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By constructing a new g-deformed boson realization of the quantum universal enveloping algebra sl,(2) its finite dimensional
representations with an arbitrary parameter are obtained in the case that g is a root of unity. With the obtained representations
various non-standard sl,(2) R-matrices are presented through the universal R-matrix.

It has become well known that the Yang-Baxter
equation plays a very important role in non-linear
physics as for instance exactly solvable statistical
mechanics models and low dimensional integrable
field theories, and it has also been realized that one
can construct various R-matrices, which are the so-
lutions of the Yang-Baxter equation, through quan-
tum universal enveloping algebras (also called quan-
tum algebras for short) and their representations
[1,2]. When the representations are irreducible the
R-matrices obtained in this way were called standard
ones. By taking the weight conservation condition
into account some non-standard R-matrices have
been obtained with the extended Kauffman diagram
technique [3], whose relation to quantum algebras
has been discussed in some special cases [4]. In this
paper we will probe this relation in a more general
way and successfully put the non-standard R-matri-
ces associated with sl ,(2) into the framework of
quantum algebra. The conclusion obtained in this
paper can be generalized to other quantum algebras.
We should point out that so far as we know, Date et
al. have investigated the standard R-matrices when
g is a root of unity, and that our discussion is dif-
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ferent from theirs in that we mainly consider non-
standard cases [5].

The g-deformed boson algebra %, was first intro-
duced by different authors independently [6] and
then evolved into a well defined form [7]. As in ref.
[7] we equivalently define %, as an associative al-
gebra over the complex number field C which is gen-
erated by elements N, a* and a=a~ satisfying

a*ta=[N], aa*=[N+1],
[N,a*]=%a™, (1)
where we have defined

¢—q7
|

U=1=

for any fe #,. One can check that the above algebraic
relations guarantee

Jy=ata,, J_=a¥a,, J;=N,—N,, (2)
to satisfy the basic commutation relations

Ve, J1=14], [J5,0:]=220, (3)

of the quantum algebra sl (2). it is worth pointing
out that in ref. [6] only on the g-deformed Fock space
Z(2),
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{|m1, myy=a3"0)|aq [0>=a,|0)=0,
my, m2€Z+={0, 1,2, .}} N

relation (3) is satisfied, but in this paper (3) be-
comes an algebraic relation because of (1), in other
words, it is satisfied on any representation space of
A,

Now, using the relation [N]a*=a* [Nz 1] which
results from (1), we can easily prove that

Jy=a*[A=N], J_=a, J;=2N-2A (4)

is a new boson realization of sl,(2), i.e., (4) satisfies
(3). Here A€C is an arbitrary complex parameter. It
will be seen that the introduction of A is a key to the
whole discussion below. On the one-state g-de-
formed Fock space %,

{flm)y=|m>=a""|051al0>=N|0>=0,meZz"},

realization (4) gives an infinite dimensional repre-
sentation of sl,(2),

Jiflim)y=[A-—m]f(m+1),
J_f(m)=[m]f(m),
J3f(m) = (2m—2)f(m) . (3)

When A is a non-negative integer, representation
(5) is equivalent to that constructed from realiza-
tion (2). In fact, when AeZ™, if we define

S (my, my)=f(my)
(my=A—my, m;, my, AeZ%) ,
then we have
Jof (m,my)y=[m]f ' (m+1,m~-1),
J_f(m,my)=[m]Yf (m—1,my+1),
Jif i (my, ma)=(mi—my)f " (my, my) . (6)

This is nothing but the representation on %(2) given
by realization (2), which has been discussed in de-
tail in ref. [5].

When A is not an integer and ¢ is not a root of uni-
ty, all the results are the g-deformation of those about
the Lie algebra su(2), so we will not consider this
case. Instead, we will investigate the non-generic case
that A is not an integer and q is a root of unity [8].
In this case, g” =1 for p’ a positive integer larger than
two. Because when p'=2p (peZ*) g” =1 means
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g°= = 1, in the non-generic case we can assume ¢”=1
for p an odd integer larger than one or g?= —1 for
p an even integer larger than one without losing
generality.

When ¢?=t1, [ap]=0 for acZ*. As a result,
J_flap)=0. So the extreme vector f(ap) defines
an invariant subspace V,

{flap+m)|meZ*}.

Since there is not an sl,(2)-invariant subspace V,
complementary to V,, representation (5) is redu-
cible but not completely reducible, i.e., indecom-
posable.

On the quotient space Q= %,/V,,

{F(M)=f(m)mod V, |m=0,1,2,..,ap—1=2J},

representation (5) induces a finite dimensional rep-
resentation ¢!,

Sy, (M)=[A—-(J+ M)y, (M+1)0(J—-1-M),
J_y,(M)=[J+M]y,(M-1),
Sy (M) = (2(J+ M) -D)y,(M) , (7

with the dimension dim Q /1=2/+ 1 where we have
defined y,(M)=F(J+M) M=J,J—-1, ..., —J) and

6(x)=1, x=0,
=0, x<0.

For a2, this representation is also indecomposable.
Using representation (7), through the sl,(2)-uni-
versal R-matrix

o ( 1 _q—2) n
R= J3®@J3/2 e
1 ngo [n]'
Xq"("—l)/Z(q13/2J+ ®q—13/2J—)n’ (8)
we can now construct the R-matrix
RV = gll® g2} (@) e End (QUI®QL21)
in an explicit form,
Ry, (M), (M)
=Y (RV)Midoy, (M}) @y, (M3),

where we have chosen y;, (M,)®uy,,(M,) as the ba-
sis of QV1®Q 2] as in (7) and (R72)}1}2 can be
written as
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N2y MMy _ (251 +2M1—2) (2J2+2M5—-2) /2 SM| SM)
(R‘ )M}Mzz—q( 1—A)( 2—4) 5M115M22

+q(2J|+2M'1—Z.)(2J2+2M'z—A)/2

x i (1—q_z)"q_,,(n—l)/2qn(Jl—Jz+M'1—M’2)/2

X T [A=Jy =M + 1] [Ty + M5+ 1163, .63,
I=1

(9)

after a straightforward calculation.

Before concluding this rather short paper let us
consider two examples. Taking ¢g?>=—1, a=1 and
Ji=J=1/2, from eq. (9) we get a 4 X4 R-matrix

t
1 t—t!
1 b
—t-!

R1/2,1/2=q12/2—l (10)

where t=—g~* is an arbitrary parameter. If we

choose ¢*=—1, =1 and J;=J,=1, then (9) turns
out to be a 9X9 R-matrix

Rll:diag(AlaA29A3’A12’A,l)- (11)
Here,
A =—g7 P A=A g,

-1 1=-2
A2=Al< —t)’

3 12002121
A’2=A,(qt (g% )>,

3

qt
2 qt(t*—1) (£*=1)(g%*-1)
A3 =4, q’t? t(g**—1) )
t2

where t=¢*""'. Using the extended Kauffman dia-
gram technique, one finds no difficulty in checking
that the general R-matrix given by (9), as well as its
two examples (10) and (11), indeed satisfies the
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Yang-Baxter equation without a spectral parameter.
We have seen that from our approach we can get the
non-standard R-matrices, namely (10) and (11), in
a very natural way. Moreover, we can obtain many
new R-matrices in a similar way.

Finally, we point out that the R-matrices given by
(9) can be Yang-Baxterized into a solution of the
Yang-Baxter equation with a spectral parameter [9].

The authors thank Dr. K. Xue for a helpful
discussion.
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