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Abstract

We study the correlation function and concurrence for the eigenstates with zero spin of engineered Heisenberg m
explore the entanglement property. It is shown that the total nearest neighbor (NN) correlation function of zero-spin eig
reaches its local extremum when the coupling strength is uniform, and correspondingly the groundstate entanglemed-D
cubic AF Heisenberg model is locally maximized. Moreover, numerical calculations for aN -site quantum spin ring with cos
inusoidally modulated exchange coupling, i.e.,Ji = J (1 + cos(2πi/N)), indicate that the uniform coupling is not the uniq
optimal distribution for maximizing the groundstate entanglement and this modulation of interactions can induce th
range entanglement.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Studies of various quantum spin models are v
important in understanding the properties of realis
solid state systems. Numerical and analytical stud
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have shown that the groundstate properties are s
tive to the geometry of the lattice[1–5] and the distrib-
ution of the exchange couplings between two neigh
spins [6–9]. Although much effort has already bee
made to investigate the properties of the ground s
the exact result about it is still rare. For instan
a spin-1/2 Heisenberg ring is one of the nontrivia
relatively simple physical systems. It was the fi
one-dimensional quantum model solved exactly
a straightforward diagonalization of the Hamiltoni
.
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and has been used as a testing ground for many
oretical approaches. Bethe found the eigenvalues
eigenfunctions of the corresponding Hamiltonian[10],
but the obtained exact eigenfunctions are so com
cated that they are almost useless for calculating s
physical quantities, such as something relevant to
relation functions, to reveal all the characteristic pro
erties of the ground state. Recently, quantum entan
ment was proposed as a new type of physical resou
which is desired to depict the features of the grou
state, like the correlation function or other conser
tive quantities. It was found that the ground state of
AF Heisenberg ring possesses maximal entanglem
compared to that of excited states[11] and the entan
glement is believed to have something to do with
quantum phase transitions[12].

The present Letter explores the pairwise entan
ment of the zero-spin ground state of the Heis
berg model with certain engineered inhomogene
coupling constants. We first make a simple obs
vation that the total nearest neighbor (NN) corre
tion function of zero-spin eigenstate (with vanishi
components of total spin) is locally maximized f
the uniformly distributed coupling strengths, wh
the groundstate entanglement of thed-D cubic an-
tiferromagnetic (AF) Heisenberg model can loca
maximize in this case, correspondingly. However,
uniform distribution of coupling constants is not t
unique optimal one for maximizing the groundsta
entanglement in the case with engineered coup
constants. Namely, the homogeneity of couplings
only the sufficient conditions rather than a nec
sary condition in maximizing the groundstate ent
glement. To demonstrate this point of view, we stu
theN -site ring system with cosinusoidally modulat
exchange coupling, i.e.,Ji = J (1 + cos(2πi/N)) in
both analytical and numerical approaches. We disc
ered that the ground state with varying couplingsJi

and that with the fixed couplingJ are nearly identical

2. Maximization of the groundstate entanglement

The HamiltonianH = ∑
〈ij〉 Jij Si · Sj of Heisen-

berg spin model can be written in terms of the s
operatorSi at ith site, whereJij is the coupling con-
stant of exchange interaction, which is trivially r
stricted to benonzero in this Letter. Our studies wil
,

focus on those states with vanishing component
total spin, or called the zero spin states. In this se
the relationship between correlation and concurre
has been well established[13]. To describe the behav
ior of correlation one can define the nearest neigh
(NN) correlation function

(1)F0(Jij ) = 1

N

∑
〈ij〉

〈Si · Sj 〉0,

for the eigenstate|ψ0〉 with zero spin. The sandwic
〈Si · Sj 〉0 = 〈ψ0|Si · Sj |ψ0〉 is defined as the ex
pectation value ofSi · Sj in the zero-spin eigensta
|ψ0〉. Formally, it is proportional to the average of t
Hamiltonian by assuming the identical coupling co
stants. What we concern is theJij -dependent behavio
of the correlation function, which can be characteriz
by theextremum of F0(Jij ).

Now, for a zero-spin eigenstate, we show t
F0(Jij ) can reach its extremum when all the exchan
constants are identical,Jij = J , if F0(Jij ) is analytical
at this point. Actually, the eigen energy can be writ
as

(2)E0 = 〈H 〉0 =
∑
〈ij〉

Jij 〈Si · Sj 〉0.

Differentiating the above equation with respect to
arbitrary coupling strengthJkl , one can get∂E0/

∂Jkl = ∑
〈ij〉 Jij ∂〈Si · Sj 〉0/∂Jkl + 〈Sk · Sl〉0. On the

other hand, together with the Feynman–Hellman th
rem

(3)
∂E0

∂Jkl

=
〈

∂H

∂Jkl

〉
0
= 〈Sk · Sl〉0

it indicates that
∑

〈ij〉 Jij ∂〈Si · Sj 〉0/∂Jlk = 0. Obvi-
ously, when all the coupling strengthsJij = J , we get
∂F0/∂Jij = 0, which means thatF0 has an extremum
for the uniform coupling strength. Notice that this co
clusion is always true no matter the system is bipar
or nonbipartite lattice and the state is ground state
excited state. However,Jij = J may not be the uniqu
distribution forF0 to reach the extremum. We will fin
that there may exist a periodic coupling strength dis
bution in 1-D system which induces the same grou
state approximately as that with uniform coupling d
tribution.

Now we apply the above conclusion to the bip
tite lattice with J > 0 and N = N , whereN ,
ij A B A
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NB are the numbers of the sites belonging to s
latticesA andB. According to Lieb’s theorem[14],
the ground state is singlet and hasS = 0, which en-
sures thatFg reaches its minimumFg(1) = Eg/N at
the pointJij = 1, where the zero-spin state|ψ0〉 is
replaced by the ground state|g〉. Furthermore, we con
sider the groundstate entanglement for the AF Heis
berg model on ad-D cubic lattice with translationa
symmetry in all directions. Here the symmetry sp
ifies thegeometry of the lattice only, i.e., the Hamil
tonian may not have the translational symmetry. Si
the upper bound ofEg is −∑

〈ij〉 1/4 in the vicinity
of the pointJij = 1, we have the inequalityFg(1) <

−(1/N)
∑

〈ij〉 1/4 from 〈Si · Sj 〉g < −1/4. On the
other hand, the pairwise concurrence for such sys
is Cg = (1/2)max{−(4/N)

∑
〈ij〉(〈Si ·Sj 〉g −1),0} =

(1/2)max{−[4Fg(1) + (1/N)
∑

〈ij〉 1],0} [13], or

(4)Cg = −1

2

[
4Fg(1) + M

N

]
,

which maximizes in the vicinity of the pointJij = 1,
whereM = ∑

〈ij〉 1 is the link numbers. Therefore w
get the conclusion that the ground state has loc
maximal pairwise entanglement when the excha
interactions distribute uniformly. A similar conclusio
has been obtained for theXXZ model at the isotropic
point [15,16].

Notice that the above statement does not mean
the concurrence is the maximum in the whole rang
coupling constants, but just in the vicinity of the un
form point. In order to illustrate this, we investigate
simple spin model, the AF Heisenberg ring with alt
native coupling constant. The Hamiltonian ofN -site
ring is

(5)H =
∑
i∈odd

Si · Si+1 +
∑

i∈even

JSi · Si+1.

It is well known that the value of the NN pairwis
concurrence is 0.386 for J = 1 [13]. On the other
hand, in the limit cases ofJ = 0 and ∞, the ex-
act ground states areφ1 = [12][34] . . . [N − 1N ], and
φ2 = [23][45] . . . [N1], respectively, where[ij ] de-
notes a resonant valence bond (RVB) of two sp
located at the lattice sitesi and j [17]. Both φ1 and
φ2 has a same concurrence 0.5, which is larger than
that of the state at uniform point. This demonstra
that the concurrence is not the maximum in the wh
Fig. 1. The groundstate concurrences vs the coupling strength fo
alternative Heisenberg ring systems withN = 8 (circle), 10 (solid
circle) and 12 (solid line). It shows that the uniform coupling po
is the local maximum.

range of coupling constants. The groundstate con
rences for small systems withN = 8,10 and 12 are
calculated by exact diagonalization method and p
ted in Fig. 1. It indicates that the concurrences tak
its local maximum at the uniform point.

3. Cosinusoidally modulated systems

As mentioned in advance, the uniform system m
not be the unique optimal one possessing a max
groundstate entanglement. A simplest case is that t
may exist a model with nonuniform coupling streng
distribution, which has the same ground state as
of the uniform one. We now show this observation
theXY spin ring exactly and theXXX spin ring ap-
proximately.

We consider the two cases of spin-1/2 Heisenberg
model with the anisotropy parameter∆ = 0,1 on an
N -site ring. With the cosinusoidally modulated e
change couplings, i.e.,Ji = J (1 + cos(2πi/N)), the
HamiltonianH = H0+Haddcan be separated into tw
parts

(6)H0 = J

N∑
i

(
Sx

i Sx
i+1 + S

y
i S

y

i+1 + ∆Sz
i S

z
i+1

)
,
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Fig. 2. Schematic illustration of cosinusoidally modulated (a) a
uniform (b) NN coupling spin ring systems. The two most separa
sites in (a) is the nearest neighbor in (b).

and

(7)

Hadd= J

N∑
i

cos

(
2πi

N

)

× (
Sx

i Sx
i+1 + S

y
i S

y

i+1 + ∆Sz
i S

z
i+1

)
,

where 2πi/N is a factor to determine the profile o
the additional Hamiltonian.H was a pure toy mode
before the array of quantum dots is considered a
media to transfer the quantum states[7,8,18]. In Fig. 2
H and H0 are illustrated schematically. We will se
thatHadd has a subtle relation withH0 in their ground
states.

The simplest case∆ = 0 is first considered as th
so-calledXY model or the hardcore boson model.
is well known that ifN/2 is odd the spectrum of th
XY Heisenberg spin ring in the subspace withSz = 0
is reduced to the model of noninteracting spinl
fermion system. The reduced Hamiltonian cons
of two partsHXY

0 = (J/2)
∑N

i (a
†
i ai+1 + h.c.) and

HXY
add = (J/2)

∑N
i cos(2πi/N)(a

†
i ai+1 + h.c.), writ-

ten respectively in terms of the spinless fermion op
ator a

†
i at ith site. In k-space, by using the discre

Fourier transformationa†
l = 1/

√
N

∑N
l a

†
k exp(ikl),

(k = 2πn/N,n = 0,±1,±2, . . . ,±(N/2 − 1),N/2),
they can be re-written as

HXY
0 = J

∑
k

coska
†
kak

and

(8)

HXY
add = J

2

∑
k

[
e−i π

N cos

(
k + π

N

)
a

†
kak+ 2π

N
+ h.c.

]
.

The physics of the above Hamiltonian is quite o
vious. The additional HamiltonianHXY

add describes an
N -site chain system with nearest neighbor hopping
k space. Notice that thek-dependent hopping integr
∝ cos(k+ π

N
) vanishes at pointsk = ±kf , wherekf =

π/2− π/N is the “Fermi point” (surface) for the one
dimensional half-filled spinless fermion modelHXY .
0
It is easy to find that the particles are confined eit
in the regions|k| � kf or |k| > kf . Actually, it is easy
to prove that the particle number in the region|k| � kf

(or |k| > kf ) is a good quantum number forHXY
add, i.e.,

[n,HXY
add] = 0, wheren = ∑

k∈{|k|�kf } a
†
kak .

Obviously, there are only four eigenstates ofHXY
0

with zero eigenvalues: the groundstate|ψXY
g 〉 =∏

|k|�kf
a

†
k |0〉 and the eigenstate |ψXY

max〉 =∏
|k|>kf

a
†
k |0〉 of HXY

0 with maximum eigenvalue
These two states indicate that the two regions ink-
space separated by Fermi points are fully filled,
spectively. If all thek-space is fully filled or empty
one can get other two eigenstates|ψFM〉, being the sat-
urated ferromagnetic states with all spin up or dow
These four eigenstates are also the eigenstates o
linear combinations ofHXY

0 andHXY
add. Here we only

consider the simplest caseHXY = HXY
0 + HXY

add, that
is

(9)HXY = 2J

N∑
i

cos2
(

πi

N

)(
a

†
i ai+1 + h.c.

)
.

WhenN/2 is even, theXY model is also equivalen
to the hardcore boson system. But we cannot get
same analytical result as that in the case of odd num
of N/2. Although numerical results for smallN -site
system show that the same conclusion is also true
cannot give an exact proof at present stage. Anyw
this sample implies that the factor 2πi/N is a charac-
teristic groundstate property for the spin ring syste

Finally we turn to the isotropic case, i.e.,∆ = 1, in
which the Hamiltonians read asH0 = J

∑N
i Si · Si+1

andHadd= J
∑N

i cos(2πi/N)Si · Si+1. Correspond-
ingly we have

(10)H = H0 + Hadd= 2J

N∑
i

cos2
(

πi

N

)
Si · Si+1.

ForJ < 0, it is easy to find that the ground states ofH0
andH are both saturated ferromagnetic with the sa
eigen energyNJ/4. The saturated ferromagnetic sta
is also the eigenstate ofHadd with zero eigenvalue.

For J > 0, the saturated ferromagnetic state is a
the common eigenstate ofH0, Hadd and H . So part
of the exact conclusion obtained withXY model can
be extended to the isotropic antiferromagnetic Heis
berg spin ring trivially. For the ground state, we can
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Table 1
The differences of groundstate energies and the overlaps of
responding eigenfunctions of the HamiltonianH and H0 for the
N -site systems obtained by exact diagonalization. It shows tha
ground states of the two Hamiltonians are approximately identic

N �E Overlap

12 2.5× 10−5 0.999988
14 2.6× 10−5 0.999983
16 2.5× 10−5 0.999978
18 2.4× 10−5 0.999974
20 2.3× 10−5 0.999971
22 2.2× 10−5 0.999967
24 2.0× 10−5 0.999964

get similar analytical result as that inXY model. In
order to investigate the relation between the gro
states ofH andH0, exact diagonalization is performe
to compute the groundstate energies and the ove
of the two groundstate wavefunctions. InTable 1, the
numerical results are listed for the systems of site n
berN = 12,14,16,18,20,22 and 24. It shows that th
overlap approaches the unity, i.e., the ground state
these two Hamiltonians are approximately identica

The above results imply that the homogeneity
couplings is not the unique optimal distribution for t
translational invariant groundstate having maximal
tanglement. Now we investigate the ground state
the N -site ring systems with the coupling streng
Ji = J + J ′ cos(2nπi/N), where n = 0,1,2, . . . ,

N − 1. HereJ ′ < J ensuresJi > 0 in order to avoid
the degeneracy of the ground states[14]. Obviously,
for XY model the conclusion for ground state o
tained above is no longer available forn 	= 0,1. For
isotropic Heisenberg model, a small size ring is inv
tigated by numerical method. InFig. 3, the overlap
of the corresponding eigenfunctions are plotted
shows that 2π/N is the characteristic factor for th
isotropic Heisenberg ring system. On the other ha
from Fig. 2we can see that the concurrence of spin
the two ends of a modulated chain should be clos
that of NN spins on a uniform ring.

4. Summary

In summary, the correlation and entanglement
the zero-spin eigenstates of the Heisenberg mo
are studied. We find that the total NN correlati
Fig. 3. The overlaps between the groundstate wavefunctions oH0
andHadd with the coupling strengthJi = J (1+ 0.5cos(2nπi/N))

(a) andJi = J (1 + 0.95cos(2nπi/N)) (b) for N = 20, 18 and 16.
It shows that only 2πi/N matches the ground state of uniform co
pling system.

function of zero-spin eigenstate reaches its local
tremum when all coupling strengths are identical. A
plying this fact tod-D cubic AF Heisenberg model, th
groundstate concurrence, the measure of entangle
is locally maximized at the same point. Numerical c
culations are employed to investigate aN -site quan-
tum spin ring with cosinusoidally modulated exchan
couplings. It indicates that the homogeneity of co
plings is not the unique optimal distribution for ma
imizing the groundstate entanglement and this mo
lation of interactions can indeed result a longer ra
entanglement. Furthermore, it also implies that 2π/N

is the characteristic factor for the isotropic Heisenb
ring system.
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