

\
~ uC i u21uC j u2!, ~5a!

R5
2U0

\
~C1C2* 1C3* C4!. ~5b!

In obtaining Eq.~4!, we have restricted to plane-wave a
proximation for simplicity but it is also appropriate for th
experiments of Ref.@3# in which the trap is switched of
before four-wave mixing processes. Equation~4! can be fur-
ther simplified to the form

i
]F1

]t
5RF2 ; i

]F2

]t
5R* F1 , ~6a!

i
]F3

]t
5R* F4 ; i

]F4

]t
5RF3 , ~6b!

by letting F j5C j exp(2i*0
t V34dt), j 51,2, Fk

5Ck exp(2i*0
t V12dt), k53,4. Note that uC l u5uF l u, l

51,2,3,4, and also thatR andV i j in Eq. ~5! can be expresse
in terms ofF l as follows:

V i j 5
2U0

\
~ uF i u21uF j u2!, ~7a!

R5
2U0

\
~F1F2* 1F3* F4!. ~7b!

Equation ~6! is the set of nonlinear coupled equations d
scribing the four-wave mixing with matter waves within th
framework of the Gross-Pitaevskii nonlinear Schro¨dinger
equation.

The variableR represents explicitly the grating structu
formed by the mixing of waves 1 and 2 as well as the mix
04360
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of the waves 3 and 4. This structure causes the coup
between waves 1 and 2 as shown in Eq.~6a!, and the cou-
pling between waves 3 and 4 as shown in Eq.~6b!. In the
situation of the four-wave mixing experiment by Denget al.
@3#, waves 1 and 2 serve as the pump waves, wave 3 is
probe wave, and wave 4 denotes the created matter w
Equation~6! is a set of four equations coupled nonlinear
together and hence is very difficult to be solved analytica
When two pump waves 1 and 2 are supposed to be m
stronger than both the probe wave 3 and the created wav
one can neglect the time variation of the pump waves
neglect the grating formed by waves 3 and 4@amount to take
the R in Eq. ~5! approximately as a time-independent qua
tity R'(2U0 /\)C1C2* ]. This is the so-called undeplete
pump approximation. Great simplification results from su
an approximation since the above-mentioned approxima
R is considered as a time-independent quantity and one n
only to solve Eq.~6b! which represents now two linea
coupled equations for waves 3 and 4. In this paper, we do
resort to the undepleted pump approximation. This is do
by considering simultaneously the set of four nonlinear c
pling equations~6! governing four-wave mixing~FWM!
with matter waves.

B. Solving FWM equations without the undepleted
pump approximation

Some of the authors@9# have already developed a metho
to deal with a number of nonlinear coupled equations. Suc
method is easily modified to solve Eq.~6! analytically. First,
it can be shown from Eq.~6! that there exist the following
conserved quantities~see the Appendix for their detaile
derivations!:

uC1~ t !u21uC2~ t !u25n101n20, ~8a!

uC3~ t !u21uC4~ t !u25n301n40, ~8b!

uC1~ t !u21uC4~ t !u25n101n40, ~8c!

uC2~ t !u21uC3~ t !u25n201n30, ~8d!

uC2~ t !u22uC4~ t !u25n202n40, ~8e!

uC1~ t !u22uC3~ t !u25n102n30, ~8f!

wherenm05uCm(t50)u2 denotes the initial number densit
of themth wave packet (m51,2,3,4). The last two equation
in Eq. ~8! are not independent of the other four equations
Eq. ~8! but are a direct consequence of them. Note that
~8! clearly manifests the particle-number conservation
quired by the four-wave mixing with matter waves@3#, and
how the redistribution of four matter waves among the
selves is restricted by these conservation laws during
four-wave mixing process. Subtraction of Eqs.~8e! and ~8f!
immediately leads to the relation
4-2
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THEORY OF FOUR-WAVE MIXING WITH MATTER . . . PHYSICAL REVIEW A61 043604
$uC1~ t !u21uC4~ t !u22uC2~ t !u22uC3~ t !u2%

5~n101n402n202n30![
\

2U0
G. ~9!

The next step is to explicitly find out the functional d
pendence of the grating structure characterized by the v
ableR on the timet. It can be proved from Eqs.~6!, ~7!, and
~9! that ] ln R/]t5iG5const ~see the Appendix for its deri
vation!, and hence

R5R0 exp~ iGt !, ~10!

with the time-independent quantityR0 as

R05
2U0

\
$C1~0!C2* ~0!1C3* ~0!C4~0!%. ~11!

Now we are ready to reduce a set of highly nonlinear eq
tions in Eq.~6! into two subsets of linear coupled equatio
as follows:

i
]F1

]t
5R0 exp~ iGt !F2 , ~12a!

i
]F2

]t
5R0* exp~2 iGt !F1 , ~12b!

i
]F3

]t
5R0* exp~2 iGt !F4 ; ~13a!

i
]F4

]t
5R0 exp~ iGt !F3 , ~13b!

whereF j5C j exp(2iV34t), j 51,2, Fk5Ck exp(2iV12t),
k53,4, and use has been made of the fact thatV12 andV34
are time-independent quantities by means of Eq.~8! and their
definition in Eq.~5a!. Note that in Eqs.~12! and ~13!, one
subset of equations decoupled from another subset of e
tions, and the two subsets of equations are linear and h
identical mathematical structure. These linear coupled eq
tions are solved and we get the analytical expressions of
macroscopic wave functions,

C1~ t !exp@2 i ~V341G/2!t#

5C1~0!cosjt2 i
2R0C2~0!1GC1~0!

2j
sinjt,

~14a!

C2~ t !exp@2 i ~V342G/2!t#

5C2~0!cosjt1 i
GC2~0!22R0* C1~0!

2j
sinjt,

~14b!
04360
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C3~ t !exp@2 i ~V122G/2!t#

5C3~0!cosjt1 i
GC3~0!22R0* C4~0!

2j
sinjt,

~14c!

C4~ t !exp@2 i ~V121G/2!t#

5C4~0!cosjt2 i
2R0C3~0!1GC4~0!

2j
sinjt,

~14d!

where V i j [V i j
(0)52U0(ni01nj 0)/\, j5AuR0u21(G/2)2,

the parametersG and R0 are given by Eqs.~7! and ~9!, re-
spectively, and all of them are time-independent quanti
and are determined by the initial conditions. The above a
lytical expressions of the macroscopic wave functions h
already satisfied the corresponding initial conditions, for E
~4! and its analytical solutions~14! explicitly describe the
four-wave mixing with matter waves without the undeplet
pump approximation within the framework of the Gros
Pitaevskii nonlinear Schro¨dinger equation. They are the cen
tral results of the present paper.

III. DISCUSSION OF THE FWM RESULTS

Let us first discuss further some points related to the
depleted pump approximation. This approximation is ba
on the assumption that throughout the FWM process,
pump waves 1 and 2 are much stronger than both the p
wave 3 and the created wave 4. Hence if this assumptio
satisfied, both the macroscopic wave functions of the t
pumps can be taken as constant, and the grating struc
formed by mixing the probe wave 3 and the created wav
is compared with the much stronger grating formed by m
ing the two pumps. These two factors combined amou
mathematically to take theR in Eq. ~5! approximately as a
time-independent quantity, i.e.,R'(2U0 /\)C1C2* 'const
as we have mentioned before.

Obviously, the correctness of the undepleted pump
proximation depends crucially on the assumption mentio
before that the two pumps are much stronger than the o
two waves throughout the FWM process. Note that so
data of the FWM experiment by Denget al. @3# violate
clearly such an assumption. For instance, one set of
given in Ref. @3#, p. 220, paragraph three, isN1
;4.83105,N2;5.33105,N3;5.13105,N4;1.83105.

We need to clarify two points concerning our results wit
out the undepleted pump approximation. First, the sum of
number densities of the two pumps is conserved as show
Eq. ~8a! but any one of the two pump densities does va
with respect to time as shown in Eq.~14!. This is signifi-
cantly different from the conclusion under the undeple
approximation that anyoneof the wave functions~and hence
densities! of the two pumps is assumed to be time indepe
dent. Second, the fact that the amplitude of theR expression
in Eq. ~10! characterizing the grating structure turns out to
time independent does not imply that the pumps are un
4-3
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pleted. It only means that the grating structure formed
both the mixing of the pumps and the mixing of probe wa
3 and signal wave 4, not by only one of them, manifests o
the phase variation with respect to time. As a matter of fa
the part of the grating structure produced only by the mix
of the pumps does generally vary with respect to time, wh
is obvious by looking at the derivation of Eq.~10! in the
Appendix.

To illustrate our theory on the four-wave mixing wit
matter waves, let us now discuss a simple but important s
cial situation where there exists no matter-wave 4 at the
ginning, and thusC4(t50)50. In this specific case, we
obtain from Eqs.~9! and ~11!

uR0u25S 2U0

\ D 2

n10n20,

G5
2U0

\
~n102n202n30!.

The parameterj in Eq. ~14! becomes

j5
U0

\
A4n10n201~n102n202n30!

2, ~15!

and hence@n4(t)[uC4(t)u2#

n4~t!5S 2U0

\ D 2

n10n20n30t
2F, ~16!

where t is the characteristic interaction time of the fou
wave mixing and it is proportional to the diameter of t
condensate@3#, and

F[
sin2~jt!

~jt!2
. ~17!

Equation ~16! explicitly expresses number density of th
four-wave mixing signal and its nonlinear dependence on
numbers of atoms in the initial wave packets. It is eas
shown that Eq.~16! in taking F'1, i.e.,

n4~t!5S 2U0

\ D 2

n10n20n30t
2, ~18!

is the corresponding result under the undepleted pump
proximation. The number density of each momentum co
ponent of the condensate in Eqs.~16! and ~18! can be taken
as nj 0'Nj 0 /V, j 51,2,3, andn4(t)'N4(t)/V. Here V is
the volume of the condensate,Nj 0 is the initial total particle
number of thej th momentum component of the condensa
andN4(t) is the total particle number of the fourth mome
tum component of the condensate at timet. In the Thomas-
Fermi limit @3,8#, the volume of the condensateV}N3/5, and
t}N1/5 whereN is the total particle number of the conde
sate independent of timet, and can be put into formN
5( j 51

3 Nj 0 in this specific case. The scalingV}N3/5 in the
Thomas-Fermi limit applies of course to the Thomas-Fe
model of atoms in a harmonic potential considered he
04360
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Hence one, from Eq. ~18!, obtains N4 /N
}(2U0 /\)2(N10N20N30)N

29/5, a result derived under the
undepleted approximation. This kind of nonlinear behavio
clearly manifested in the initial linear growth seen in Fig.
of Ref. @3# and has already been theoretically predicted in
same Ref.@3#.

Now, we are ready to point out two pronounced diffe
ences between the result without the undepleted approx
tion in Eq. ~16! and the one with the approximation in Eq
~18!. The first difference is as follows. The result under t
undepleted approximation manifests the dependence of
relative density N4 /N on a unique variable h
[(N10N20N30)N

29/5, and hence plotting the relative densi
N4 /N versus the variableh is well defined. However, choos
ing the variableh as the abscissa in plotting the relativ
densityN4 /N may not lead to a well-behaved curve for th
situation without using the undepleted approximation b
causeN4 /N in this case, as shown in Eq.~16!, is not the
single-valued function of the variableh due to the existence
of the factorF depending on the variable

jt}A4N10N201~N102N202N30!
2N22/5

}
A4N10N201~N102N202N30!

2

~N10N20N30!
2/9

h2/9

[Q~N10,N20,N30!h
2/9. ~19!

Consequently, for every fixedh, N4 /N may display scat-
tered values depending on the values of the funct
Q(N10,N20,N30) or on the total numberN of atoms in the
condensate and its initial distribution among each wa
packet. In other words, the figure describing the relative d
sity N4 /N versus the variableh will probably display~some-
times, possibly wide! spread around a well-behaved curv
The wide spread tends to occur at the place where thF
factor varies fast or theF ’s derivative is significant~note that
this can occur even if the variableh is small but with a large
Q value! and it is easily confused with the spread comi
from experimental errors. In addition, this non-single-valu
property ofN4 /N on h might also explain the puzzle in Re
@3# that the observed conversion efficiencyN4 /N takes dif-
ferent values~say, sometimes 10% and sometimes 6%! under
similar conditions. Reference@3# attributes this difference to
the influence of some uncontrolled experimental conditio
It is pointed out that even in the linear regime in Fig. 3
Ref. @3#, there are some relatively large spreads, and we
not know whether the spreads originate from the above
son or from the experimental errors. However, what we
sure of at present is that the variableh may not be an appro
priate abscissa in plotting the relative densityN4 /N if the
undepleted pump assumption fails.

The second difference comes from the saturation ef
characterized by theF factor in Eq.~16!. The relative density
N4 /N evaluated by the results under the undepleted appr
mation fails to give a correct estimation if theF factor devi-
ates significantly from unity which occurs, roughly speakin
at largeN. Let us illustrate this point by using the expre
sions of theF factor in Eq.~17! and its argumentjt in Eq.
4-4
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~19!. For the typical data in Ref.@3#, N10;N20;N30}N and
hence jt in Eq. ~19! has approximately the relationjt
;(U0 /\)Nt/V}N3/5. This relation clearly demonstrate
that a largeN has a stronger tendency to make theF factor
deviate from unity.

Let us give some further discussion on the saturation
fect of the relative densityN4 /N. The growth of the created
wave 4 is at the expense of decreasing both the probe wa
@see, for example, Eq.~8a!# and the pump wave 1@see Eq.
~8c!# and, at the same time, of increasing another pum
@see, for example, Eq.~8e!#. It is seen from Eq.~5b! that the
mixing of two waves~waves 1 and 2, or waves 3 and 4! is
roughly speaking more effective in contributing the grati
structure when these two waves have comparable ma
tudes. Consequently, the part of the grating structure form
by the mixing of the probe wave 3 and created wave 4
comes progressively more important asN4 /N is growing
from zero magnitude towards approaching the order
N3 /N, while the one formed by the mixing of the two pump
having roughly equal magnitude initially becomes less a
less effective in creating wave 4 during such a proce
which leads to a slower growth of wave 4, i.e., the saturat
effect. Finally, such a growing period could cease and a
verse process sets in as the mixing of probe wave 3
created wave 4 becomes strong enough to make them as
new pumps while the old pumps serve as the new probe
new created waves in the reverse process. Such a rev
process may cause the already produced wave 4 to bec
zero again~similiar in some sense to revivals!. Of course,
this is possible only when the characteristic interaction ti
t}N1/5 is sufficiently long so thatjt>p.

Before ending this section, we would like to estimate t
order of the total atomsN by the conditionjt5p. For this
purpose, we consider a condensate in an isotropic harm
potential with a trap frequencynT5vT/2p. The Thomas-
Fermi limit results in the relation between the volumeV
54pR3/3 and the total atom numberN as follows:

V5
4p

3 S 15U0

4pMvT
2D 3/5

N3/5. ~20!

The characteristic interaction time is taken ast'V1/3/v with
the lowercase letterv5P/M denoting the characteristi
speed of the wave packets. We takeN10;N20;N30;N/3 to
estimatejt5p which, by using Eq.~15! and the above dis
cussion, becomes

p5jt'S 3

4p D 2/3SA5U0

3\v D S 15U0

4pMvT
2D 22/5

N3/5. ~21!

SettingN[Np in the above equation, we arrive at

Np'S 4p

3 D 10/9S 3p\v

A5U0
D 5/3S 15U0

4pMvT
2D 2/3

, ~22!

where the interaction strengthU054p\2ā/M with ā
'53abohr @10#, vT'2p360 Hz, v5P/M , and P'2\k,
k52p/(589 nm) @3#. Therefore,jt5p gives a rough esti-
04360
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mationN5Np'3.63106. For the same parameters as tho
taken in the above estimation, we obtainjt'p(N/Np)3/5.
This relation demonstrates thatN;1.13106, a typical value
for the experiment of Ref.@3#, leads tojt;p/2, which also
illustrates that theF factor in Eq.~16! should not generally
be taken to be unity for that experiment. However, it sho
be kept in mind that the above estimation is based on
conditionN10;N20;N30;N/3. It varies if this condition is
not satisfied.

IV. CONCLUSION

In summary, the theory of four-wave mixing with matte
waves has been developed in this paper within the fra
work of the Gross-Pitaevskii nonlinear Schro¨dinger equation.
We have derived a set of four highly nonlinear-coupl
equations describing four-wave mixing with matter wave
We have obtained the analytical expressions of the ma
scopic wave functions for the two pump wave packets,
probe wave packet, and the four-wave mixing signal. O
results are those without making the undepleted pump
proximation, and are compared with the results under
undepleted pump approximation. Our results also disp
that the variableh[(N10N20N30)N

29/5 may not be an appro
priate abscissa in plotting the relative densityN4 /N if the
undepleted pump assumption fails. The reason is that in
case the figure ofN4 /N versush may not be a well-defined
curve but may show some kind of~possibly wide! spread.
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APPENDIX

In this Appendix, we prove Eqs.~8!–~10!. It is seen from
Eq. ~6! that

2 iR5
]F1

]t Y F252
]F2*

]t Y F1* , ~A1a!

2 iR5
]F4

]t Y F352
]F3*

]t Y F4* . ~A1b!

These two equations immediately result in Eqs.~8a! and
~8b!, respectively, by noting thatuC l u5uF l u, l 51,2,3,4.

By using Eq.~6!, we obtain

i
]uF1u2

]t
52R* F1F2* 1RF1* F2 , ~A2a!

i
]uF4u2

]t
52R* F3* F41RF3F4* . ~A2b!

Summing these two equations and utilizing theR expression
in Eq. ~7b!, we arrive at
4-5
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]

]t
~ uF1u21uF4u2!5R~F1F2* 1F3* F4!*

2R* ~F1F2* 1F3* F4!

50. ~A3!

Following the same routine as above, we get

]

]t
~ uF2u21uF3u2!50. ~A4!

Equations~8c! and ~8d! are a direct consequence of the
two equations, respectively. In addition, Eq.~9! is obviously
ett

d,

r-

04360
proved by combining these two equations and noting ag
the fact thatuC l u5uF l u, l 51,2,3,4.

The proof of Eq.~10! is straightforward. Utilizing theR
expression in Eq.~7b!, and the governing equation~6!, one
yields

\

2U0

]R

]t
5S F1

]F2*

]t
1F2*

]F1

]t D 1S F4

]F3*

]t
1F3*

]F4

]t D
5 iR~ uF1u21uF4u22uF2u22uF3u2!, ~A5!

which leads to Eq.~10! immediately. Equation~11! follows
from Eq.~5b!, one of theR expression equivalent to Eq.~7b!.
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