Available online at www.sciencedirect.com

SGIENCE@DIHEGT’
PHYSICS LETTERS A

ELSEVIER Physics Letters A 342 (2005) 30—35

www.elsevier.com/locate/pla

Engineering antiferromagnetic Heisenberg spin chains for
maximizing of the groundstate entanglement

R. Xin3, Z. Song**, C.P. Sur#P?

@ Department of Physics, Nankai University, Tianjin 300071, China
b |nstitute of Theoretical Physics, The Chinese Academy of Science, Beijing 100080, China

Received 25 April 2005; accepted 6 May 2005
Available online 17 May 2005
Communicated by R. Wu

Abstract

We study the correlation function and concurrence for the eigenstates with zero spin of engineered Heisenberg models to
explore the entanglement property. It is shown that the total nearest neighbor (NN) correlation function of zero-spin eigenstates
reaches its local extremum when the coupling strength is uniform, and correspondingly the groundstate entangie®ent of
cubic AF Heisenberg model is locally maximized. Moreover, numerical calculations§osite quantum spin ring with cos-
inusoidally modulated exchange coupling, i.&.= J(1+ co92xi/N)), indicate that the uniform coupling is not the unique
optimal distribution for maximizing the groundstate entanglement and this modulation of interactions can induce the longer
range entanglement.
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1. Introduction have shown that the groundstate properties are sensi-
tive to the geometry of the lattidé—5] and the distrib-
Studies of various quantum spin models are very ution of the exchange couplings between two neighbor
important in understanding the properties of realistic spins[6—9]. Although much effort has already been
solid state systems. Numerical and analytical studies made to investigate the properties of the ground state,
the exact result about it is still rare. For instance,
— _ a spin-¥2 Heisenberg ring is one of the nontrivial,
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suncp@itp.ac.c(C.P. Sun). one-dimensional quantum model solved exactly by
1 Internet www site http://www.itp.ac.cn/~suncp a straightforward diagonalization of the Hamiltonian
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and has been used as a testing ground for many the-focus on those states with vanishing components of
oretical approaches. Bethe found the eigenvalues andtotal spin, or called the zero spin states. In this sense
eigenfunctions of the corresponding Hamiltonjaa], the relationship between correlation and concurrence
but the obtained exact eigenfunctions are so compli- has been well establish¢ti3]. To describe the behav-
cated that they are almost useless for calculating someior of correlation one can define the nearest neighbor
physical quantities, such as something relevant to cor- (NN) correlation function

relation functions, to reveal all the characteristic prop- 1

erties of the ground state. Recently, quantum entangle- Fo(J;;) = ~ Z<S" -Sj)o. 1)
ment was proposed as a new type of physical resource, (i)

which is desired to depict the features of the ground
state, like the correlation function or other conserva-
tive quantities. It was found that the ground state of an
AF Heisenberg ring possesses maximal entanglement
compared to that of excited statdd] and the entan-
glement is believed to have something to do with the
quantum phase transitiofis2].

The present Letter explores the pairwise entangle-
ment of the zero-spin ground state of the Heisen-
berg model with certain engineered inhomogeneous
coupling constants. We first make a simple obser-
vation that the total nearest neighbor (NN) correla-
tion function of zero-spin eigenstate (with vanishing
components of total spin) is locally maximized for
the uniformly distributed coupling strengths, while _ _ e Q.
the groundstate entanglement of teD cubic an- Eo=(H)o=)_ Jij(Si-Sjlo. &)
tiferromagnetic (AF) Heisenberg model can locally @
maximize in this case, correspondingly. However, the Differentiating the above equation with respect to an
uniform distribution of coupling constants is not the arbitrary coupling strength/y;, one can getdEq/
unique optimal one for maximizing the groundstate 9Jk = >y Jij3(Si - Sj)o/dJu + (Sk - S)o. On the
entanglement in the case with engineered coupling other hand, together with the Feynman-Hellman theo-
constants. Namely, the homogeneity of couplings is rem
only the sufficient conditions rather than a neces- 9Eo 9H
sary condition in maximizing the groundstate entan- Y =<ﬁ
glement. To demonstrate this point of view, we study K K
the N-site ring system with cosinusoidally modulated it indicates thatz(m Jij(S; - Sj)o/dJix = 0. Obvi-
exchange coupling, i.eJ; = J(1 4 cog2ri/N)) in ously, when all the coupling strengttig = J, we get
both analytical and numerical approaches. We discov- 3 Fp/dJ;; = 0, which means thakp has an extremum
ered that the ground state with varying couplinfys for the uniform coupling strength. Notice that this con-
and that with the fixed coupling are nearly identical.  clusion is always true no matter the system is bipartite

or nonbipatrtite lattice and the state is ground state or
excited state. Howevey;; = J may not be the unique

for the eigenstatéy) with zero spin. The sandwich
(S - Sj)o = (YolSi - Sjlyo) is defined as the ex-
pectation value of; - S; in the zero-spin eigenstate
|Yo). Formally, it is proportional to the average of the
Hamiltonian by assuming the identical coupling con-
stants. What we concern is thig -dependent behavior
of the correlation function, which can be characterized
by theextremumof Fo(J;;).

Now, for a zero-spin eigenstate, we show that
Fy(J;j) can reach its extremum when all the exchange
constants are identical;; = J, if Fo(J;;) is analytical
at this point. Actually, the eigen energy can be written
as

> = (S - So 3
0

2. Maximization of the groundstate entanglement distribution for Fp to reach the extremum. We will find
that there may exist a periodic coupling strength distri-
The HamiltonianH =}, Ji;Si - S; of Heisen- bution in 1-D system which induces the same ground

berg spin model can be written in terms of the spin state approximately as that with uniform coupling dis-
operatorS; atith site, whereJ;; is the coupling con- tribution.

stant of exchange interaction, which is trivially re- Now we apply the above conclusion to the bipar-
stricted to benonzero in this Letter. Our studies will  tite lattice with J;; > 0 and N4 = N, where N4,
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Np are the numbers of the sites belonging to sub- 0.50 ke
lattices A and B. According to Lieb’s theorenfil4], \
the ground state is singlet and h&s= 0, which en-
sures thatF, reaches its minimunf, (1) = E,/N at

the point J;; = 1, where the zero-spin statéo) is
replaced by the ground stdtg . Furthermore, we con-
sider the groundstate entanglement for the AF Heisen-
berg model on aZ-D cubic lattice with translational
symmetry in all directions. Here the symmetry spec-
ifies thegeometry of the lattice only, i.e., the Hamil- 0.40
tonian may not have the translational symmetry. Since

the upper bound of, is — Z(iﬁ 1/4 in the vicinity

of the pointJ;; = 1, we have the inequality, (1) < — P

0.45

CONCURRENCE

—(@A/N) 3 1/4 from (S - §;)g < —1/4. On the ° COUPLING STRENGTH )

other hand, the pairwise concurrence for such system

isCg = (1/2)max{—(4/N) Z<U> (S-Sj)¢—1,01= Fig. 1. The groundstate concurrences vs the coupling strength for the
_ S alternative Heisenberg ring systems with= 8 (circle), 10 (solid

(1/2) max [4Fg(1) +A/N) ZW) 1.0} [13]’ or circle) and 12 (solid line). It shows that the uniform coupling point

is the local maximum.

1 M
Cg:_§|:4Fg(l)+Ni|’ 4)

range of coupling constants. The groundstate concur-
whereM =3, 1is the link numbers. Therefore we =~ "€NC€S for small systems with' = 8,10 and 12 are
get the conclusion that the ground state has locally c@lculated by exact diagonalization method and plot-
maximal pairwise entanglement when the exchange fted in Fig. l_lt indicates tha_\t the concurrences takes
interactions distribute uniformly. A similar conclusion  1tS local maximum at the uniform point.
has been obtained for tHeX Z model at the isotropic
point[15,16]

Notice that the above statement does not mean that3. Cosinusoidally modulated systems
the concurrence is the maximum in the whole range of
coupling constants, but just in the vicinity of the uni- As mentioned in advance, the uniform system may

form point. In order to illustrate this, we investigate a ot pe the unique optimal one possessing a maximal
simple spin model, the AF Heisenberg ring with alter- groundstate entanglement. A simplest case is that there

which maximizes in the vicinity of the poinf; = 1,

native coupling constant. The Hamiltonian Stsite )y exist a model with nonuniform coupling strength

rnngis distribution, which has the same ground state as that
of the uniform one. We now show this observation in

H= Z S-St Z JSi - Sisa. ®) the XY spin ring exactly and th& X X spin ring ap-

icodd iceven proximately.

It is well known that the value of the NN pairwise We consider the two cases of spipi2lHeisenberg

concurrence is @386 for J = 1 [13]. On the other model with the anisotropy parametér= 0,1 on an

hand, in the limit cases of = 0 and co, the ex- N-site ring. With the cosinusoidally modulated ex-

act ground states agg = [12][34]...[N — 1N], and change couplings, i.eJ; = J(1 + cog2ri/N)), the

¢2 = [23][45]...[N1], respectively, wherdij] de- HamiltonianH = Hp+ HaggCan be separated into two

notes a resonant valence bond (RVB) of two spins parts

located at the lattice sitesand j [17]. Both ¢; and

¢2 has a same concurrence&sPwhich is larger than N ‘

that of the state at uniform point. This demonstrates Ho=J Y (5751 + 5] S}\1 + AS{S7,4). (6)
that the concurrence is not the maximum in the whole i
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Fig. 2. Schematic illustration of cosinusoidally modulated (a) and
uniform (b) NN coupling spin ring systems. The two most separated
sites in (a) is the nearest neighbor in (b).

and

2
Hyqg=J ZCOS( ;l)

X (SFSK 1+ 58S+ ASiSE ). )

where 2Zri/N is a factor to determine the profile of
the additional HamiltonianH was a pure toy model

33

It is easy to find that the particles are confined either
in the regionsk| < k¢ or |k| > k. Actually, it is easy

to prove that the particle number in the reg|bn< k¢

(or |k| > kf) is a good quantum number féf dd, ie.,

T
ObV|oust, there are only four eigenstatesH;fY
with zero eigenvalues: the groundstatg)”) =

1_[|k|<kf a,:r|0) the eigenstate [y XY) =
]_[|k|>kfa;|0) of HfY with maximum eigenvalue.
These two states indicate that the two regiong-in
space separated by Fermi points are fully filled, re-
spectively. If all thek-space is fully filled or empty,
one can get other two eigenstatésy ), being the sat-
urated ferromagnetic states with all spin up or down.

and

before the array of quantum dots is considered as aThese four eigenstates are also the eigenstates of any

media to transfer the quantum staffé$8,18] In Fig. 2

H and Hy are illustrated schematically. We will see
that Hagq has a subtle relation witHg in their ground
states.

The simplest casel = 0 is first considered as the
so-calledXY model or the hardcore boson model. It
is well known that if ¥ /2 is odd the spectrum of the
XY Heisenberg spin ring in the subspace with=0
is reduced to the model of noninteracting spinless
fermion system. The reduced Hamiltonian consists
of two parts Hf? = J/2 N (a a;y+1 + h.c) and
HXL = /2N COS(Zm/N)(al. ai+1 + h.c), writ-
ten respectively in terms of the spinless fermion oper-
atora;r at ith site. Ink-space, by using the discrete

Fourier transformations| = 1/v/N YV o expliki),
(k=27n/N,n=0,+1,+2, ..., +(N/2— 1), N/2),
they can be re-written as

Hé‘y =J Zcoska,:rak
k
and
J s T T
Xy —iZ t
Hadd = E Z[e‘ Iy COS<k+ N)dkak_i_% + hCi|

k
(8)
The physics of the above Hamiltonian is quite ob-
vious. The additional Hamiltonia# X} describes an
N-site chain system with nearest neighbor hopping in
k space. Notice that the-dependent hopping integral
o cogk + ;) vanishes at points = +k s, wherek y =
/2 —m/N is the “Fermi point” (surface) for the one-
dimensional half-filled spinless fermion mod&j".

linear combinations ot/ and H}. Here we only
consider the simplest cage” HYY + HXY, that
is
—2]2c052< )(a ai+1+h.c). (9)

When N /2 is even, theXY model is also equivalent
to the hardcore boson system. But we cannot get the
same analytical result as that in the case of odd number
of N/2. Although numerical results for smaV-site
system show that the same conclusion is also true, we
cannot give an exact proof at present stage. Anyway,
this sample implies that the factorr2/N is a charac-
teristic groundstate property for the spin ring system.

Finally we turn to the isotropic case, i.ed,= 1, in
which the Hamiltonians read d% = J Zf.v S-S
and Haga= J Y.V cos27i/N)S; - Si11. Correspond-
ingly we have

H= Ho+Hadd—2JZcos’-( )S, Si+1. (10)

ForJ < 0, itis easy to find that the ground stateghf
and H are both saturated ferromagnetic with the same
eigen energyV J /4. The saturated ferromagnetic state
is also the eigenstate éf;qq with zero eigenvalue.

For J > 0, the saturated ferromagnetic state is also
the common eigenstate dfy, Hagg and H. So part
of the exact conclusion obtained withY model can
be extended to the isotropic antiferromagnetic Heisen-
berg spin ring trivially. For the ground state, we cannot
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Table 1 1.0} = —#—N=20| | o —=—N=20
The differences of groundstate energies and the overlaps of cor- A W < I
responding eigenfunctions of the Hamiltoni&h and Hg for the 0.9} \/.\_
N-site systems obtained by exact diagonalization. It shows thatthe " \,\ h\
ground states of the two Hamiltonians are approximately identical 5 0.8} \. \_
N e

N AE Overla] o \

p [TT] 0.7 | .\ .7=\/ \\(l\
12 25x 1075 0.999988 8 \. o
14 26x 1075 0.999983 0.6t .\ \ / N
16 25x107° 0.999978 " IS
18 24x107° 0.999974 0.5 (a) (b) oW
20 23x 1075 0.999971 “u
22 22x107° 0.999967 04— .. e
2 20 x 105 0.999964 0246 8100 2 4 6 8 10

n

- . Fig. 3. The overlaps between the groundstate wavefunctiot,of
get S|m|lz_ar ana_lytlcal result as that XY model. In and Hagq with the coupling strengttl; = J (1 + 0.5 cog2nri/N))
order to investigate the relation between the ground (a) andJ; = J(1+ 0.95co§2n7i/N)) (b) for N = 20, 18 and 16.

states off andHy, exact diagonalization is performed It shows that only 2i/N matches the ground state of uniform cou-
to compute the groundstate energies and the overlapP!ing system.
of the two groundstate wavefunctions. Table 1 the
numerical results are listed for the systems of site num- function of zero-spin eigenstate reaches its local ex-
berN =12, 14, 16, 18, 20, 22 and 24. It shows thatthe  tremum when all coupling strengths are identical. Ap-
overlap approaches the unity, i.e., the ground states of Plying this fact tod-D cubic AF Heisenberg model, the
these two Hamiltonians are approximately identical. ~ groundstate concurrence, the measure of entanglement
The above results imply that the homogeneity of is locally maximized at the same point. Numerical cal-
couplings is not the unique optimal distribution for the ~culations are employed to investigateVasite quan-
translational invariant groundstate having maximal en- tum spin ring with cosinusoidally modulated exchange
tanglement. Now we investigate the ground states of couplings. It indicates that the homogeneity of cou-

the N-site ring systems with the coupling strength plings is not the unique optimal distribution for max-
Ji = J + J cog2nmi/N), wheren =0,1,2,..., imizing the groundstate entanglement and this modu-

N — 1. HereJ’ < J ensures/; > 0 in order to avoid lation of interactions can indeed result a longer rang
the degeneracy of the ground Statﬁgg]_ Obvi0u5|y’ entanglement. Furthermore, it also |mp||es thmﬁB/

for XY model the conclusion for ground state ob- is the characteristic factor for the isotropic Heisenberg
tained above is no longer available for 0, 1. For ring system.

isotropic Heisenberg model, a small size ring is inves-

tigated by numerical method. IRig. 3, the overlap

of the corresponding eigenfunctions are plotted. It Acknowledgements
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