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Abstract

The unitary evolution can be represented by a finite product of exponential operators. It leads to a perturbative expression
of the density operator of a close system. Based on the perturbative expression scheme, we present an entanglement
measure. This measure has the advantage that it is easy to compute for a general dynamical process. q 1999 Published by
Elsevier Science B.V. All rights reserved.

PACS: 89.70; 89.80; 03.65.Bz

1. Introduction

Over the past decade information theory has been generalized to include quantum mechanical systems, for
example, a two-level quantum system has come to be known as a qubit in this context. The additional freedom
introduced with the quantum mechanical superposition principle has opened up a variety of capabilities that go
well beyond those of conventional information techniques. There are two distinct directions in which progress is

w xcurrently being made: quantum computation and error correction or prevention on the one hand 1 , and
w xnonlocality and distillation, on the other hand 2 . In each of those progresses, quantum entanglement that

provides a good measure of quantum correlations plays an important role.
There are a number of good measures of the amount of entanglement for two quantum systems in a pure

state, a good measure of entanglement for mixed states is also found though it is hard to compute for a general
Ž w x.state see, for example 3 .

In this Letter, considering the entanglement from the other aspect, we prefer to discuss the change of
entanglement due to the state changes rather than to compute straightforwardly the entanglement of an arbitrary
state.
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In the framework of quantum information theory, the state change allowed by quantum mechanics may be
w xtreated in terms of quantum operations 3 , a simple example is the unitary evolution experienced by a close

quantum system. The final state of the system is related to the initial state by a unitary transformation U,

r™´ r sUrUq .Ž .
w xUnitary evolution is widely in use of quantum gates and circuits 4 as a quantum operation. In addition to the

unitary evolution, environment coupling to a quantum system or a measurement performed on the quantum
w xsystem changes the state too 6,7 . The connection of quantum operations to quantum measurements is easy to

explain. Standard text book treatments describe quantum measurement in terms of a complete set of orthogonal
projection operators for the system being measured. This formalism, however, does not describe many of the
measurements that can be performed on a quantum system. The most general type of measurement that can be

w xperformed on a quantum system is known as generalized measurement 6 . Generalized measurement can be
understood within the framework of unitary evolution, because most generalized measurements can be realized

Ž w x .through many dynamical processes see 8 and references therein , and the state change due to environment
may be also treated in terms of the unitary evolution, since an arbitrary open system may be enlarged by
including the environment to be a close system. In this sense, unitary evolution is one of the most general types
of state change possible in quantum mechanics.

The rest of present paper is organized as follows: In Section 2, we present a general method to factorize the
Ž .unitary evolution operator U t for a close system. The results may be generalized in the treatment of many

autonomous dynamical systems. Section 3 contains our results on the entanglement change occurring in a
dynamical process. Finally, in Section 4, we present two typical examples and some conclusions.

( )2. Factorizing the unitary evolution operator U t

As noted above, the unitary evolution operator is one of the most general types of state change possible in
quantum mechanics, the point of this section is to factorize the evolution operator into a set of independent one.
For this end, we discuss the following cases:

w xØ Case A. 9 . The Hamiltonian can be written as a finite sum,

m

H t s a t H , 2.1Ž . Ž . Ž .Ý i i
i

Ž .where a t are a set of linearly independent complex valued functions of time, and H are constanti i
Ž .operators. In addition, the set of operators H is1, . . . ,m may be enlarged by repeated commutation to ai

Ž .Lie algebra L with finite dimension n nGm . With this presupposition, the unitary evolution operator can
be uncoupled into a set of independent operators.

U t sU t U t . . . U t , 2.2Ž . Ž . Ž . Ž . Ž .1 2 n

Ž .where each component U t is an operator satisfyingi

d
U t sg t H U t , U 0 s1 . 2.3Ž . Ž . Ž . Ž . Ž .˙i i i i idt

Ž .With the scalar function g t being the solution to a set of nonlinear differential equationsi

nd
g t s h a t , g 0 s0 , 2.4Ž . Ž . Ž . Ž .Ýi i k k idt is1
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where h are nonlinear function of g ’s. Thus we have factorized the unitary evolution operator into thei k

form:
n

g Ž t .Hi iU t s e . 2.5Ž . Ž .Ł
is1

Especially, for a general case of a dynamically closed quantum system which consists of two interacting
subsytems A and B, the total Hamiltonian may be written as a sum of three terms

HsH qH qH , 2.6Ž .A B int

the first two terms represent the free Hamiltonian of subsystem A and B, respectively, and the last term
describes the interaction between the A and B. Following the procedure stated above, we arrive at

U t s e g iŽ t .H . 2.7Ž . Ž .Ł i
isAB ,int, . . . , M

Ž .Here, H isA, B,int, . . . M are elements of Lie algebra with finite dimension enlarged by H , H , Hi A B int
� 4Ø Case B. In the case of the dimension of the Lie algebra enlarged by H is infinite, we can factorize thei

w xunitary evolution operator using the general Baker–Campbell–Hausdorff 10 formula. To start with, we give
the evolution operator of the system under consideration

U t seyi tH seyi tŽHAqH BqH int. , 2.8Ž . Ž .
Ž . Ž .where H , H , H are the same as in Eq. 2.6 , the Eq. 2.8 can approximately be written asA B int

U t sey1r2w HAqH B , H int xt
2
eyi H int teyi ŽHAqH B . t qO t 3 . 2.9Ž . Ž . Ž .

This splitting formula is hold in the case that t has to be safely smaller than a typical energy of the system.
Thus, even in the simplest case, a better method is needed. Let n be a positive integer. The exponential
function satisfies the scaling identity

2 nnexp yiHt s exp yiHtr2 . 2.10Ž . Ž . Ž .
n Ž . Ž .When n is sufficiently large, the argument tr2 is in some sense small. Eqs. 2.9 and 2.10 together give

1 1 1
2 2 2w x w x w xy H qH , H t yi H t yiŽH qH .t y H qH , H t yi H t yiŽH qH .t y H qH , H tA B int int A B A B int int A B A B intU t se e e e e e . . . eŽ . 2 2 2

=eyi H intteyi ŽHAqH B .t qO t 3 , 2.11Ž . Ž .
where ts tr2 n. Still higher-order formulae are known. We would like to point out that, in quantum

w xcomputation 11 , the ns1 is widely taken in use and it is large enough to avoid the decoherence during
quantum computing.

3. Quantification of entanglement

Ž .In the previous section we have factorized the time evolution operator U t . The question remains open about
how does the entanglement change in a dynamical process. Of course, this question is not entirely well defined
unless we state what physical circumstances characterized the amount of entanglement. This suggests that there
is no unique measure of entanglement. Before we define the measure of entanglement we expand the density

w xoperator for a close system. Suppose that the two interacting subsystems are initially separable 12 , i.e., their
Ž .initial density operator state can be written in a form

r 0 sr 0 mr 0 , 3.1Ž . Ž . Ž . Ž .A B
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to use the entanglement for quantum information processing, however, we need a inseparable state, more
precisely, a state in pure entanglement form. The procedure of converting a separable state to inseparable one

Ž . Žcan be performed, as stated in Section 1, through a unitary evolution operator U t in addition, a partial trace is
.also needed sometimes.

r t sU t r 0 Uq t . 3.2Ž . Ž . Ž . Ž . Ž .
If the interaction between the two subsystems is small, it is natural to attempt some sort of Taylor series

Ž . Ž . Ž .expansion of the exponential in Eqs. 3.2 , 2.8 and 2.11 , which give for Case A

E f E f )

i i0 0 0 0 0 0r l,t sr t mr t ql H r t mr t qr t mr t HŽ . Ž . Ž . Ž . Ž . Ž . Ž .ÝA B i A B A B iž /El Eli/A , B

l2 E f E f E f E fi j i j0 0 0 0q H H r t mr t qr t mr t H HŽ . Ž . Ž . Ž .Ý i j A B A B i jž2 El El El Eli , j/A , B

E f E f )

i j0 0 2q H r t mr t H qO l 3.3Ž . Ž . Ž . Ž .i A B j /El El

and for Case B

2 n2 y1l t
0 0 0 0r l,t sr t mr t y H qH , H t ,r t mr tŽ . Ž . Ž . Ž . Ž . Ž .� 4ÝA B A B int i A Byn qž /2 2 is0

n 32 y1t t
0 0 2y il H t ,r t mr t qO l qO , 3.4Ž . Ž . Ž . Ž . Ž .Ý int i A Bn nyž / ž /ž /2 2is0

0Ž .where l denotes the coupling constant, and r t represents the state of subsystem i at time t with ls0. Thei

results presented above suggest that we may take the form

20 0 2 0 0dD r sIr t yr t mr t I sTr r t yr t mr t 3.5Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .A B A B

as a measure of entanglement change in the time evolution process. Noticing the initial state is separable, the
Ž .measure of entanglement change 3.5 is a measure of entanglement in reality. Although the definition of the

w xmeasure for entanglement is not unique, it has to satisfy the three conditions stated below 3 :
Ž .1. D r s0 if and only if r is separable.

Ž .2. Local unitary operators leave D r invariant, i.e.

D r sD U mU rUqmUq .Ž . Ž .A B A B

3. The expected entanglement cannot increase under Local general measurements q Classical communication
Ž . qq Postselection LGMqCCqPS given by Ý V V s1, i.e.,i i i

Tr r D r rTrr FD r ,Ž . Ž . Ž .Ý i i i

q Ž .where r sV rV . For the measure of entanglement change proposed above, i follows from the fact thati i i
Ž . Ž . Ž . w xD r is a true metric, and ii is obvious. Property iii is satisfied too 3 . We believe that there are

numerous other nontrivial choices for measure of entanglement, one of the choices could not be said to be
more important than any other, the present choice has the advantage that it is easy to compute for any
dynamical process.
Our discussion so far has centered on the entanglement change in a dynamical process. To complete it we

still need to show that this definition can be generalized for any process that quantum mechanics allowed. For a
general process, the quantum operator that change a state of the system should be factorized by the subsystem’s
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Žoperators. For instance, a control not operation in quantum computation given by in fact, control not is a
.unitary evolution operator

< : ² < < : ² < xOs 0 0 m1 q 1 1 ms , 3.6Ž .1 12 2

x < :where 1 is the unit operator for the second qubit, s stands for the x pauli matrix of the second qubit. 1 12 2
< :and 0 represent two state of the first qubit. This control not operator is factorisable, i.e. O can be written in1

the form

Os Oi mOi ,Ý 1 2
i

where Oi and Oi denote operators for the first and second qubit, respectively. Hence, according to the1 2
Ž . Ž .definition Eq. 3.5 , the control not operator in the form 3.6 does not change the entanglement of the system.

We would like to point out that the discussions presented here are for the unitary eÕolutions, for non-unitary
eÕolution such as a trace oÕer some of the degree of freedom, we should find an auxiliary unitary process
instead of the non-unitary one.

4. Example and conclusion

In order to understand how our program for calculating the amount of entanglement change works, we
Žpresent in this section two examples, one of them consists of two interacting qubits two identical two-level

. Ž w x.system in a laser beam see Cirac 5 , and the another two independent qubits coupling simultaneously to a
bath.

Ž .Example 1. The Hamiltonian describing the system in this example has the following form set "s1 :

HsH qH qH qH ,A B int f

1 iH s vs , isA , BŽ .i z2

H sg sqsyqsysq ql sqa qsyaq ,Ž . Ýint A B A B i iž /
isA , B

H sv aqa , 4.1Ž .f f

where s z,sy,sq describe the pauli operator of the i qubit, g denotes the coupling constant, and H stands fori i i f

the free Hamiltonian of the laser beam. Suppose the state is initially in the form

r 0 sr 0 mr 0 mr 0 ,Ž . Ž . Ž . Ž .A B f

< : ² <r 0 mr 0 s e ,e e ,e ,Ž . Ž .A B A B A B

< : ² <r 0 s p n n n , 4.2Ž . Ž . Ž .Ýf
n

< : < :where e denotes the excited state of the qubit i and n stands for a Fock state of the laser beam field. In thei

Schrodinger picture, the density operator that obeys von Neumann equation is given by¨
r t sTr r t sŽ . Ž .A B f

2 Ž . 2 Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .p n f n ,t p nq1 p n f nq1,t f n ,t p nq2 p n f nq2 f nÝ Ý Ýg g g g EG ee g g
n n n

2 2Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .p nq1 p n f nq1,t f n ,t p n f n ,t p n p nq1 f nq1 f nÝ Ý Ýg g EG EG EG ee ,
n n n

2 2� 0Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .p nq2 p n f nq2 f n p n p nq1 f nq1 f n p n f n ,tÝ Ý Ýee g g EG ee ee
n n n

4.3Ž .
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< : < : < :where we take g , g , E,G , and e ,e as a set of basis, andA B A B

1
< : < : < : < : < : < : < : < : < : < : < :g , g s g m g , e ,e s e m e , E,G s g m e q e m g ,Ž .A B A B A B A B A B A B'2

r 0 t mr 0 t sr 0 0 mr 0 0 ,Ž . Ž . Ž . Ž .A B A B

u
1 1 1yi E t 2 yi E t yi E tq y 0f n ,t s sin2fsinue q sin2fcos e y sin2fe ,Ž .g g 4 2 22

u u
2 2 yi E t 2 yi E t 2 2 yi E tq 0 yf n ,t ssin fsin e qcos fe qsin fcos e ,Ž .ee 2 2

V t
f n ,t ssinu sinfsin ,Ž .EG 2

cosu"1
E sV qv nq1 , E s nq1 v ,Ž . Ž ." f 0 f2

nq 2 2 2Ž . Ž . Ž .and uspr2,tanfs ,V s 16nq24 g . Eqs. 3.5 and 4.3 together give(nq 1

2i j 33dD r s r y2 r q1 , 4.4Ž . Ž .Ž .Ý A B A B
i , js1,2,3

i j Ž .where r denotes the element of matrix r given by Eq. 4.3 , which represents the entanglement change orA B A B

entanglement of subsystems A and B at time t.
ŽExample 2. The Hamiltonian describing dissipation of the two qubits has the following form see the last

w x. Ž .reference of 1 setting "s1

z z q qHsv s qs q dv g A a qa q dvj v a a , 4.5Ž .Ž . Ž . Ž .Ý H H0 a b v l l v l v l lsa ,b v l v l
lsa ,b

where s describe the pauli’s matrix of the i qubit, a stands for the bath mode v coupling to the l qubit, andi v l

j aq a saq a for a sa , whereas j aq a saq a qaq a for a /a . The couplinglsa,b v l v l v l v l v a v b lsa,b v l v l v a v a v b v b v a v b

coefficients are denoted by g , and the qubit operator A in general is expressed as a linear superposition ofv l l

three pauli’s operators, i.e. A slŽ1.s x qlŽ2.s y qlŽ3.s z. The ratio lŽ1.:lŽ2.:lŽ3. is determined by the type ofl l l l
Ž1. Ž2. Ž3. w xthe dissipation. For instance, l sl s0 for phase damping and l s0 for amplitude damping 7 . Phase

damping induces pure dephasing, whereas amplitude damping induces loss and dephasing simultaneously. Many
w xsource of decoherence in quantum computers are described by amplitude damping 13 .

Without any loss of generality, we discuss in detail the case with lŽ1.slŽ2.s0 i.e. phase damping. Some
words of caution are now in order. As mentioned above, the bath can also cause another unwanted effect in
computation process, i.e. amplitude dissipation. It is easy, however, to make system have small loss rate of

w xamplitude dissipation 11 , so a considerable number of operations are allowed to perform.
In the case of phase damping, the unitary evolution operator may be factorized in the following form

U t sU t U t , 4.6Ž . Ž . Ž . Ž .0 I

Ž . yi H0 t Ž z z . Ž q .where U t se with H sv s qs qHdvj v a a is the free evolution operator, while0 0 0 a b lsa,b v l v l
Ž .U t denotes the evolution operator in the interaction picture. A readily calculation shows thatI

U t sU a t U b t ,Ž . Ž . Ž .I I I

i i < : ² < i < : ² <U t su t e e qÕ g g , 4.7Ž . Ž . Ž .I I i i I i i
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< : < : z i iwhere e and g are the eigenstates of s with eigenvalues q1 and y1, respectively, and u and Õ satisfyi i i I I
Ž .iya,b :

E
i q i v t yi v t ii" u s dv g a e qa e u ,Ž .ÝI v i v i v i IE t

E
i q i v t yi v t ii" Õ sy dv g a e qa e Õ . 4.8Ž .Ž .ÝI v i v i v i IE t

w xThe Wei–Norman’s algebraic method 9 that provides a way to factorize the evolution operator gives

ui s e fv
i Ž t .e Av

i Ž t .av
q

eBv
i Ž t .av 4.9Ž .ŁI

v

and

Õ i s ehv
i Ž t .eCv

i Ž t .av
q

eDv
i Ž t .av . 4.10Ž .ŁI

v

Here,
gv ii iv tA t sy e y1 ,Ž . Ž .v
v

)i iB t sy A t ,Ž . Ž .Ž .v v

g 2 g 2
v i v ii yi v tf t syi tq 1ye ,Ž . Ž .v 2v v

C i t syAi t , Di t syBi t , hi t s f i t .Ž . Ž . Ž . Ž . Ž . Ž .v v v v v v

Now, we turn our attention to compute the reduced density operator of the two-qubit system, first of all, we
Ž .calculate the total density operator, which follows straightforwardly from Eq. 4.5

r t sU U r 0 UqUq , 4.11Ž . Ž . Ž .0 I I 0

Ž . Ž .where r 0 denotes the initial density operator state , which may be written in a separable form

r 0 sr 0 mr 0 mr 0 .Ž . Ž . Ž . Ž .a b B

Ž .Ž . Ž .Here, r 0 isa,b represents the initial state of qubit i, and r 0 stands for the initial state of the bath. Ini B
< : z zfollowing, we use the notation, e , g to indicate the eigenstates of s and s with eigenvalues 1 and y1,a b a b

0Ž .Tr indicate a trace over the bath, and r t to represent the free two-qubit state i.e.B i

r 0 t sTr U t r 0 Uq t .Ž . Ž . Ž . Ž .B 0 0

� < : < : < : < : < : < : < : < :4With this notation, in a subspace spanned by 11 s e ,e , 12 s e , g , 21 s g ,b , 22 s g , g , thea b a b a 2 a b

state of the two-qubit system at time t takes the form

r r r r1111 1112 1121 1122

r r r r1211 1212 1221 1222
r t sTr r t s , 4.12Ž . Ž . Ž .ab B

r r r r2111 2112 2121 2122� 0
r r r r2211 2212 2221 2222

0 Ž . 0 ² < 0Ž . < :where r sr F i, j,k,ls1,2 , r sTr ij r t kl , andi jk l i jk l i jk l i jk l B

2
q qa b b a² < < : ² < < :F sTr ij U U cd ef U U kl .Ž . Ž .Ž . Ž . Ž .Ý ž /ji jk l B I I I Ii lk

c,d ,e , fs1
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Ž a. ² < a < : < : < : < : < :Here, U s i U i and 2 s e , 1 s g . In order to get more information about the reduced densitya a aI i a I a a

operator, we make some discussion on the quantity F . It can be easily verified that F s1 for isk, js l,i jk l i jk l

while F sF ) for i/k and j/ l. Moreover, the quantity results from the interaction between the two-qubiti jk l k l i j

system and the bath, hence it depends on the states of the bath. Although different bathes result in different
results F , the physical results discussed here do not rely on the bath. In this sense, we may consider a simplei jk l

case with zero temperature. In this case, F is given thati jk l

`
)F sF t sexp y D v ,t qD v ,t r v dv , 4.13Ž . Ž . Ž . Ž . Ž .Hi jk l i jk l i k jlž /0

where

2 2g yg sin 0.5v tŽ .v i v j
D v ,t s2 ,Ž .i j 2v

Ž . Ž .r v stands for the bath spectrum distribution. Eq. 4.12 suggests that F approaches zero with the passagei jk l

of time except some moments at which

`
)D v ,t D v ,t r v dvs0.Ž . Ž . Ž .H i j k l

0

This attractive results might be used in preventing information loss stored in quantum states. Now we come
Ž . Ž .back to the entanglement change, Eqs. 3.5 and 4.11 together give

2
0 0 0 0dD r t Ir t mr t s r yr r yr . 4.14Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ýab a b i jk l i jk l k l i j k l i j

i , j ,k , ls1

In summary, we propose a new method to compute the entanglement change in a dynamical process. We see
the above treatment in Sections 2 and 3 does not refer to specific entangled systems. This is a desired property
as it makes our measure of entanglement universal. Especially, the results yielded by present paper can be easily
generalized to more than two subsystems, this is just the case of many qubits interacting simultaneously with
environment. In addition to the measure stated above, the quantum relative entropy defined as

0 0 0 0D r t Ir t mr t sTr r t ln r t y ln r t r tŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .A B A B

and the Bures metric given by

0 0 0 0D r t Ir t mr t s2y2 F r ,r mr ,(Ž . Ž . Ž .Ž . Ž .A B A B

0 0 0 0 0 0 1r2 2Ž . w w x x( (with F r,r mr s Tr r mr r r mr are other good measures of entanglement. With thisA B B A B A

modified definitions, the measures of entanglement can be given in easy way.
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