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Abstract

Using a boundary condition proposed by Petrosky et al. [Physica A 173 (1991) 175], the optical potential (or model
space) approach is generalized to study the decay problem. By making use of this method, the spontaneous emission of
atoms in free space and cavities is dealt with in an exact analytical form without any approximation.

PACS: 03.65: 32.80: 42.50

1. Introduction

The problem of decay or dissipation of a quantum
system interacting with an environment is a funda-
mental one appearing extensively in elementary par-
ticle physics, nuclear physics and atomic physics
[1,2]. There are many methods to calculate the decay
width and describe the dynamics of the quantum
dissipation. Typical approaches are solving the time
dependent Schrddinger equation, using scattering
theory and building a master equation for the density
matrix. However, all these approaches depend on
certain approximations, such as the Wigner—Weiss-
kopf approximation and the Markoff approximation
[3]. Therefore, an exact analytical solution of this
problem would help to develop the theory of decay.
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In this paper, we consider the optical potential theory
[2,4] with applications to so-called cavity quantum
electrodynamics [5].

The optical potential theory is a basic method to
study elastic scattering problems and to calculate the
width of the cross section peak. An optical potential
can microscopically be derived in different ways, the
most popular one being proposed by Feshbach using
the projection operator technique [4]. In this theory,
the Hamiltonian H, for the time independent
Schrodinger equation HY = EY | is divided into two
parts H, and V such that A, can be solved exactly.
The whole Hilbert space is also divided into two
arbitrary parts, the model space represented by the
projection operator P and its supplementary space
represented by another projection operator Q =1 —
P. Generally, this decomposition is selected accord-
ing to different physical situations. For example, P
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is usually selected as the clasuc channel or some
bound states of H,,. Thus. one has a decomposition
V=PV+Q¥=¥,+ ¥, where ¥, and ¥, obey

(Hpp =LV + Hy )W, =0 (1)
and
( HQQ - E)lpg + H(&)I’lpl' =0 ‘2)

for H,,=PHP. H,,=QHQ. H,,=QHP and
Hp, = PHQ. 1II' we focus on the model space. we
have an eftective Schridinger equation

H., ¥, = EY, (3)

eft
for the non-Herminan eftecuve Hamiltonian
)

Hew=Hpp + Hy, F-H. +.e Hp

()

with the so-called opuical potential Vi, = H,. -
p°/2m Here € is usually an intinitely small positive
number represenung the outgoing process. It should
be noted that Egs. (3) und (4) are exact and the
cttective Hamiltonian  H,, is energy dependent.
theretore Eq. (3) should be solved self-consistently

with respect to the energy. The physical meaning of

Eq. (4) is clear: the first term represents the original
interaction in the model space and the second term
represents an interaction from outside the model
space. In principle. the model space can be selected
as a finite dimensional space. ¢.g.. the space spanned
by bound states. In this case, 1f the bound stte
cnergy is below the continuous spectrum, the calcu-
lation can be carried our casily for most cases. But
when the bound state 1x cmbedded in the continuous
spectrum, it is not known whether there 1s a solution.

Prigogine’s group has proposed a new boundary
condition called natural ume ordering which is con-
firmed o be suntable to describe dissipative pro-
cesses or decav problems [6.7]. Using the natural
time ordering and an infimte order perturbation ¢x-
pansion, the boundary condition tor the propagator is
expressed in the form

glw, ) dw,

j(:):f — {9

F'(w, —w - I)

where w, and w, are the unperturbed state energy. =
a complex number. g(w, ) an arbitrary function and
the inverse of the denominator s called the complex

distribution. The integration denoted by T is first
carried out by fixing z in the upper-half plane and
then the limit Im z = —ivy is taken (for details see
Refs. [6.7]).

By combining the boundary condition (5), exact
solutions of the Schrodinger equation with the opti-
cal potential can be obtained for the spontaneous
emission of two-level atoms both in free space and
in a cavity. In this paper, the optical potential theory
is generalized to calculate the decay by a self-con-
sistent energy eigenequation with complex energy
cigenvalues. As an application, the calculation of the
spontaneous emission rates of atoms in free space as
well as in a cavity [8] is exactly carried out. Notice
that the spontaneous emission problem is still very
important at present since it plays a critical role in
laser cooling mechanisms and cavity quantum elec-
trodynamics besides being extensively used in spec-
tral theory [9.10]. As the Wigner—Weisskopf approx-
imation is often used as a first order approximation
in the calculation of the spontaneous emission of
atoms, an exact soluble model is useful to check the
efficiency of the Wigner—Weisskopt approximation
and an exact calculation of the spontaneous emission
is useful.

In fact, an exact complex spectral representation
theory of the Hamiltonian as well as the Liouville-
von Neumann operator may substantially reconcile
some conflicts between the reversibility of the basic
laws of physics and the irreversibility of most dy-
namic processes, such as dissipative structures, spon-
laneous emission of atoms, cvolution process ap-
proaching equilibrium, quantum decoherence with
wavefunction collapse and so on. The present ap-
proach, based on Fechbach’s optical potential theory
and the novel boundary condition of Prigogine’s
group, shows that the integral equation for the dissi-
pation dynamics has consistent solutions for both the
cnergy and the width of an arbitrary strength of
interaction in explicit form when the dynamics of a
system is formulated outside the Hilbert space of the
system. Notice that the eigenstates obtained here do
not belong to the usual Hilbert space of the system,
but they lie in the so-called “‘rigged’ Hilbert space
introduced by Antoniou and Prigogine [11]. There-
tore, the presert study goes some way beyond tradi-
tional approaches in ordinary quantum mechanics,
such as the Wigner—Weisskopl approximation and
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the Born-Markov approximation. Actually, many
interesting mesoscopic phenomena in cavity QED
cannot be dealt with by these traditional methods and
further generalizations of the method presented here
may be applied to these problems successfully.

2. A simple illustration: the Friedrichs model

Although the Feshback theory [4] is extensively
used to study scattering and bound states problems,
its generalization can also be applied to the decay
problem. Here, we first consider a simple model, the
Friedrichs model [12]. 1o show how the optical po-
tential method is used to study the decay problem. Its
Hamiltonian is

H=H,+V=c 1> ~ [w(k)Ik){k]dk

+fv;m,;~'1 F k) dk. (6)

where | 1) is a discrete state with energy e, and | k)
is a continuous slate with energy w, of H where
e, >0 and w, > 0. Obviously, the state |1) is em-
bcdded in the continuous spectrum. Let the projec-
tion operator be sclected as

P=11{11. (7)
Then, as usual the eftfective Hamiltonian is

’ Ve odk
H . =

oot | ————— I Q
eff \(lnf/E*(.U(/()ﬁ“iE’l(\l ()

Since the model space is one dimensional, Eq. (3)
becomes the transcendental equation

[ dk
e, + / =k (9)
k) + 1€
which should be solved consistently for a complex
cnergy E. However. the above cquation has no solu-
tion. This can be shown as follows. Substituting
E=E —iy forreal £, and y into the above equa-
tion and separating its real and imaginary parts, we
obtain two cquations,

[E, —o(k)]V, dk
[E = (k)] + v

EJzeﬁ/ (1)

and

T (11)

The only solution of Eq. (11) is y =0, but for y= 0,
Eqg. (9) gives

},zﬂ-[vfﬁ(ﬁ‘—w(k)) dk # 0, (12)

except V, =0 at E = w(k) occasionally. Therefore,
we can conclude that Eq. (9) has no solution. This
means that the subspace |1) must be excluded from
the Hilbert space of the perturbed Hamiltonian H by
the boundary condition implied in Eq. (9). In order
to overcome the above contradiction, we invoke the
natural time ordering approach for dissipative pro-
cesses [6,7] with the substitution

e +e forll) = k),
— —e for k) —> 1),
— +¢€ for|k)—o k'), (13)

in Eq. (9). This implies the new boundary condition
(5) for which the propagator in Eq. (9) is replaced by
that in Eq. (5). According to Refs. [6,7], this results
in a new equation,

" V dk
~j T ] =E (14)
and then the decay rate obeys
v, dk
[El - w(k)]b +y”
V,(2 dk
cw(k) = (E —iy)’

-y=7]

(15)

where the contour C of the second integration is a
small circle enclosing the singular point E, —iy.
Egs. (10) and (15) have a solution, which means that
the perturbed Hamiltonian has an eigenstate with a
complex energy value E, — iy representing a decay
state (for a detailed explanation see Refs. [6,7]).
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3. Spontaneous emission of atoms in free space

For the spontaneous emission of an atom in free
space, a two-level Hamiltonian in the rotating wave
approximation [8] is

H=H,+ V. (16)

Here

Hy= e, 1001 +e, 11011+ ]w(/\)aiaA daA.

(17)
\”I/V(A)(llﬂ(]?uA <)) dA. (18)
where the natural unit £ = | s used: 10), | 1), e, and

e, are the atomic state vectors and the corresponding
energies respectively; A = (k. o) represents the mo-
mentum and polarization of a photon and a,, a} and
w(A) are the annihilation operator, creation operator
and the frequency of the photon respectively. Denote
the eigenstates of H, by [a: A;A,A,...) where a
denotes the atomic states. 1.e.. « = 0. 1, as follows.

The tollowing subspaces are closed for the Hamil-
tonian (16).

{10, 0, {1100 100 A2},
(i1, A0, 100 A A (19)

We only consider a subspace {:1.0), [0, A)} and
then select ; 1, 0) as a model space. Then we obtain
two equations like Egs. (15) and (10). If ¢, is set to
zero and the energy shift is absorbed in e, as usual
(ic.. E,=¢;). we only need to solve Eq. (15).
Within the dipole approximation and after integra-
tion over the orientation of the momentum of the
photon as well as summation of its polarization [8].
Eq. (15) becomes

2 . ek dw

—Y=Y 5 N
377(3] (E, —w) +v°

2 wu dw

a 37c° j(* w= (£ ~1y) )

(20)

where u is the matrix element of the atomic dipole
moment. If w is set to be constant as usually done
the first term on the right hand side of Eq. (20) is
divergent, as the dipole approximation is not valid at
high frequencies. Actually. at high frequencies, the

atomic wave functions are approximately given by
¢(r) =exp(—ar?/2) and the interaction matrix is
given by

V,a (0] z exp( ik - r)|1)
::fexp(—ar?‘ tik - r) d'raexp(—k*/4a)

aexp(—w?/B), (21)
where « and 3 are positive constants representing
the size of the atom. In order to make the calculation
more simple, the following case is considered,
p=ppwp/ @’ (22)

where w, can be considered as an effective dipole
moment. Then, we have

x dow
2'”*7-[—5]602'*’72). (23)

 2ujep
Y 3re?

This gives an exact solution of the spontaneous
emission of an atom in free space: If E;, >0 or
v < 1 we obtain

203
2upwg

3¢

2 ugw;

y = 2m- ) = , (24)

3me?

which is just the result of the Wigner—Weisskopf
approximation. If £, — 0 or y> 1, we obtain

203 203
2pywg wq Wy

(2r—m/2) =

: (25)

Y=

37t c’

which means that Wigner—Weisskopf approximation
is no longer valid. Therefore, we reach the conclu-
sion that the width of spontancous emission satisfies
Y, <vY<%Y,.

In the model space the wave function is

f— o

W (1)) =e "H[1,0) ="' [1,0) —0,
(26)

where the energy shift is absorbed into e, and the
decay probability is y. The exact solution can be
found by

o V(A) -
@ [w(/\)—el+z]:7‘pl!
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where ¢, may be chosen to be one or to be given by
normalization. Then, the final spectral distribution is
given by

, V(A I »
[B(w(A)) | = PRSP (28)
or

V(A |°
w) = - w) d2
A() /[e,—w(/\)]"+y2p( ) d
:__.L_ (29)

(e, —w) + v~

where the energy shift is absorbed into e,. Finally
the wave function is given by (Egs. (1)-(3) and
boundary condition (5))

V(A)
[w(A) —e +2]7,

I‘If>=|l.()>*~fd)\ 10, A).

(30)

which has the same form as that derived by Petrosky
et al. for the Friedrichs model using an infinite order
perturbation series.

4. Spontaneous emission of atoms inside a cavity

The spontaneous emission for an atom in a cavity
can be described by the following Hamiltonian [8],
H=H +H, +H +W=H,+W, (31)
where

Hy=e, 10001 +¢,11)(1 | + wa'a

+[¢0(A)bAbA dA (32)
and
Lv:fM(A)(a*/)A +aby ) dA

+e (10 Ta+ 101 a ). (33)

Here as in Egs. (17) and (18) [0). 1), ¢, and e, arc
the atomic state vectors and the energies respec-
tively; w. a and a are the energy, annihilation and
creation operators of a single mode photon field in

the cavity respectively; A represents the quantum
number of the cavity wall system and b,, b/ and
w(A) are the annihilation operator, creation operator
and the energy of the wall-excitation, W contains
both the interaction between the photon field and the
wall and that between the atom and the photon field
in the cavity. We only consider the following invari-
ant space,

{11,0,0),10, 1,05, 10,0, )}, (34)

where in the state | @, B, y) a represents the state
of the atom, B is the number of the photons in the
cavity and vy is the quantum number of the wall and
the Hamiltonian in this subspace is

e g 0
H=|g w+e w(A) . (39
0 w(X) (w,t+e)d(A-AX)

If the projection operator (model space) is selected
as

P=11,0,0)1,0,0]+10, 1,0)€0, 1, 0], (36)

then the effective Hamiltonian becomes

_|1éa 81 _ 0
”eff“(g w) fd’\(#()\)
I
o, ¢ Y
€ 8

g o+ [w ) da/fe() £,

: (37)

= el g
g w+A+Bij
where e, is set to be zero and A and B are

calculated as above. It is easy to obtain the eigenval-
ues

Et:g{e, +w+A

+Bity[e,~w—(A+Bi)] +4g° }
(38)

where A and B are functions of E,=E, —iy,.
This equation should be solved consistently for com-
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plex energy. It the energy shift A 1s absorbed into e,
and 4 =¢, — w. we have

Et=‘3[e, tw+Bit (A - Bi) +4g’

= e, +w+Bit A B ~d4g 2481}

(39)

For a weak coupling of the cavity field to the atom.
Le. g iy very smalll we obtin

£, — w — B1)

¢, ~wt Bl=(e -

to} —

Y-
-

< (A8 (40
A+ B !

which means the atom will decay with the sponta

neous cmission rate
¢ B

A+ B-

and the cavity tield will also decay with a width 8

o=t
!

(4

Similar results for the spontaneous emission rate ol
atoms in a cavity given in Refs. [5,8,9] are only
approximate cases ol the above result. which shows
the enhancement and suppression of the spontancous
CMISSion rates.

When the interaction between the atom and the
field 15 strong. i.e. g is very large. we obtain

' (A-Bi)
E‘—‘f-lc‘ - w -~ Bi 1‘”1 + ———I
k ll 4o !
1] A B
= 5[(’, + w2 u( - —TJ‘:—*)
: A
+l§lI+T—Ji . (42)

from which in the resonant case the decay width of
the atom will be halt that of a photon in the cavity
(cavity damping).

It should be pointed out that there are other
exactly solvable approaches for the problems of de-

cay, dissipation and decoherence with wavefunction
collapse [13]. For instance, in Refs. [14,15], the exact
solution for the wavefunction of a particle, in con-
stant or harmonic force fields, interacting with a bath
of infinite harmonic oscillators was obtained to de-
scribe the dissipation process and the Brownian mo-
tion. In this sense, the physical meaning of the
wavefunction for the dissipative system was clarified
in comparison with the time dependent effective
Hamiltonian treatment. In further works, we will
analyze the relations between this approach and the
present spectral representation of the Hamiltonian.
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