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By building a multi-fermion realization ofthe quantum algebra SUq(2), we generalized the Lipkin—Meshkov—Glick (LMG)
model totest the validity ofmany-body approximation methods. Our general LMG model incorporates the quantum group sym-
metry ofSUq(2) and themany-body force besides the two-body one inmany-fermions systems, which give a probe ofthe dynamic
process that the quantum group symmetry should describe. The exact solvability is still guaranteed by the finite dimensional
representation of SUq(2). The deformation parameter q is introduced in the generalized model to characterize the difference
between this model and the original one. Especially, it leads to the crossing ofdifferent energy levels.

1. Introduction fermion Hamiltonian. In this paper, we will build the
multi-fermion realization of a quantum algebra and

Though the concept of quantum group and algebra then use it to generalize the Lipkin—Meshkov—Glick
originates from the mathematical abstraction ofmany (LMG) model [11].
non-linear physical problems [1—3], its role incor- The original LMG model was built to test the va-
porating the new symmetry, the quantum group lidity of many-body approximation methods. Its
symmetry (QOS), has been discussed in many real Hamiltonian
physical problems such as the fitting ofthe rotational H=eJ +‘V(J J +J J ) (11)
spectra of nuclei [4,5] and the description of di- z 2 + — — +

atomic molecules [6,7]. It should be pointed out that is expressed in terms of the generators of the Lie
there are some discussions in connection with the group SU(2) in the form of the fermion realization
concept of a q-deformed boson (or oscillator) [8— Q

101. J+= ~ a~a,_, J_= ~ a_a~,+,
Although these discussions about the QGS have !‘~

had a certain success, they are phenomenological in Q

our opinion. In fact, since the blocks constituting the ‘z = ~ (t~~+a~+— a~_a~_), (1.2)
real systems such as nuclei and diatomic molecules
are fermions, the generators of the quantum group where ~ a9÷,a~_,a~_are the fermion operators.
symmetry in them must be written in terms of or- Obviously, the Hamiltonian includes a two-body
dinary fermion creation and annihilation operators. force. It is a simple yet non-trivial model. Since the
Hence, the fermion realization of a quantum algebra Casimir
should be used in the microscopic theory to describe ~ ~ +.~(.1 — 1)
the quantum symmetry of a fermion system. How- — + Z

ever, it has not been used in previous discussions and commutes withH, the matrix ofHwill break up into
thus there is not a microscopic theory based on the submatrices in each carrier space of each represen-

50 0375-960 1/93/$ 06.00 © 1993 Elsevier Science Publishers BY. All rights reserved.



Volume 180, number 1,2 PHYSICS LETTERS A 30 August 1993

tation D [j}of SU(2), labelled by the so-called quasi- I i—i \
spin J, thus it is an exactly solvable model. Our gen- !i~=f,~exp(~iitk~l Nk)~ J~ik=fLfk=J’LTk,

eralization is to replace J± ,J~by the generators J± , —

J~of the quantum algebra SUq(2) satisfying (2.4)

[J+,J_][23z]q,[J~,J± ]=± J± , (1.3) where

where qeP is the real deformation parameter and j~= l® 1 ®...® l®f®l ®...® 1
[X]q= (qx_q_x)/(q_q_l). This generalization in-
corporates the quantum group symmetry into the and consider a property of the coproduct of quan-model system. In the Hamiltonian of the generalized -tum algebra. IfJ+ and J~are generators for SU (2),LMG model, the many-body correlation is intro- h -

duced and the exact solvability is still guaranteed. In t en
subsequent works, we will compare the results ob- L±=q~®J±+J+ ®q’~,
tamed by the various formulations with exact results — - -

obtained from the q-deformed LMG model. L~ J~®1 + 1 ®J~ (2.5)

also generate SUq(2). Using (2.1), (2.4) and the
multi-extension of eq. (2.5),

2. A multi-fermion realization of SU~(2)
L+ = ~ q3~®q3~®...®J+®qJC®...®q~,

Recently, a general method building a non-trivial
fermion realization of a quantum algebra was pre- L~ ~ l®l®...®J~®l®...®l,
sented by the authors [12]. For convenience, in the
followingdiscussion, we reformulate the central idea we immediately write down a non-trivial fermion re-
with a new example, which will be used in this paper. alization of SUq (2) where
We begin with the simple but crucial observation that
the following operators [13—15], L~= ~ C,ã ~ ~, L — = ~ C,8,~
.1+ =a+b, J_ =b+a,

J~=1(a~a—b~b), (2.1) L~=~~ (dtá
1—6~fi~), (2.7)

not only form a Lie algebra, but also are the gener-
ators of the quantum algebra SUq(2), where a ~, a, where
b~,b are fermion operators. This is because C1=q~-’ (i—k)(ãták—5~&)

qRl+(ql)N, JcT~~~fl-f ~(x)=l, x>0,

f=a,b, [2J~]=2J1. (2.2) =0, x=0,

However, for the fermion operators - = —1, x<0. (2.8)

cc++c+c...l If±\2...0 ‘23’
ii J J U ) — ~. ‘ This is the key to the generalization of the LMG
we have (J±)2= 0. This means that the fermion re- model. Here the function C~is an operator only con-
alization (2.1) leads to the fundamental represen- taming finite terms,
tation for the quantum algebra SU~(2),which is also
a half-spin representation of SU(2). Therefore, we C~=JJ {l + (qW~)I2_ 1)â~dk}
say that the fermion realization is trivial. To obtain k 1

the non-trivial fermion realization, we must use the x{l + (q_C~_k12._1)5~~b~}. (2.9)
multi-fermion operator
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3. Generalized LMG model with q-deformed one. When q— 1 is very small the system is incor-
symmetry porated with an approximate SU(2) symmetry. Such

an approximate symmetry model is ofmuch interest.
We consider a system ofN fermions distributed in In comparison with the SU(2) symmetry model

two levels each having anQ-fold degeneracy and sep- (1.1), the physical meaning of the Hamiltonian is
arated by an energy . Each state is described by two considered to be as follows. In the original model,
quantum numbers p and a, where a has two values: any two fermionpairs interactwith the same strength.
+ 1 if the particle is in the upper level; — 1 is it is in However, in the generalized model, the interaction
the lower level. The Hamiltonian for the system is as strength depends on the particle density of other fer-
follows, mion pairs and thus the many-body correlations are

considered.
LI I V’ +
~ = ~ aa~a~,,0 Now we illustrate the above description with the

interaction matrix, in the original model,
r’ ç’ —flp—p’) + +

2 p p”i ~C pC p—c p—a
PP’~I <Q1(N—2), p’a,pcrlHlp—cr, p’—a, Q1(N—2)>

~.. I W ~ r ç’ ~p—p’) + +
2 p aJ,CaP CaPCaP_C =~v, (3.4)

pp.,,

+~W~~ (3.1) <Q2(N—2),p’—a,paIHIp—a,p’a, Q2(N—2)>
“C =~W, (3.5)

where at,, and a,,,~are respectively the creation and where Q1(N—2) and Q2(N—2) represent all the un-
annihilation operators acting on a particle in the changed states~but in the generalized model
p, a state. The fourth term cannot be omitted except
when q= 1. By introducing the q-deformedquasi-spin <Q1(N—2), p’a, paIHIp—a, p’— a, Q1(N—2)>
operators
- - =~VC~C~,q~PP’), (3.6)
J+ = ~ ~ J = ~

p p <Q2(N—2),p’—a,paIHIp—a,p’a, Q2(N—2)>
~ ~ (3.2) =~WCpCp~q~””°, (3.7)

the Hamiltonian can be rewritten in terms of the de- w ere
formed quasi-spin operators as ~ —N~1), (3.8)

H= J~+ ~V(P÷+J~) which depends on the unchanged states. For the

+~W(J+i +L 1+), (3.3) kth degenerate states, if both upper (+) and lower
- - (—) states are occupied by particles, they will have

where the operators J~,J and J2 are the generators no contribution to the other scattering; otherwise,
of SUq(2). Obviously, H commutes with the q-Cas- they will.
imir operator A diagrammatic representation of the interaction

c=i÷ J+[i,][J,—l}.

Now we observe that the quantum group symmetry pa p’a pa P’— ~ P17
of SUq (2) is incorporated in the generalized model.
The Hamiltonian matrix will break up into diagonal ~ p’— a p—a p’a 4 pa
block matrices, each of whose submatrices is asso-
ciated withdifferent irreducible representations D Li] Actually, the loop diagrams are considered in the
of SU~(2). Because the Hamiltonian becomes the vertexes.
original LMG model when q—~1, we can regard the In order to find the eigenvalues of H exactly, we
generalized model as a q-deformation of the original build the carrier space of the irreducible represen-
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tation D[j] from the lowest weight state space 0>’ ~ = ±(10+ (k1/~)
2+(k

2/E)
2

satisfying J_ 10> = 0. Obviously
0> =aj~_

1a~_1...a~,110> . (3.9) ±{36+36(k1/e)
2—l2(k

2/~)
2+(k

2/ )
4}1/2)1/2

k
1=3V,.J18][7][2], ~

4. Exact solutions of the generalized LMG model k3=3 V.,J [7] [6] [3] [2], k4 = 3 V[ 4] [5] . (4.8)

The energy levels of the systems are characterized by
The interaction term proportional to W in Ham- three parameters, the number of particles N, the

iltonian (3.1) does not mix the configurations and interaction strength V/ and the deformation pa-
is diagonalized exactly by the SUQ(2) representa- rameter q. The above results are just the same as the
tion. Then we solve the generalized LMG model ex- original ones in ref. [11] when the deformation pa-
actly for N= 2, 3, 4, 6, 8 by setting W equal to zero. rameter q— 1.
ForN= 2 In order to compare the eigenvalues as a function

of the interaction parameterNV/Ewith different de-
= ±{ 1 + ~[2] 2(v/~)2}, 0. (4.1) formation parameters q, the positive energy values

for N=8 with q= 1 and 1.2 are plotted in fig. 1.
For N ~ Fromthe analytical expression ofthe energy levels

for eight particles, we know that in the original case
(4.2) (q=l) crossingbetweendifferentenergylevelsnever

occurs, but fig. 1 shows that it is found in the de-
For N=4 formed case (q= 1.2). This phenomenon also is

found in fig. 2, where the energy levels are functions
0 (4.3) of deformation parameter q with fixed interaction, ,

parameter NV/C.
= ±{l + ~[2]2[3]2( V/~)

2}. (4.4) In some problems, the excitation energy ofthe first
excited state above the ground state shall be in-
volved. The exact results for the excitation energy asFor N=6
functions of the interaction parameter NV/E with

0 (4.5), ,

= ±(5+ 3(k
2/~)

2+(k
1/)

2

±{l6+~(k
2/e)

4+(k
1/E)

2(k
2/c)

2

+ 16(k
1/E)

2—4(k
2R)

2} 1/2) 1/2

k
1=3V.,J[6][5][2]

k2=3V[3][4]. (4.6)

For N=8

= ±(5+ 3(k4/ )
2+ (k

3/~)
2 •0 a 4 6 ic NV/E

Fig. 1. Positive energyeigenvalue plotted versus the interaction±{ 16 + ~ (k
4R )4 + (k3/ )

2(k
4R )2 parameterNV/I for eight particles. The solid lines show theorig-

+ l6(k3/~)
2—4(k

4/E)
2}’’2) 1/2 , (4.7) inal case (q=l), the short dashedlines show the deformed case(q= 1.2).
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Fig. 2. Positive energy eigenvalue plotted versusthe deformation Fig. 4. Excitation energyof the first excited state above the ground
parameter q for eight particles when the interaction parameter is state for the deformed case (q= 1.05). The upper three lines refer
4NV/~. to the eight-particle system and the lower three to N= 50. The

solid lines show the exact excitation energy, the short dashed lines
represent the second order perturbation theory results, and the
dotted lines show the results ofperturbation theory to the fourth
order.

1.0 E1—E2

A(2)_1[2] [N—1 ]{[N] —[3] [N—2]}( V/c)
2,

~ ~~([N—l][N—2][N—3]
\~

-- - ~ x{[N-4] [5]!— [N] [4]!)
0. 0.4. 0.8 2.0 5.0 NV/ —2[2]2[N— 1 ]2( [3]2[N—2]2— [N]2})( V/c)4,

Fig. 3. Exact results for the excitation energy of the first excited (5. 1)
state above the ground state plotted versus the interaction pa- where the three terms correspond the zeroth, second
rameterNV/C forN= 4, 14 and 50 particles. The solid lines show

and fourth order. The results to the second and the
the original case (q= I ), the short dashed lines represent the de-
formation case. fourth order are shown in fig. 4, together with the

exact excitation energy for eight and 50 particles.
In the following papers, the generalized LMGdifferent deformation parameters q are shown in fig. model will be employed to test the validity of other3.

approximation methods. Especially, we shall con-
sider the many-parameter perturbation theory with
r (=q— 1), r2, r3, ... where r is small. More signifi-

5. Perturbation theory cantly, we shall extend the ideas in this paper to the
generalized three-level LMG model, which is still ex-
tensively used.

Using the generalized LMG model, we study the
range ofvalidity of perturbation theory, with special
emphasis on the many-body interaction besides the
two-body one. The non-perturbed energy levels are Acknowledgement
non-degenerate, therefore the non-degenerate per-
turbation theory can be used. The resulting excita- The authors would like to thank Professor Zhao-
tion energy above the ground state is given by Yan Wu for encouraging us to undertake this inves-
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