
J. Phys. B: At. Mol. Opt. Phys.33 (2000) 1193–1201. Printed in the UK PII: S0953-4075(00)08960-4

Finite-temperature excitations of an inhomogeneous trapped
Bose gas with Feshbach resonances

X X Yi†‡, D L Zhou‡, C P Sun‡ and W M Zheng‡
† Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, People’s
Republic of China
‡ Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080, People’s
Republic of China§

Received 22 October 1999, in final form 15 December 1999

Abstract. We derive and discuss the temperature dependence of the condensate and
noncondensate density profile of a Bose–Einstein condensate gas with Feshbach resonance in
a parabolic trap. These quantities are calculated self-consistently using the generalized Hartree–
Fock–Bogoliubov (HFB) equations within the Bogoliubov approximation. At zero temperature,
the HFB equation can be solved by means of a variation method that gives the low-excitation
spectrum. Moreover, within the two-body collision theory, we estimate the relationship between
the number of atoms in the condensate and the external magnetic fieldB. The result is in good
agreement with data from recent experiments.

Bose–Einstein condensates (BECs) [1–4] of atomic gases offer new opportunities for studying
quantum-degenerate fluids. Almost all the essential properties of BEC systems such as
the formation and shape of the condensate and noncondensate, the nature of its collective
excitations and statistical fluctuations, and the formation and dynamics of vortices are
determined by the strength of atom–atom interactions. In contrast with the situation in
traditional superfluids, the strength of inter-particle interactions in the atomic condensate can
vary over a wide range of values [5–12]. In particular, the scattering length that characterizes
the atom–atom interactions can be negative, corresponding to an effective inter-atom attraction.

Most recently, in trapped atomic Bose–Einstein condensation, Ketterle’s group
reported evidence for modifying the scattering length by magnetic-field-induced Feshbach
resonance [13]. Feshbach resonance was studied 21 years ago [14] at much higher energies,
but the Feshbach resonance energy observed in ultracold atoms can be tuned to near zero.
Theoretical studies of the ultracold atoms with Feshbach resonance [15,16] show that the two-
body interactions responsible for the Feshbach resonance produce an additional condensate of
molecules [17], which differs qualitatively from the properties of a single condensate. In this
paper, we discuss the temperature dependence of the hybrid atomic/molecular condensate
and noncondensate density profile as well as the excitation spectrum. Especially, for an
inhomogeneous system with negative scattering length, the excitation spectrum shows an
upper constraint on the atom number, which, together with the conventional estimation of the
condensate atom number, gives the relationship between the atom number and the external
magnetic fieldB. The theoretical results are in good agreement with the experiment.
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The binary atom Feshbach resonances studied by varying a strong external magnetic field
in an alkali-atom trap are hyperfine-induced spin-flip processes that bring the colliding atoms
to a bound molecular state of different electron spin. This process can be described by the
Hamiltonian

HFR = α
∫

d3r 9+
m(r)9a(r)9a(r) + h.c., (1)

where9m(r), 9+
m(r) (9a(r),9+

a (r)) are the annihilation and creation field operators of the
molecules (atoms),α stands for the transition matrix element proportional to the overlap of the
molecular continuum and bound state wavefunctions. Usually, the transition matrix element
depends on the magnetic field asα ∼

√
λa12/2|B − B0|, whereB0 is the resonant magnetic

field and1 characterizes the width of the resonance as a function ofB. The HamiltonianHFR
together with the atomic Hamiltonian

Ha =
∫

d3r9+
a (r)

[
− ∇

2

2M
+ Va(r)− µa

]
9a(r) +

λa

2

∫
d3r9+

a (r)9
+
a (r)9a(r)9a(r),

(2)

the molecular Hamiltonian

Hm =
∫

d3r9+
m(r)

[
− ∇

2

4M
+ Vm(r)− µm + ε

]
9m(r)

+
λm

2

∫
d3r9+

m(r)9
+
m(r)9m(r)9m(r), (3)

and the atom–molecule interaction Hamiltonian

Ham = λ
∫

d3r9+
a (r)9

+
m(r)9m(r)9a(r) (4)

forms a total HamiltonianH = Ha + Hm + Ham + HFR, which governs the dynamics of
the system under investigation. Here,Va(m)(r) represents the trapped potential for the atom
(molecule),µa(m) is the chemical potential of the atoms (molecules),λa(m) = 4πaa(m)

(2)M , withM
being the atomic mass andaa(m) the s-wave scattering length of the atom–atom interaction,
λ denotes the coupling constant of the atom–molecule interaction, andε is the energy of the
intermediate molecular state relative to the continuum of the incident atoms.

We separate out the condensate part in the usual fashion (Bogoliubov approximation), i.e.

9a(m)(r) = φa(m)(r) + ϕ̂a(m)(r), (5)

whereφa(m)(r) = 〈9a(m)(r)〉 plays the role of a spatially varying macroscopic Bose field of
the atoms (molecules). The possibility that the resonantly formed quasibound atom pairs form
a molecular condensate was previously suggested by Timmermanset al [15]. Using a Raman
photon-association process, the quasibound pairs start to be formed from the atomic condensate
and form a molecular condensate [17]. Here, we assume that there is a large number of atoms
and molecules in the condensate. It is easy to show that the operatorsϕ̂a(m)(r) andϕ̂+

a(m)(r)

obey the Bose commutation relations

[ϕ̂a(m)(r), ϕ̂
+
a(m)(r

′)] = δ(r − r ′). (6)

In terms ofϕ̂a(m) andφa(m), the Hamiltonian can be expanded as

H = H0 +H ′,

H0 =
∫

d3r

{
φ∗a

(
− ∇

2

2M
− µa + Va(r)

)
φa +

λa

2
φ∗aφ

∗
aφaφa
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+φ∗m

(
− ∇

2

4M
− µm + Vm(r) + ε

)
φm +

λm

2
φ∗mφ

∗
mφmφm

+λφ∗aφaφ
∗
mφm + αφ∗mφaφa + αφmφ

∗
aφ
∗
a

}
(7)

H ′ =
∫

d3r

{
ϕ̂+
a

(
− ∇

2

2M
− µa + Va(r)

)
ϕ̂a + 2λaϕ̂

+
a ϕ̂aφ

∗
aφa

+
λa

2
(ϕ̂+
a ϕ̂

+
a φaφa + ϕ̂aϕ̂aφ

∗
aφ
∗
a )

+ϕ̂+
m

(
− ∇

2

4M
+ ε − µm + Vm(r)

)
ϕ̂m + 2λmϕ̂

+
mϕ̂mφ

∗
mφm

+
λm

2
(ϕ̂+
mϕ̂

+
mφmφm + ϕ̂mϕ̂mφ

∗
mφ
∗
m)

+λϕ̂+
a ϕ̂aφmφ

∗
m + λϕ̂+

mϕ̂mφ
∗
aφa + α(ϕ̂aϕ̂aφ

∗
m + ϕ̂+

a ϕ̂
+
a φm)

}
. (8)

In the derivation of (7), (8), the following coupling equations are used [15]:{
− ∇

2

2M
+ λa|φa|2 + Va(r) + λ|φm|2

}
φa + 2αφmφ

∗
a = µaφa,{

− ∇
2

4M
+ λm|φm|2 + Vm(r) + ε + λ|φa|2

}
φm + αφaφa = µmφm.

(9)

These coupling equations may be yielded by the expectation value of the Heisenberg equations

ih̄9̇a = [9a,H ], ih̄9̇m = [9m,H ], (10)

and replacing the time derivatives by the chemical potentials

ih̄φ̇a → µaφa, ih̄φ̇m→ µmφm.

The chemical potential of the molecules is twice the chemical potential of the atoms, in
accordance with the condition for chemical equilibrium. Theα-terms that couple the equations
describe the tunnelling of pairs of atoms betweenφm and φa fields, which leads to the
formation of a second condensate—a molecular condensate in an atomic BEC [15–17].
Using the coupling equations (9), Timmermanset al [15] investigate the behaviours of the
hybrid atomic/molecular condensates near- and off-resonance. The Hamiltonian (8) can be
diagonalized by using the Bogoliubov transformation

ϕ̂a(r) =
∑
j

[uj (r)αj − v∗j (r)α+
j ],

ϕ̂+
a (r) =

∑
j

[u∗j (r)α
+
j − vj (r)αj ],

ϕ̂m(r) =
∑
j

[xj (r)βj − y∗j (r)β+
j ],

ϕ̂+
m(r) =

∑
j

[x∗j (r)β
+
j − yj (r)βj ],

(11)

where the quasiparticle operatorsαj , α+
j , βj , β+

j obey boson commutation relations

[αi, α
+
j ] = δij , [αi, αj ] = [α+

i , α
+
j ] = 0,

[βi, β
+
j ] = δij , [βi, βj ] = [β+

i , β
+
j ] = 0,

[α+
i , β

+
j ] = [αi, βj ] = [αi, β

+
j ] = 0,
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anduj (r), vj (r), xj (r), yj (r) arec-number functions. Substituting (11) into (8), one obtains

H ′ =
∑
j

Ejα
+
j αj +

∑
i

eiβ
+
i βi −

∑
j

Ej

∫
d3r|vj (r)|2 −

∑
i

ei

∫
d3r|yi(r)|2 (12)

with(
− ∇

2

2M
+ λ|φm|2 + 2λa|φa|2 − µa + Va(r)

)
uj − (λaφ∗aφ∗a + 2αφ∗m)vj = Ejuj ,(

− ∇
2

2M
+ λ|φm|2 + 2λa|φa|2 − µa + Va(r)

)
vj − (λaφ∗aφ∗a + 2αφ∗m)uj = −Ejvj ,(

− ∇
2

4M
+ ε + λ|φa|2 + 2λm|φm|2 − µm + Vm(r)

)
xj − λmφ∗mφ∗myj = ejxj ,(

− ∇
2

4M
+ ε + λ|φa|2 + 2λm|φm|2 − µm + Vm(r)

)
yj − λmφ∗mφ∗mxj = −ejyj .

(13)

In order to study the temperature dependence of the excitation spectrum as well as the spatial
distribution of the hybrid atom/molecular condensate and noncondensate, we need to solve
the coupled mean-field Bogoliubov equations (13), and the condensate equation (9) self-
consistently. The calculation procedure can be summarized for an arbitrary confining potential
as follows: first, we solve (9) self-consistently and, onceφa andφm are known, the solution of
uj , vj , xj andyj can be generated. To illustrate this procedure, we present its first calculation
step analytically. The trapped potential considered here is taken to be an isotropic harmonic
potentialVa(m)(r) = 1

2Mω
2
a(m)r

2, for whichφa andφm are spherically symmetric functions,

φa(m)(r) = R00(r)Y00(θ, ψ), (14)

with

R00(r) = α3/2

√
4

π
exp

[
−1

2
α2r2

]
, Y00(θ, ψ) = 1√

4π
, α = ((2)Mω)1/2.

Rather than solving the coupled equations (13) directly, we introduce a new method based on
the auxiliary functions

uj = Aj 〈r|j〉a, vj = Bj 〈r|j〉a,
xj = Cj 〈r|j〉m, yj = Dj 〈r|j〉m,

(15)

where|j〉a(m) is defined by[
− ∇2

2(4)M
+ Va(m)(r)

]
|j〉a(m) = h̄ωa(m)(j + 1

2)|j〉a(m).

The reason for such a selection is that the level shifts caused by atom–atom interactions weakly
depend on the shape of the wavefunction. A combination of (13)–(15) gives

(h̄ωa(j + 1
2) + λ|φm|2 + 2λa|φa|2 − µa)Aj − (λaφ∗aφ∗a + 2αφ∗m)Bj = EjAj ,

(h̄ωa(j + 1
2) + λ|φm|2 + 2λa|φa|2 − µa)Bj − (λaφ∗aφ∗a + 2αφ∗m)Aj = −EjBj ,

(h̄ωm(j + 1
2) + ε + λ|φa|2 + 2λm|φm|2 − µm)Cj − λmφ∗mφ∗mDj = ejCj ,

(h̄ωm(j + 1
2) + ε + λ|φa|2 + 2λm|φm|2 − µm)Dj − λmφ∗mφ∗mCj = −ejDj ,

(16)

where the eigenfunctions and the corresponding eigenvalues are given by

B±j =
[

1

f ±(r, j)− 1

] 1
2

, A±j (r) = f ±(r, j)B±j ,

D±j =
[

1

g±(r, j)− 1

] 1
2

, B±j (r) = g±(r, j)D±j ,
(17)
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and
E±j (r) = ±{(λaφ∗aφ∗a + 2αφ∗m)− [h̄ωa(j + 1

2)− µa + λ|φm|2 + 2λa|φa|2]},
e±j (r) = ±{λmφ∗mφ∗m − [h̄ωm(j + 1

2)− µm + ε + 2λm|φm|2]}. (18)

Here,

f ±(r, j) = λaφ
∗
aφ
∗
a + 2αφ∗m

h̄ωa(j + 1
2)− µa + λ|φm|2 + 2λa|φa|2 − (E±j )2

,

and

g±(r, j) = λmφ
∗
mφ
∗
m

h̄ωm(j + 1
2)− µm + ε + 2λm|φm|2 − (e±j )2

.

These explicit solutions enable us to construct the one-body density matrix

ρ(r, r ′) = ρa(r, r ′) + 2ρm(r, r
′),

ρa(r, r
′) = φ∗a (r)φa(r ′) +

∞∑
p=±,i=1

[up∗i (r)u
p

i (r
′)Fpi + vp∗i (r)v

p

i (r
′)(1 +Fpi )],

ρm(r, r
′) = φ∗m(r)φm(r ′) +

∞∑
p=±,i=1

[xp∗i (r)x
p

i (r
′)f pi + yp∗i (r)y

p

i (r
′)(1 +f pi )],

(19)

whereFpi = 1
exp(βEpi )−1

andf pi = 1
exp(βepi )−1

are the Bose distributions for the quasiparticle

excitations with energiesEpi andepi , respectively. Settingr = r ′, (19) follows the resulting
particle density.

We need to point out that (17) and (18) are results of the first step of the numerical
calculations. To complete numerical calculations, we should repeat the above procedures until
the eigenvaluesEj andej do not depend on positionr. In what follows, we present a variation
method to study the excitations at zero temperature. This method was first introduced in [18]
to study the ground state of BEC in the harmonic trap of a boson system, and it was generalized
in [19] to investigate the excited states in the BEC. Considering (13) as well as∫

[uj (r)u
∗
j (r)− vj (r)v∗j (r)] dr = 1,

and ∫
[xj (r)x

∗
j (r)− yj (r)y∗j (r)] dr = 1,

which were derived from the Bose commutation relation (6), we arrive at

Ej =
∫
u∗j (r)

(
− ∇

2

2M
+ λ|φm|2 + 2λa|φa|2 + Va(r)

)
uj dr

+
∫
v∗j (r)

(
− ∇

2

2M
+ λ|φm|2 + 2λa|φa|2 + Va(r)

)
vj dr

−
∫
u∗j (r)(λaφ

∗
aφ
∗
a + 2αφ∗m)vj (r) dr

−
∫
v∗j (r)(λaφ

∗
aφ
∗
a + 2αφ∗m)uj (r) dr, (20)

ej =
∫
x∗j (r)

(
− ∇

2

4M
+ ε + λ|φa|2 + 2λm|φa|2 + Vm(r)

)
xj dr

+
∫
y∗j (r)

(
− ∇

2

4M
+ λ|φa|2 + ε + 2λm|φm|2 + Vm(r)

)
yj dr

−
∫
x∗j (r)λmφ

∗
mφ
∗
myj (r) dr −

∫
y∗j (r)λmφ

∗
mφ
∗
mxj (r) dr. (21)
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For simplicity, we study only the case of the spherical harmonic trap. In this case, we may
choose the trial wavefunctions of the excitation componentsuj (r), vj (r), xj (r) andyj (r)
in the form of the spherical harmonic oscillator wavefunctionξnr ,l,m with quantum numbers
(nr , l, m): (

uj (r)

v∗j (r)

)
=
(
u

v∗

)
ξnr ,l,m(ωnr lm, r),(

xj (r)

y∗j (r)

)
=
(
x

y∗

)
ξnr ,l,m(ωnr lm, r),

(22)

whereωnr lm is an adjustable scaling factor of variation. Equations (20) and (21) show that
Ej andej take a similar form, hence we here discuss branchesEj of the excitation spectra in
detail. For(nr , l, m) = (0, 1, 0), we have

ξ0,1,0 = α3/2
010

[
8

3
√
π

]1/2

α010re
−α2

010r
2/2Y1,0(θ, ψ).

The excitation spectrum in this case is reduced to

E = E[v, ω010] = (1 + 2v2)

[
5

4
h̄ω010 +

5

4
h̄
ω2
a

ω010

]
+λ(1 + 2v2)Nmω

3/2
m

[
2M

πh̄

]3/2 [
ω010

ω010 + 2ωm

]5/2

+
[
2λa(1 + 2v2)− 2λav

√
1 +v2

]
Naω

3/2
a

[
M

πh̄

]3/2 [
ω010

ω010 + ωa

]5/2

−4αv
√

1 +v2

[
ω010

ω010 + ωm

]5/2

N1/2
m ω3/4

m

[
2M

πh̄

]3/4

, (23)

whereα2
010= Mω010

h̄
. Similarly, for (nr , l, m) = (1, 0, 0), we have

ξ1,0,0 = α3/2
100

[
8

3
√
π

]1/2(3

2
− α2

100r
2

)
re−α

2
100r

2/2Y0,0(θ, ψ)

and

E = E[v, ω100] = (1 + 2v2)

[
7

4
h̄ω100 +

7

4
h̄
ω2
a

ω100

]
+λ(1 + 2v2)Nmω

3/2
m

[
2M

πh̄

]3/2

f (ω100, 2ωm)

+
[
2λa(1 + 2v2)− 2λav

√
1 +v2

]
Naω

3/2
a

[
M

πh̄

]3/2

f (ω100, ωa)

−4αv
√

1 +v2f (ω100, ωm)N
1/2
m ω3/4

m

[
2M

πh̄

]3/4

, (24)

where

f (x, y) = 3

2

(
x

x + y

)3/2

− 3

(
x

x + y

)5/2

+
5

2

(
x

x + y

)7/2

.

Minimizing the energies of (23) and (24) with respect to the variation parametersv, ω010 and
ω100, we can determine the excitation spectrum for the modes(0, 1, 0) and (1, 0, 0). The
numerical results are illustrated in figures 1 and 2. The dashed curves show the excitation
spectrum in atomic Bose–Einstein condensation, i.e.α = λ = 0. In contrast, the solid curves
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Figure 1. Excitation spectrum of mode(0, 1, 0) versus the number of atoms. The dotted and
dashed curves indicate those with and without Feshbach resonance, respectively.
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Figure 2. Same as figure 1 but for mode(1, 0, 0).

are those of hybrid atomic/molecular condensates near the Feshbach resonance. From these
figures we see that while the excitation frequency for mode(0, 1, 0) increases due to the
Feshbach resonance effect, the excitation frequency for mode(1, 0, 0) decreases. We would
like to point out that the numerical results presented here depend on the coupling constant as
well as the parameterα. In figures 1 and 2, we letα = 5λa, andλa = 0.1 (arbitrary units).
The other parameters areωm = 1.4ωa = 7500 Hz andNa = Nm = 106, respectively.

For clarity, we illustrate the above somewhat formal discussion by considering the binary
atom system for a uniform system (Va(m)(r) → 0), in this caseHFR gives a resonant
contribution to the atom–atom interaction strengthaa: aeff = a0(1 + 1

B0−B ), wherea0 is
the off-resonant scattering length, and1 characterizes the width of the resonance. For small
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Figure 3. The number of atoms in the condensate versus magnetic fieldB.

p, these excitations are phonons, and their energy tends to zero withp. Hence,

µa = λ|φm|2 + λa|φa|2 − 2αφ∗m, (25)

which leads to

E2
j = E2(p) =

(
h̄2

2m

)2

p2(p2 + 16πnaeff). (26)

For a uniform dilute Bose gas with negative scattering lengthaeff , (26) implies an instability
of those modes withp2 6 16πn|aeff |. For a gas in a trap, however, the wavenumber cannot
be arbitrarily small, and the minimum value is of orderpmin ' π/R0 (R0 is the mean size of
the ground state). Hence the system can remain stable ifπ2

R2
0
> 16πn|aeff |. Since the density

is of ordern ' N/R2
0, this means that the critical number of the system is

N0 ' π

16

R0

|aeff | . (27)

For a positive scattering lengthaeff , however, there are no constraints inN . The Bogoliubov
quasiparticle theory shows that the number of condensate atomsN0 depends on the scattering
length and satisfies (for(aeff

N
V
)

1
3 � 1).

N0 = N
1− 8

3

√
Na3

eff

πV

 . (28)

The numerical results of (27) and (28) are illustrated in figure 3, which shows the atom number
N0 versus external magnetic fieldB. The parameters in figure 3 areN/V = N/R2 =
1015 cm−3,1 = 0.01 mT.

To sum up, we have derived a set of four coupled equations of the atomic and molecular
excitations within the standard Hartree–Fock–Bogoliubov approximation. As shown in (9)
and (13), theα-terms describing the process that converts atoms into molecules play an
important role in the atomic/molecular BEC. In particular, two low-excitation spectra have been
given at zero temperature, which show that the interaction between the hybrid atomic/molecular
BECs increases one excitation mode, while decreasing another excitation mode. The mode
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(0, 1, 0) comes from the density fluctuation of the condensate-like vibrating oscillation, in this
sense the fact that the mode(0, 1, 0) increases near the Feshbach resonance indicates that the
presence of the Feshbach resonance enhances the density fluctuation like vibrating oscillations
in an atomic/molecular condensation system, whereas the breathing mode (like the breathing
oscillation)(1, 0, 0) decreases near the Feshbach resonance. Within the two-body collision
regime, we show the number of atoms remaining in the BEC versus the external magnetic
fieldB; the result is in good agreement with the recent experimental data. This work removes
from consideration the resonance case, since at resonance the Bogoliubov approximation is
not available (at resonance, there are few atoms in the condensate). The contributions of the
noncondensate atoms (molecules) to the excitation spectrum are also ignored (see equation (9)).
These need further investigation.
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