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By constructing a new q-deformed boson realization of the quantum universal enveloping algebra Slg(2) its finite dimensionalrepresentations with an arbitrary parameter are obtained in the case that q is a root of unity. With the obtained representations
various non-standard Sl~(2) R-matrices are presented through the universal R-matrix.

It has become well known that the Yang—Baxter ferent from theirs in that we mainly consider non-
equation plays a very important role in non-linear standard cases [51.
physics as for instance exactly solvable statistical The q-deformed boson algebra ~ was first intro-
mechanics models and low dimensional integrable duced by different authors independently [6] and
field theories, and it has also been realized that one then evolved into a well defined form [7]. As in ref.
can construct various R-matrices, which are the so- [7] we equivalently define ,~, as an associative al-
lutions of the Yang—Baxter equation, through quan- gebra over the complex number field C which is gen-
tumuniversal enveloping algebras (also calledquan- erated by elements N, a+ and a a — satisfying
tum algebras for short) and their representations
[1,2]. When the representations are irreducible the a~a=[N] aa~= [N+ 1]
R-matricesobtained in this waywere called standard [N, a = ±a (1)
ones. By taking the weight conservation condition
into account some non-standard R-matrices have where we have defined
been obtained with the extended Kauffman diagram ~ -f
technique [31, whose relation to quantum algebras ~ = — q
has beendiscussed in some special cases [4]. In this q — q
paper we will probe this relation in a more general for anyfE ~ One can check that the above algebraic
way and successfully put the non-standard R-matri- relations guarantee
ces associated with slq(2) into the framework of
quantum algebra. The conclusion obtained in this J÷=aj~a~,J_ =a~a

1, J3 =N~—N2, (2)
paper canbe generalized to other quantum algebras.
We should point out that so far as we know, Date et to satisfy the basic commutation relations
al. have investigated the standard R-matrices when [J J_ I = [J3I [J3 J+ ] = ±2.1÷ (3)
q is a root of unity, and that our discussion is dif- - -

of the quantum algebra Slq(
2). it is worth pointing
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rn1, rn2> =a~rn2l0>IaiIo>=a210> =0, qP= ±1,inthenon-genericcasewecanassumeq”=lfor p an odd integer larger than one or q~)= — 1 for
rn~,m2eV={0, 1,2, ...}}, p an even integer larger than one without losing

generality.relation (3) is satisfied, but in this paper (3) be-
When qP=±1, [apj =0 for ae7Lt As a result,comes an algebraic relation because of (1), in other Jj(ap)=0. So the extreme vector f(ap) defineswords, it is satisfied on any representation space of an invariant subspace Va,

a.
Now, using the relation [N]a~ =a± [N± 1] which {f(ap+m) I mel ~}.

results from (1), we can easily prove that
Since there is not an slq(

2 )-invariant subspace ‘~
J÷=a~[A—N] , J =a, J

3=2N—A (4) complementary to Va, representation (5) is redu-

is a newboson realization of Slq(2), i.e., (4) satisfies cible but not completely reducible, i.e., indecom-
(3). Here AC C is an arbitrary complex parameter. i~ posable.

On the quotient space QE.’] =will be seen that the introduction of), is a key to the
whole discussion below. On the one-state q-de- {F(M)=f(rn) mod ~a m=0, 1, 2, ..., ap— 1=2J},
formed Fock space ~,

representation (5) induces a finite dimensional rep-
tf(m)=Im>=a~

mI0>IaI0>=NI0>=0 rnel~}, resentation/’~’,

realization (4) gives an infinite dimensional repre- J+wAM)= [A—(J+M)]w~(M+1 )O(J— 1 —M),
sentation of s1~(2),

J-w~(M)= [J+M]w~(M— 1),J÷f(m)=[A—rn]f(m+l),
J
3w1(M)=(2(J+M)—A)w~(M), (7)

Jj(rn)=[m]f(rn),
with the dimension dimQ[.1]= 2J+ 1 where we have

J3f(m)=(2m—A)f(rn). (5) defined çt’~(M)=F(J+M) (M=J,J—l, ..., —J) and
When A is a non-negative integer, representation

O(x)=l, x~0,
(5) is equivalent to that constructed from realiza-
tion (2). In fact, when ),el~,ifwe define 0, x<0.

f ‘ (rn~,m2)=f(m1) For a ~ 2, this representation is also indecomposable.
Using representation (7), through the Sl~(2 )-uni-(rn2=A—m1, m1, rn2,Ae7L~), versalR-matrix

then we have
~qJ3~J3/

2 ~ (l—q~)~
J÷ f’(rn

1, m2)= [rn2]f’(m~ + 1, m2 —1) , ,,~ En]!

Jf’(m~, m2)= [m1]f ‘(rn1 —1, rn2+1) , xq~’~
2(q~~’2J÷®q~~’2J_)”, (8)

J
3f’1(m1, m’2)=(m1 —rn2)f’(m1, rn2) . (6) we can now construct the R-matrix

This is nothingbut the representation on ~ (2) given RJIJ2 /[J1 I®/[J21 (~it) e End (Q
11’ 1®Q [.12])

by realization (2), which has been discussed in de-
tail in ref. [5]. in an explicit form,
WhenA is not an integer and q is not a root of uni- R11J2wj

1(Mi)®wj2(M2)
ty, all the results are the q-deformation of those about
the Lie algebra su(2), so we will not consider this = ~ ~
case. Instead, we will investigate the non-generic case where we have chosen Wj, (M1 )® ~,2 (Ma) as the ba-
that A is not an integer and q is a root of unity [8]. sis of QUi] [.12] as in (7) and (RF2)~~ canbe
In this case, qP = 1 for p’ a positive integer larger than written astwo. Because when p’=2p (peZ~)q”=l means
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(R~~2)~ = q (2Ji + 2M1 A) (2.12 +2M’
2 —A) /2~5M1~M’2 Yang—Baxter equation without a spectral parameter.Mi UM2

We have seen that from our approach wecan get the
+q~hi+2M(12+2Mi_~/2

non-standard R-matrices, namely (10) and (11), in
a very natural way. Moreover, we can obtain many

~__-2\n —q ) n(nI)/2qn(JiJ2+M1M’2)/2 new R-matrices in a similar way.,,~ En]! q
Finally, we point out that the R-matrices given by

n
x fl [A—J1—M’1 +1] [~~2 +M’2+l]o~÷ ,,ö~_,, (9) can be Yang—Baxterized into a solution of the
l=1 Yang—Baxter equation with a spectral parameter [9].

(9)
The authors thank Dr. K. Xue for a helpfulafter a straightforward calculation.

discussion.
Before concluding this rather short paper let us

consider two examples. Taking q
2 = — 1, a = 1 and

J
1 J2= 1/2, from eq. (9) we get a 4x 4 R-matrix References
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