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Abstract
We study the energy level structure and quantum dynamics for a cavity optomechanical system
assisted by a single atom. It is found that a triple coupling involving a photon, a phonon and an
atom cannot be described only by the quasi-orbital angular momentum at frequency resonance,
there also exists the phenomenon of parameter resonance, namely, when the system
parameters are matched in some way, the evolution of the end mirror of the cavity is
conditioned by the dressed states of the photon–atom subsystem. The quantum decoherence
due to this conditional dynamics is studied in detail. In the quasi-classical limit of very large
angular momentum, this system will behave like a standard cavity-QED system described by
the Jaynes–Cummings (J–C) model when the angular momentum operators are transformed to
bosonic operators of a single mode. We test this observation with an experimentally accessible
parameter.

1. Introduction

Nowadays, there is an increasing number of researches
on cavity optomechanical systems assisted by atoms or
atomic ensembles [1–3]. Such hybrid systems show
a convergence between quantum optics and nano(micro)-
mechanical systems. Furthermore, novel quantum natures
are discovered in this composite system by placing atoms
confined in a gas chamber inside the cavity. With the help
of the atoms, theoretical explorations have been made to show
the possibilities to create not only the entanglement between
the cavity field and a macroscopical object [4–7], i.e., a mirror,
but also the entanglement of an atom and a light mirror [1,3].

In this paper, we will further study this atom-assisted
optomechanical (AAOPM) system with the strong coupling of
a single atom to the photon field inside the cavity, which is
modified by the moving end mirror of the cavity (see figure 1).
A three-body coupling term of a photon, a phonon and an
atom will play the crucial role in the quantum dynamics
of the triple system. This triple coupling was also given
in [8], where the authors studied the effect of this term on
the atomic population evolution. Our present emphasis is
placed on the different physical phenomena due to this triple

coupling. For example, the parametric resonance happens
as a matching condition concerning the frequencies and the
coupling strength. The present investigation substantially
consolidates our previous series studies (see [3], for example)
on quantum optomechanics with this finding about triple
coupling.

The triple system we will refer to contains a two-level
system interacting with a single-mode electromagnetic field
inside the cavity with an oscillating mirror. We emphasize the
case that the atom is fixed in the cavity. In this case, we can use
an artificial atom (such as SQUIDs [9]) as the two-level system,
then the motion of the mass-center of the atom can be ignored,
and the strong coupling region can be reached easily. Due
to the vibration of the cavity length, which is conventionally
thought to induce the radiation pressure term [7,10–12], we
illustrate that the vibrating length can also result in the triple
coupling term of the photon, atom and mirror, and the triple
coupling cannot be neglected in the strong coupling region.
When the parameters of the system, i.e., the frequencies and
the coupling strengths, are matched in some way, namely,
they satisfy the so-called parametric resonance condition, we
can exactly diagonalize the Hamiltonian. In this case, the
evolution of the end mirror is determined by the conditional
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Figure 1. The schematic of the atom-assisted optomechanical
(AAOPM) system. It contains an optical cavity ended with a fixed
mirror A and a slightly moving mirror B which is attached to a
spring. Inside the cavity there is a two-level atom.

Hamiltonian concerning different dressed states of the photon–
atom subsystem. We consider how the mirror’s oscillation
affects the cavity-QED subsystem, by studying the quantum
decoherence [13] of this subsystem.

The above condition for exact solution seems too special
to be realized, thus we subsequently consider a more general
case with the rotating-wave approximation, which loses the
requirement for exact solution to a set of matching frequencies
only, among the atom, the cavity field and the mirror. In
this case, our model is reduced to the generalized spin–orbit
coupling model where the spin is referred to as the internal
energy level of the atom, while the orbit is depicted by
the quasi-orbital angular momentum defined by two bosonic
modes (the mirror oscillation and the single-mode photon of
the cavity) through the Jordan–Schwinger representation.

It is well known that the quantum system with a large
angular momentum L can be regarded as a classical rotor
when the angular momentum approaches infinity in the
classical limit [15] because the component variations �Jx ,
�Jy and �Jz become vanishingly small in comparison with
the large angular momentum L. When the angular momentum
is large enough, but not infinite, the ladder operators of any
large angular momentum can behave as the creation and
annihilation operators of a single-mode boson [16,17]. This
point can be seen from the Holstein–Primakoff transformation
straightforwardly. This case is named the quasi-classical limit
and its significance in many-body physics can be understood
as the low-energy excitation above the ordered ground states.
This quasi-classical reduction of large angular momentum has
extensively been studied and applied in quantum storage [18–
20]. Here, we study this quasi-classical reduction in this triple
system. When the frequency resonance condition is satisfied,
our triple system is modelled by the generalized spin–orbit
coupling similar to the Hamiltonian for the Paschen–Back
effect without the radial dependence [21]. This observation
means that the triple coupling system will be reduced to a
two-part coupling system described by the Jaynes–Cummings
(J–C) model in cavity QED. Finally, we show this quasi-
classical reduction indeed works well when the hybrid
excitation of the mirror plus photon is large enough.

The paper is organized as follows. In section 2, we model
the AAOPM coupling and reduce it to the generalized spin–
orbit coupling under the frequency matching condition. In
section 3, we exactly solve the AAOPM model under the
parametric resonance condition and show the decoherence in
section 4. In section 5, we compare the generalized spin–orbit
coupling model with the J–C model by their eigenstates and
eigenvalues. Furthermore, in section 6, we study the dynamics
of the generalized spin–orbit coupling model to demonstrate
its similarities to and differences from that of the J–C model.
In section 7, we summarize our results.

2. Triple coupling of the atom, photon and mirror,
and its quasi-orbital description

In this section, we study an experimentally accessible AAOPM
system, as illustrated in figure 1. This system consists of
three parts: an atom (actually an artificial atom such as the
Cooper pair box), photons inside a cavity, and a movable end
mirror. As one of the central results, it will be proved that
such a hybrid system can be modelled by a spin–orbit coupling
system, where the orbital angular momenta are realized by the
phonon of the mirror dressed by the photon of the light field
inside the cavity. In certain situations, this model has even
been studied by us [3] and others [1]. But in this paper, we
will emphasize the different emerging phenomena due to the
triple interaction in the strong coupling region.

The single-mode electric field inside the cavity along the
x-axis is quantized as

E(x0) = εa sin kx0 + h.c., (1)

where x0 is the position of the atomic center of mass, ε =√
ω0/ε0V , and a is the annihilation operator of the oscillating

mode of the cavity field. The frequency of the cavity field
is dependent on the cavity length, ω0 = k = 2π/l0, ε0 is
the dielectric constant in vacuum, l0 and V are the length
and the volume of the cavity, respectively. Here, we omit
the polarization of the field, but this will not affect our final
conclusion for a practical system. When the length of the
cavity slightly changes from l0 to l0 + x due to the mirror’s
displacement x (see figure 2), the electric field becomes

E(x0) ≈ εa sin kx0 − η′xa + h.c., (2)

where η′ = (sin kx0 + kx0 cos kx0)ε/ l (see the appendix).
As we mentioned in the introduction, we need not consider

the motion of the atom when we can use the artificial atom,
such as the Cooper pair box or other superconducting qubit,
as the two-level system. Then, the total Hamiltonian reads

H = 2π

l
a†a + ωMb†b + ωeSz − [μE(x0)S+ + h.c.]

≈ ω0a
†a + ωMb†b − ξ

(
b + b†)a†a + ωeSz

+
[
gaS+ + η

(
b + b†)aS+ + h.c.

]
, (3)

where b† is the creation operator of the oscillating mode
of the mirror, Sz, S+ and S− are the spin operators, which
represent the transitions among the atomic inner states, and
ωe is the difference between the energy levels of the two
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Figure 2. Schematic of the origin of the triple coupling. When the
length of the cavity oscillates, besides the light pressure term, the
displacement of the mirror will affect the coupling strength between
the atom and the light. The triple coupling term appears with this.

atomic inner states. g = −με sin kx0 is the atomic-position-
dependent coupling strength between the cavity field and the
atom, where μ is the electric-dipole transition matrix element.
ξ = ω0/l0

√
2MωM describes the radiation pressure, where

ωM is the frequency of the mirror’s oscillation, and M is the
mass of the mirror, while η = η′μ/

√
2MωM denotes the

coupling strength of the ‘three bodies’ due to the vibration of
the mirror. Here, we have expanded the first and last two terms
of the first line in equation (3) to the first order of x/l0, just
as we do in the appendix, and we have applied the rotating-
wave approximation to neglect the terms containing aS− and
its Hermitian conjugate.

With experimentally feasible parameters, there exists the
situation where η is of the same order of magnitude as ξ ,
for which the strong coupling region [23–25] is reached
(e.g., g = ω0 = 1015 Hz and kx0 = π/2, then η = −ξ ).
We note that this strong coupling region can be reached in
current experiments [25] in semiconductor quantum wells,
where Plumridge et al used a semiconductor-based quantum
metamaterial as a collection of artificial atoms and found that
the coupling between the light and the artificial atom can reach
the ‘ultra-strong-coupling’ region. In this region, the coupling
strength and the frequency of the light are comparable. In
this case, i.e., when the coupling strength is so strong that it
is comparable with the cavity frequency, the triple coupling
term,

VT = η
(
b + b†)a |e〉 〈g| + h.c., (4)

should not be neglected. In the following discussion, we focus
on this strong coupling case.

It follows from the Hamiltonian in equation (3) that, when
sin kx0 → 0, i.e., g → 0, the J–C type interaction gaS+ + h.c.
vanishes, but the three-body interaction remains. Near the
photon–phonon resonance case where the frequencies satisfy
ωe + ωM − ω0 ≈ 0, the rotating-wave approximation reduces
the Hamiltonian to

HRWA = ω0a
†a + ωMb†b + ωeSz + η

(
b†aS+ + h.c.

)
. (5)

In the following discussions, we invoke the Jordan–Schwinger
representation of the SO(3) group [22]:

L+ = a†b, L− = ab†, Lz = 1

2

(
a†a − b†b

)
, (6a)

where the commutation relations of the angular momenta

[L+, L−] = 2Lz, [Lz,L+] = L+, [Lz,L−] = −L−
(6b)

are satisfied due to the generic commutation relations between
the bosonic operators a and b. Then, the Hamiltonian can be
rewritten as

HRWA = 	N + κLz + ωeSz + η(L−S+ + L+S−), (7)

where N = a†a + b†b, 	 = (ω0 + ωM)/2 and κ = ω0 − ωM .
We remark that the three-body interaction in the AAOPM

system can be approximately modelled with the x–y coupling:

η(L−S+ + L+S−) = 2η
(
LxSx + LySy

)
. (8)

This is a kind of ‘spin–orbit coupling’ referred to as the
Paschen–Back effect [21]. The ‘orbital’ angular momentum
defined by L± and Lz essentially results from the joint
excitation of the photon and the phonon. Physically, this
excitation can be understood as a kind of effective mechanical
oscillation of the mirror, which is dressed by the single-mode
photon. Such kinds of dressed bosons satisfy the angular
momentum algebra.

3. Parametric resonance

In this section, we show the parametric resonance phenomenon
results in a conditional dynamics of the triple coupling system.
Namely, when the parameters of the system are matched
in some way, the cavity-QED subsystem is confined in the
subspace with total excitations so that its state determines
time evolution of the end mirror.

Now let us temporarily leave the above concrete system
to consider a more general spin–boson system with the
Hamiltonian of the form

HSP = h
(
b, b†) + W

(
S; b, b†), (9)

where h
(
b, b†) is a function that only depends on the boson

model, and W
(
S; b, b†) is spin dependent where S represents

the spin variable. There is a seemingly trivial proposition for
this spin–boson system: if the system parameters are matched
so that the coupling can be factorized as

W
(
S; b, b†) = f

(
b, b†)M(S), (10)

with f
(
b, b†) (M(S)) depending on the boson (spin) only, then

HSP can be exactly diagonalized through the diagonalizations
of the two pure boson systems with branch Hamiltonians

H±
SP = h

(
b, b†) + λ±f

(
b, b†), (11)

where λ+ and λ− are the eigenvalues of the C-number
coefficient matrix M(S) in the basis {|+〉 , |−〉} which make
M(S) diagonalized. The proof of the above observation is
rather straightforward and we only need to diagonalize M(S)

first. Essentially, equations (9) and (11) describe a conditional
dynamics determined by the conditional Hamiltonian H

(+)
SP

or H
(−)
SP which is the diagonal element of HSP in the basis

{|+〉 , |−〉}.
Next, we return to the concrete example. From equation

(3), obviously the particle number operator N = a†a + Sz

is conserved, i.e., [N,H ] = 0. Then, in the subspace
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{|na + 1, g〉 , |na, e〉}, |na, g(e)〉 denotes that the photon is
prepared in a Fock state |na〉 while the atom in the ground
(excited) state. We consider the situation in which the
eigenequation of the Hamiltonian in equation (3) can be solved
exactly. To this end, we first show that the Hamiltonian is
formally expanded as follows:

Hna
= h

(
b, b†) + H ′

na
, (12)

where

h
(
b, b†) = ωe + ω0na + ωMb†b − ξna

(
b + b†) (13)

and

H ′
na

=
√

na + 1

⎛
⎝ �−ξ(b+b†)√

na+1
g − η

(
b + b†)

g − η
(
b + b†) 0

⎞
⎠ . (14)

In equation (14), � = ω0 − ωe is the atom–photon detuning.
The above argument shows that in the subspace the total system
can be reduced to a spin–boson model defined by equations
(12)–(14).

We explore the condition when H ′
na

can be factorized to
f

(
b, b†)Mna

, where f
(
b, b†) is a function of b and b†, and

Mna
is a C-number matrix. Actually, when the detuning �

and the three coupling coefficients satisfy the relation

gξ = �η, (15)

which we call the parametric resonance, the Hamiltonian
indeed becomes the form of equation (10):

Hna
= h

(
b, b†) + f

(
b, b†)Mna

, (16)

where

f
(
b, b†) = � − ξ

(
b + b†), (17)

and

Mna
=

(
1

√
na + 1η/ξ

√
na + 1η/ξ 0

)
. (18)

Thus, to diagonalize the Hamiltonian Hna
, all we need to

do is to diagonalize the matrix Mna
and the left quadratic part

formed by b and b†. Then, the eigenvalues of H are obtained
as

Ej,na,nb
= ω0

(
na +

1

2

)
+

1

2
ωe +

(−)j

2
Rna

�

+ nbωM − α2
jna

, (19a)

for j = 1, 2, where

Rna
=

√
1 +

4η2(na + 1)

ξ 2
, (19b)

and

αjna
= ξ

2ωM

(
2na + (−)j Rna

+ 1
)
. (19c)

Here, na (nb) represents the quantum number of the photons
(phonons). Correspondingly, the eigenstates of the AAOPM
system are |jna〉 ⊗ |nb〉

jna
, where the photon dressed states

|1na〉 = cos θna
|na + 1, g〉 + sin θna

|na, e〉 , (20a)

and

|2na〉 = − sin θna
|na + 1, g〉 + cos θna

|na, e〉 , (20b)

are defined by the mixing angle θna
:

tan θna
= 2η

√
na + 1

ξ − ξRna

, (21)

while the mirror’s states |nb〉
jna

are

|nb〉
jna

= 1√
nb!

(
b† − αjna

)nb
Db

(
αjna

) |0〉 , (22)

with the displacement operator Db

(
αjna

) =
exp

[
αjna

(
b† − b

)]
.

If ξ = η = 0, the AAOPM coupling model reduces
back to the J–C model, and the eigenvalues, together with the
eigenstates, degenerate to that of the J–C model. However, due
to the vibration of the mirror, there emerge fruitful results in
our model due to the complex three-body coupling. First, we
examine the realization of the parametric resonance condition,
equation (15), in experiments [25, 27, 28]. Substituting
the experimental feasible parameters into the parametric
resonance condition, we know that it is easily satisfied if the
detuning � is adjusted properly to adapt to different positions
of the atom. In experiments, ξ and η can reach 105 Hz, while g
is on the order of 1015 Hz, thus � can be on any order that lies
on the atomic position. In the special case when sin kx0 = 0,
i.e., g = 0, � = 0 is sufficient to meet the condition in
equation (15).

It is observed from equation (19a) that the terms in the
second line obviously differ from the eigenvalues of the J–
C model. The first term is the mirror’s eigenvalue, and the
second one (without the sign) is expanded as

ξ 2n2
a

ωM

+
ξ 2

4ωM

(
4na + (−)j Rna

+ 1
) (

(−)j Rna
+ 1

)
, (23)

where the first term ξ 2n2
a/ωM describes the energy of the

light pressure term ξ
(
b + b†) a†a [6,26], but the left terms

are induced by the AAOPM coupling.

4. Conditional dynamics for decoherence

In this section, we demonstrate that the parametric resonance
will lead to a conditional dynamics with respect to two
superpositions of atomic inner states |+〉 and |−〉, which is
described by a non-demolition Hamiltonian.

From the above argument about the exact solvability of
the AAOPM system, we can find that the operator-valued
Hamiltonian matrix

H =
[
H

(+)
SP 0
0 H

(−)
SP

]
(24)

is diagonalized with respect to the bases {|+〉 , |−〉} for the
spin part. Obviously, this is a non-demolition Hamiltonian
with respect to the basis vectors |+〉 and |−〉 ,and thus results
in the corresponding decoherence.

Driven by this non-demolition Hamiltonian, the factorized
initial state for the cavity-QED system

|ψ(0)〉 = (C+ |+〉 + C− |−〉) ⊗ |ϕ〉 (25)

will evolve into an entanglement state

|ψ(t)〉 = C+ |+〉 |ϕ+ (t)〉 + C− |−〉 |ϕ− (t)〉 , (26)

4
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where

|ϕ±(t)〉 = e−iH(±)
SP t |ϕ〉 ,

and the extent of decoherence due to this quantum
entanglement is characterized by the so-called decoherence
factor

D(t) = 〈ϕ+ (t) |ϕ− (t)〉
= Tr

(
ρ(0)eiH(+)

SP te−iH(−)
SP t

)
, (27)

and its norm square L (t) = |D (t)|2 is the so-called Loschmidt
echo (LE)[14].

In the context of quantum chaos, the LE characterizes the
sensitivity of evolution of the quantum system in comparison
with the butterfly effect in classical chaos: starting from the
same initial state, the quantum system is separately driven by
two slight different Hamiltonians. Quantum chaos is implied
by the much larger differences in the two corresponding final
states; namely, their overlap (LE) vanishes to illustrate the
dynamical sensitivity of the quantum chaos system.

Next we return to the concrete system.
Consider the time evolution of the system when the initial

state is as follows:

ψ (0) =
∑
j,na

λjna
|jna〉 ⊗ |β〉b , (28)

where |β〉b is a coherent state of a phonon that satisfies

b |β〉b = β |β〉b , (29)

|jna〉, j = 1, 2, is the dressed state mentioned in the last
section, and λjna

is the weight of each dressed state. Therefore,
at time t the wavefunction of the total system is

ψ (t) =
∑
j,na

λjna
|jna〉 ⊗ e−jC

jna
t
∣∣(β − αjna

)
e−jωMt + αjna

〉
b

(30)

where

C
jna

= 1

2
ωe + ω0

(
na +

1

2

)
+

(−)j

2
Rna

�

− ξ 2

4ωM

(
2na + (−)j Rna

+ 1
)2

. (31)

The mirror’s motion will result in the collapse of the
decoherence, with the LE being

LEj1,j2
na ,ma

= ∣∣
b 〈β| eiHj2na te−iHj1ma t |β〉b

∣∣2

= exp
[
2
(
�j1,j2

na,ma

)2
(cos ωMt − 1)

]
, (32)

where

�j1,j2
na,ma

= αina
− αjma

. (33)

We note that β does not play any role in the LE. Note that the
mirror’s initial coherent state evolves to another coherent state,
and β only determines the initial position of the center of the
wavepacket 〈x |β〉b. Thus the overlap of the two wavepackets
exp(−iHj1na

t) |β〉b and exp(−iHj2ma
t) |β〉b is independent of

β. Physically, this fact shows that the decoherence of the
cavity-QED system is irrelevant to the phonon excitations of
the mirror if its wavepacket is Gaussian.

0 5 10 15 20
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1,104
1,1
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102,103
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Figure 3. The time evolution of the Loschmidt echo (LE) with
different indices of LE as shown in the equations above, which
correspond to photon–phonon excitations.

In figure 3, for different photon–phonon excitations, we
plot the time evolution of the LE with the parameters set to
ω0 = 1015 Hz, η = 10ω0/l

√
2MωM = 10ξ , l0 = 1μm,

M = 10−10 kg, ωM = 109 Hz. From figure 3, we see that all
the curves have the same period, i.e., 2π/ωM , and the larger
the difference of the photon number |na − ma|, the larger the
amplitudes of the curve. We remark that the large photon
number means a classical electromagnetic field, and thus the
quantum decoherence of the atomic inner states reflects the
classical transition of optical field from the quantum regime.

5. Modelling frequency resonance with the
generalized Jaynes–Cummings model

In this section, we will study the relations between the J–
C model and the model above with generalized spin–orbital
coupling in the quasi-classical limit.

5.1. Jordan–Schwinger representation of the triple coupling
model

In section 2, we have derived the generalized spin–orbit
coupling model under the rotating-wave approximation, which
can be rewritten as

HRWA = 	N + κLz + ωeSz + 2η
(
	L · 	S − LzSz

)
, (34)

where κ and ωe characterize the coupling of the angular
momentum and the spin to the external field, respectively,
2η is the coupling strength of the spin–orbit.

This model can be studied by exactly diagonalizing
the model Hamiltonian in equation (34) within its invariant
subspace spanned by

|l, m, e〉 = |l, m〉 ⊗ |↑〉 (35a)

and

|l, m + 1, g〉 = |l, m + 1〉 ⊗ |↓〉 . (35b)

Here, |l, m〉 is the standard angular momentum basis, while |↑〉
and |↓〉 denote the spin-up and spin-down vectors, respectively.
In this basis, the spin–orbit coupling Hamiltonian in equation
(34) is reduced to a quasi-diagonal matrix with an 2×2 block:

Hl

RWA
= 2	l +

(
m +

1

2

)
δ +

1

2

(
δ glm

glm −δ

)
, (36)

where � = ωe − δ,and

glm = 2η
√

l (l + 1) − m (m + 1). (37)

5
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Then it can be further diagonalized to obtain the eigenvectors

|+lm〉 = cos θlm |l, m, e〉 + sin θlm |l, m + 1, g〉 (38a)

and

|−lm〉 = − sin θlm |l, m, e〉 + cos θlm |l, m + 1, g〉 , (38b)

with the corresponding eigenvalues

E±lm = 2	l +

(
m +

1

2

)
κ ± 1

2
Rlm, (39)

where tan θlm = glm/ (δ + Rlm) and Rlm =
√

g2
lm + δ2.

From the spectrum structure of the AAOPM system
described above, we demonstrate that the triple coupling
system can realize the entanglement between an orbital angular
momentum and a spin. The z-component of the total angular
momentum is conserved. Thus, while the orbital angular
momentum is flipped from down (up) to up (down), the spin
will make a reverse flip.

5.2. Quasi-classical limit

Now we can consider the quasi-classical limit of the above
spin–orbit coupling model for l large enough with low
excitation. Obviously, the above basis vector in this limit
becomes a Fock state, i.e., |l, m〉 → |n〉 , where n =
l + m, n/l � 1; while tan θlm → tan θn = gn/ (δ + Rn).
Correspondingly, the eigenstates become the dressed states in
the usual J–C model with the eigenvalues

E±lm → E±n =
(

n +
1

2

)
κ ± 1

2
Rn, i = 1, 2, (40)

where gn = 2η
√

2l (n + 1) and Rn = √
g2

n + δ2.

We remark that the system we considered in the limit
above can also be described by the J–C model:

HJ−C = κa†a + ωeSz + η
√

2l
(
aS+ + a†S−

)
. (41)

The correspondence between the Fock state |n〉 and the
standard angular momentum basis is

|n〉 ⇔ |l, l − n〉 . (42)

Actually, the above equivalence of spin–orbit coupling
model and J–C interaction can be found directly by considering
the Holstein–Primakoff mapping,

L+ = a†
√

2l − a†a, L− = L†
+, Lz = a†a − l (43)

in the large l limit.
Next we come back to the practical physics of the AAOPM

system. Then the joint states |l, m, e (g)〉 = |l, m〉 ⊗ |↑ (↓)〉
is re-expressed in terms of the two Fock states |l + m〉a and
|l − m〉b as

|l, m, e (g)〉 = |l + m〉a |l − m〉b |e (g)〉 . (44)

Here |l + m〉a and |l − m〉b represent the states with l + m
photons and l − m phonons of the mirror’s vibration mode,
respectively.

In figures 4 and 5, with different values of l and m, we
plot E±lm as functions of ωe. Here, we take the physical
parameters as ω0 = 1.9 × 1015 Hz, η = ω0/l

√
2MωM ,

l0 = 1 μm, M = 10−10 kg, ωM = 109 Hz. As shown in
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Figure 4. Schematic of the relation of the eigenvalues of the
atom–photon–mirror coupling system with the spacing frequency of
the two-level atom. Here we take m = −1, 0, 1 when l=1. Each real
line represents ε+lm while the dashed with the same color represents
ε+lm.
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Figure 5. Schematic of the lowest 5 levels when l=1000.

figures 4 and 5, when l is fixed, the spectrum diagram of the
AAOPM system looks quite like that of the J–C model’s [29].
However, in general, its number of energy levels is much more
than that in the J–C model’s within the same energy range.
Furthermore, we can see from the several lowest levels that
there exist small differences under different values of l, such
as E+,1,−1 versus E+,1000,−1000 , E−,1,0 versus E−,1000,−999 and
so on. Accordingly, the larger the value of l (the orbital angular
momentum), the closer the spectrum is to the corresponding
ones in the J–C model. For evidence, we have plotted the
curves with a much larger range of the variable ωe that is
not valid in our rotating-wave approximation that requires
|ωe − ω0| � ωM .

6. Quasi-classical dynamics

In the above sections, we have shown the similarity between
the triple hybrid system and the J–C model in their energy
spectra. Now we continue to consider this similarity in
quantum dynamics, which is referred to as the so-called quasi-
classical one as we make the analysis for very large angular
momentum.

We consider that generally the system described by the
Hamiltonian equation (34) is initially prepared in the state
represented by the density matrix

ρ (0) =
∑
ijkl

λij ;kl

∣∣ψij (0)
〉 〈ψkl (0)| , (45)

where the joint states
∣∣ψij (0)

〉 = |i〉a |j 〉b |e〉 denote the initial
factorized structure of the triple system. According to the
similarity between the generalized L–S coupling system and

6
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the triple coupling system we mentioned in the last section,
the density matrix for the time evolution reads

ρ (t) =
∑
ijkl

λij ;kl

∣∣ψij (t)
〉 〈ψkl (t)| , (46)

where the branch wavefunctions∣∣ψij (t)
〉 = e−iωij t [λe

ij (t) |i〉a |j 〉b |e〉
−λ

g

i+1,j−1 (t) |i + 1〉a |j − 1〉b |g〉], (47)

for ωij = ω0i + ωMj + δ/2, are determined by the time-
dependent parameters defined by

λe
ij (t) = cos

	ij t

2
− i cos 2φij sin

	ij t

2
, (48a)

λ
g

i+1,j−1 (t) = i sin 2φij sin
	ij t

2
, (48b)

tan φij = 2η
√

j (i + 1)

ωe − δ + 	ij

, (48c)

	ij =
√

4η2 [j (i + 1)] + (ωe − δ)2. (48d)

It is noted that the above equations (47)–(48d) have forms
similar to that for the J–C model in the limit that i/j � 1. We
remark that this limit means a low excitation of the joint system
consisting of the photon and phonon, i.e., there are only a few
photons stimulated so that the joint system is almost prepared
in the lowest weight state |l, m = −l〉. The above equations
give us rich information on the complex system, from which all
the physically relevant quantities to the cavity field, the atom
and the mirror can be obtained. In equation (47),

∣∣λe
ij

(
t
)∣∣2(∣∣λg

ij

(
t
)∣∣2)

is proportional to the probability that at time t,
there are i photons, j quanta of the mirror’s vibration mode
and one atom in the excited (ground) state. Therefore, the
probability pn (t) that n photons are measured is

pn(t) =
∑

j

λnj ;nj
(
c2

nj
(t) + cos2 2φnj s

2
nj
(t)

)

+
∣∣λn−1,j ;n−1,j

∣∣2
sin2 2φn−1,j s

2
n−1,j

(t), (49)

where c
nj
(t) = cos 	nj t/2 and s

nj
(t) = sin 	nj t/2.

Another important quantity is the population inversion
W(t) depending on the probability amplitudes λe

ij (t) and λ
g

ij (t)

as

W(t) =
∑
i,j

λij ;ij

(∣∣λe
ij (t)

∣∣2 −
∣∣∣λg

i+1,j−1(t)

∣∣∣2
)

=
∑
i,j

λij ;ij [c2
ij
(t) + cos 4φij s

2
ij
(t)]. (50)

Note that if the initial state of the mirror is the vacuum
state, i.e., λij ;kl ∝ δj0δl0, then it follows from equations (49)
and (50) that pn(t) = ∑

j λnj ;nj and W(t) = 1, both of which
are time independent no matter which state the light field is
initially in. This result can be explained as follows: with
the rotating-wave approximation, we only hold the slowly-
varying terms in the original Hamiltonian to obtain effective
Hamiltonian ( 5). These terms make a transition from the
atom’s upper level state |e〉 to the ground state |g〉, together
with a decrement of the quanta of the mirror’s vibration mode

and an increment of the photon number, or vice versa. Thus
when initially the mirror is in vacuum and the atom is in the
excited state, the total state cannot evolve to the ‘dressed state”,
but only stays in the initial state accompanied by a dynamical
phase factor.

The above-obtained results are very similar to that of the J–
C model: pn(t) and W(t) also contain many Rabi oscillations
with various frequencies, and in different initial states, pn(t)

and W(t) behave differently.
Next we consider that the mirror is initially in a thermal

state, while the photon field is in one of several different states:
a thermal state, a Fock state |n0〉a and a coherent state |α〉a .
We obtain different initial parameters as follows:

λthermal
ij ;ij = eβω0 − 1

eβω0(i+1)

eβωM − 1

eβωM(j+1)
, (51a)

λFock
ij ;ij = δin0

eβωM − 1

eβωM(j+1)
, (51b)

λcoherent
ij ;ij = exp

(− |α|2) |α|2i

i!

eβωM − 1

eβωM(j+1)
, (51c)

where β = 1/kBT , and T is the temperature.
In figures 6, 7 and 8, we plot the evolution of W(t) in the

three initial states mentioned above with the parameters T =
1 K, M = 10−10 kg, l0 = 1 μm, ω0 = η = 1.9 × 1015 Hz,
ωe = ω0 − 0.999ωM , ωM = 109 Hz, n0 = 10, α = 10. It can
be seen from the figures that in each case, as time increases,
collapses and revivals appear cyclically, but the time durations
in which each collapse and each revival take place differ from
each other because of different λij ;ij that represent the weight
of the Rabi oscillation with fixed frequency. This behaviour
of collapse and revival of inversion is repeated with increasing
time, with the amplitude of Rabi oscillations decreased and
the time duration in which the revival takes place increased
and ultimately overlapping with the earlier revival.

Note that the temperature is so low that[
exp (βω0) − 1

]
/ exp [βω0 (i + 1)] → δi0, and thus the

case described in figure 6 reflects the phenomenon that the
atomic transition between the upper and the lower level can
happen even when the light field is initially prepared in the
vacuum state. This is obviously a purely quantum effect to
prove the role of vacuum. In figure 7, we observe that even
in the cavity field in a Fock state, the collapse and revival
appear explicitly. This case differs from the J–C model based
collapse and revival phenomenon, in which the evolution of
inversion is just a cosine curve when the field is in a Fock
state.

7. Conclusion and remarks

We have shown a AAOPM coupling in the triple hybrid system
composing of atoms, a cavity field and a movable mirror
and discovered that under the parametric resonance condition,
this complicated model can be solved exactly. Furthermore,
we have demonstrated that this triple hybrid system can be
modelled by generalized L–S coupling under the rotating-
wave approximation under the frequency resonance condition.
It is shown that the composite object formed by the cavity-
field-dressed mirror acts like an orbital angular momentum.

7
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Figure 6. Time evolution of the population inversion W (t) for an
initially thermal state for both the cavity field and the mirror.

Figure 7. Time evolution of the population inversion W (t) for an
initially thermal state for mirror and a Fock state |n0〉a for the field
with n0 = 10.
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Figure 8. Time evolution of the population inversion W (t) for an
initially thermal state for the mirror and a coherent state |α〉a for the
field with α = 10.

Then we studied the physically intrinsic relation between the
generalized L–S coupling system and the J–C model, i.e., when
the orbital angular momentum is large enough, the former is
quite like the latter. Similarly to the generalized L–S coupling
system, in the quasi-classical limit, the ladder operators behave
as the bosonic operators and thus the large angular momentum

can be regarded as ‘excitons’ in the low excitation limit.
We also investigated some characteristic properties of the
J–C model in our triple hybrid system and discovered their
similarities and differences.
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Appendix A. Calculation of η′

In this appendix, we give the details for deriving η′, which the
triple coupling strength is proportional to.

We consider the atom fixed at x0 in the cavity, and then
we do not consider the motion of the mass-center of the
atom. As a consequence, we just need to consider how the
oscillating mirror influences the electric field E and the atom–
cavity coupling strength via the change of the cavity length l.
Note that

E(x0) =
√

k/ε0V a sin(kx0) + h.c.,

where ε0 is the dielectric constant in vacuum. Here, k = 2π/l

is the wavenumber of the cavity field and V ∝ l is the cavity
volume, both of which depend on the cavity length. When
l varies from l0 to l0 + x, where x is the displacement of the
mirror, expanding the term

√
k/ε0V sin kx0 to the first order

of x leads to

E(x0) ≈ ε0a sin(k0x0) −
[sin(k0x0) + k0x0 cos(k0x0)] ε0a

x

l0
+ h.c.

Here,

k0 = 2π/l0,

ε0 =
√

k0/ε0V0,

where V0 is the cavity volume when the cavity length is l0.
For convenience, we take out the subscript ‘0’ of k0, ε0

and l0. Then we obtain equation (2) and η′ with the form

η′ = (sin kx0 + kx0 cos kx0) ε/ l.
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