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Abstract. An efficient numerical algorithm is developed for determining the potential of a
conservative system described by a Klein–Gordon or Schrödinger equation from its normal mode
spectra. The algorithm is based on first solving the linear problem of perturbative inversion by
means of Tikhonov regularization, and then using a series of perturbative steps to approach the full
potential by Newton’s method. The algorithm is stable and convergence is rapid.

1. Introduction

In the general class of inversion problems, one tries to determine a system from its observables.
The best known example is the attempt to determine a Hamiltonian operator (given its general
form) from its eigenvalues—which is obviously much harder but at the same time much
more useful than the corresponding forward problem of finding the eigenvalues from the
Hamiltonian.

In this paper we consider the 1D Klein–Gordon (KG) equation

[∂2
t − ∂2

x + V (x)]8(x, t) = 0 (1)

with a real potentialV (x), defined on a finite intervalI = [0, a], and suitable boundary
conditions to be specified below. We seek an efficient and stable numerical algorithm for
determining the potentialV (x) from the eigenfrequencies{ωn}, where eachω is defined in
terms of the eigensolutions of (1),8(x, t) = f (x)e−iωt . We consider boundary conditions
that define a conservative system (e.g., nodes or antinodes at the endpoints of the interval),
so thatω is real. Inversion from the spectrum is important because frequencies can often be
measured directly or extracted from the time-domain signal.

This eigenvalue problem is

[−∂2
x + V (x)]f (x) = λf (x) (2)

whereλ = ω2. This can also be regarded as the time-independent Schrödinger equation with
λ = ω. Historically, the interest was on the Schrödinger equation on a half-line 06 x <∞,
wherex is in effect a radial variable, and in the determination ofV (x) from scattering data.
Attempts to fit the nucleon–nucleon potentialV (x) from the measured phase shiftδ(λ) led to
ambiguous results, and thus prompted the question: canV (x) be obtained uniquely fromδ(λ)?
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The problem took a major turn when Bargmann [1] showed that inequivalent potentials can lead
to the same phase shift. It soon became clear [2–7] that bound states must also be considered,
and thatV (x) can be completely determined from three sets of information: (a) the phase shift
δ(λ) for allλ > 0; (b) the bound state spectrum{λn} (a finite number for short-ranged potentials
of finite depth); and (c) a set of normalization constants{cn} for the bound states (e.g., the
derivativesf ′(0)when the states are normalized to unity). The corollary that [δ(0)−δ(∞)]/π
is related to the number of bound states is now widely known as Levinson’s theorem. This
development has been reviewed by many authors, e.g., Faddeev [8] and Dyson [9].

For a finite intervalI = [0, a], with nodal or antinodal boundary conditions at the
endpoints, one would not refer to phase shifts. The inversion of such Sturm–Liouville systems
from their spectral data alone was attacked by Borg [2], and pursued in detail by Levinson [3],
Marchenko [4], Krein [5], Jost and Kohn [6] and Gelfand and Levitan [7]. It was shown that
the data sets (b) and (c) (now referring to an infinite set of eigenstates) will be necessary and
sufficient. Developments have been reviewed by Levitan [10].

It is also possible to require two other sets of data instead [2,3,11]: (b1) the eigenvalues
{λ(1)n } for f (0) = f (a) = 0 (the nodal problem); and (b2) the eigenvalues{λ(2)n } for
f (0) = f ′(a) = 0 (the antinodal problem). The second set replaces the normalization
conditions (c). It is heuristically reasonable that all information about the system can be
obtained from its normal modes (NMs), because they are complete. The data (b1) alone are
not enough, since the nodal problem cannot distinguish betweenV (x) andV (a− x); the data
(b2) break the symmetryx 7→ a − x.

These classical results on existence and uniqueness for the inversion problem are some
40–50 years old, but inversion algorithms [3, 11–13] proposed before recent advances in
computational science are for the most part not practical. They involve, for example, the
solution of a large number of coupled nonlinear ordinary differential equations [11, 12], or
algebraic equations [13]. This paper develops a stable and efficient numerical algorithm using
techniques that are now standard and well known.

Our strategy is based on first solving the easier problem ofperturbative inversion(PI).
Consider a known potentialV (x) with eigenvalues{λn} subjected to an unknown perturbation
1V (x), causing first-order shifts{1λn} in the eigenvalues. The problem is to obtain1V from
{1λn}. This is a linear problem, and a numerical scheme is developed, based on discretization
of an integral equation. This scheme is presented in section 2 together with examples.

The more difficult problem is that oftotal inversion(TI), i.e., determining the potential
V from the eigenvalues{λn}. An algorithm is developed, essentially Newton’s method
generalized to functionals, which makes use of PI to perform TI in an iterative manner. This
formalism is presented in section 3, and examples are given to show that the convergence is
rapid and the method is stable and accurate.

Concluding remarks are given in section 4, including a brief discussion on the possibility
of generalizing to certain nonconservative systems—which are qualitatively different in that
the eigenvalues are not real.

As a matter of notation, it will be convenient to extend the problem to the interval [0, 2a],
with all potentials symmetric about the mid-pointx = a. Then the nodal problem on [0, a]
(f (0) = f (a) = 0) and the antinodal problem(f (0) = f ′(a) = 0) translate respectively
into the odd and even sectors on the extended interval, and both can be labelled together with
one indexn = 1, 2, . . .†. Henceforth the perturbation will also be denoted asv(x) ≡ 1V (x).
The linear algebraic systems arising from the discretization of (2) and the Fredholm integral

† This notation only serves to simplify some formulae, but actual numerical computation is carried out on [0, a] with
the two spectra separately. One could also place the antinode atx = 0 rather thanx = a and extend to [−a, a] instead.
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equation below are solved using MATLAB.

2. Perturbative inversion

2.1. Integral equation

The forward perturbative problem gives

1λn =
∫ 2a

0
f 2
n (y)v(y) dy (3)

where the eigenfunctionsfn of the original unperturbed problem are assumed to be real
and normalized on [0, 2a]. Multiplying by fn(x)2/σn (whereσn are positive numbers to
be specified) and summing overn then leads to a Fredholm equation

µ(x) =
∫ a

0
k(x, y)v(y)dy (4)

in which

µ(x) =
∑
n

1λn

σn
f 2
n (x) (5)

is readily evaluated from the given spectral data and the known eigenfunctions of the
unperturbed system. The real symmetric kernel is

k(x, y) = 2
∑
n

f 2
n (x)f

2
n (y)

σn
. (6)

The PI problem is reduced to solving this integral equation to findv(y). The classical existence
and uniqueness theorems (applied toV andV + 1V ) guarantee that there will be a unique
solution forv ≡ 1V .

Formally, these sums do not converge in a pointwise sense without some regulators{σn}.
Normalization implies thatfn(x)2 ∼ O(n0) asn → ∞. If the perturbation has a nonzero
average, then we also have1λn ∼ O(n0) asn→ ∞. One would needσn ∼ nρ with ρ > 1
to ensure pointwise convergence of the sums (5) and (6). On the other hand, ifσn increases
too rapidly withn, then one would lose information on the higher modes and hence the finer
spatial structure.

Nevertheless, if these infinite sums are considered in the context of the integral equation
(4), it is clear that only convergence in some weak sense is required, and depending on the
test functions, possibly no regulators are needed. Indeed we have verified in some examples
thatσn = 1 still produces the correct answers. We shall not exploit this possibility, and have
chosenσn = n2 throughout, except where otherwise specified. In any event, the solution
should be independent of the precise choice of{σn}, and this is verified numerically in some
of the examples below.

2.2. Output least-squares method for ill-posed integral equations

While in principle a solution is guaranteed to exist, in practice the problem (4) is ill-posed
because it may be unstable to noisy data: small changes inµ(x) could cause large changes in
v(x). To overcome this difficulty, we apply the output least-squares method combined with
Tikhonov regularization [14] to map onto a nearby well-posed problem. The latter can then
be solved numerically and stably. To do so, define an operatorK : L2(0, a)→ L2(0, a):

Kv(x) =
∫ a

0
k(x, y)v(y)dy (7)
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for any x ∈ [0, a]. Then we formulate the integral problem as the following minimization
problem over allv ∈ L2(0, a):

min‖Kv − µ‖2 + α̃‖v‖2 (8)

whereα̃ > 0 is a regularization parameter, and‖·‖ is theL2 norm. This minimization problem
has a unique solution, and the solution depends onα̃ continuously [15].

We next discretize atN uniformly spaced pointsxn = nh, n = 0, . . . , N , with h = a/N .
The trapezoidal rule leads to the following approximation:

Kv(x) =
N∑
n=1

∫ xn

xn−1

k(x, y)v(y)dy ≈ h

2
k(x, x0)v0 + h

N−1∑
n=1

k(x, xn)vn +
h

2
k(x, xN)vN (9)

for x ∈ [0, a]. (Higher-order quadrature rules would not be appropriate ifv is not known to
be smooth.) Next define the matrix̂K and the column vectorŝv andµ̂ by

K̂ = (kmn)Nm,n=0 v̂ = (vn)Nn=0 µ̂ = (µn)Nn=0 (10)

where

kmn =
{
k(xm, xn) for n 6= 0, N
1
2k(xm, xn) for n = 0, N

(11)

and µn = h−1µ(xn), vn = v(xn). The continuous problem (8) can then be written
approximately as the minimization over allv̂ ∈ RN+1 of

min(K̂v̂ − µ̂)>(K̂v̂ − µ̂) + αh2v̂>v̂ (12)

with α = α̃/h4. The discrete minimization problem is equivalent to the linear system

(K̂>K̂ + αh2I )v̂ = K̂>µ̂. (13)

The regularization parameterα̃ plays an important role: it should be small enough that the
minimization problem (8) approximates the original integral equation (4), and large enough
that the discrete problem (12) is well posed. A well known principle for choosing a reasonable
parameterα is based on the Morozov or damped Morozov discrepancy principle [14–19]. In the
examples in this paper, we see that there is always a range ofα, all below∼10−4 (in most cases
substantially below), which are adequate for stabilizing the calculation. The correspondingα̃

are∼10−11 or less, substantially below the scale‖Kv‖2/‖v‖2 ∼ 1 at which the regularization
would cause a significant change. Moreover, in all cases the recovered potential is essentially
independent of the choice ofα within these ranges.

2.3. Numerical experiments

Without loss of generality we takea = 1 throughout. Unless otherwise specified, we keep
M = 40 terms in the sum over modes, and useN = 40 points in the discretization. (With∼M
nodes in the interval, one needsN & M spatial points for adequate resolution.)

In the first series of examples (figure 1) we take the original potential to beV (x) = 0. The
unperturbed spectrum{λn} and the corresponding wavefunctions{fn} are trivially obtained
analytically. We then subject this to different perturbations1V (x) = εU(x), whereε is a
formal small parameter and for figure 1(a)–(c), U is respectively

U(x) = sin(2πx) (14)

U(x) =


0, x ∈ [0, 0.2)
2x − 2

5, x ∈ [0.2, 0.7)
− 10

3 x + 10
3 , x ∈ [0.7, 1]

(15)
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Figure 1. Perturbative inversion where the original potential isV (x) = 0 and the perturbation
1V (x) is given by (14)–(16). The truncation isN = M = 40. The input1V is shown by the solid
curve, and the reconstructed values are shown by the stars. The regularization parameter used was
α = 10−8 in all three cases.

U(x) =


2− x, x ∈ [0, 0.2)
1− x + 4x2, x ∈ [0.2, 0.7)

3, x ∈ [0.7, 1].

(16)

The frequency shifts{1λn} are evaluated analytically by the forward formula (3) and then
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Figure 1. (Continued)

used in the inversion scheme described above. The regularization parameters used in the three
examples are allα = 10−8. Essentially the same results are obtained for a large range of
α; as an example, for figure 1(a), theL2 relative error is not more than∼5× 10−3 for all
α ∈ [10−12, 10−6].

For smooth perturbations, one could use a much coarser grid of discretization, and
correspondingly truncate the sum to fewer modes. Figure 2(a) shows the perturbing potential
(14) recovered withN = M = 6, again withα = 10−8. The recovery is nearly perfect, except
for the endpointx = a. This problem is readily understood if the potential is viewed in terms
of the extended interval [0, 2a]: there is a cusp atx = a and the potential is in fact not smooth.
Figure 2(b) shows the analogous recovery for the potentialU(x) = sin(3πx/2); this does not
have a cusp, and the recovery does not run into any problem at the endpoints even with a coarse
grid.

To see the effect of the parameters{σn}, we have tried one example with1V being a step
(figure 3), andσn = n3/2 (figure 3(a)); σn = n2 (figure 3(b)); σn = n3 (figure 3(c)). These
show that a range of choices includingσn = n2 all give acceptable results. Discontinuous
potentials are more susceptible to noise, and a slightly largerα is needed (∼10−5).

In the next series of examples (figure 4) we take the original potential to beV (x) =
(x − 2a)2, to illustrate that the algorithm works just as effectively whenV 6= 0. The
unperturbed eigenvalues and eigenfunctions have to be first evaluated numerically, using the
standard piecewise linear finite-element method to reduce the eigenvalue equation to a system
of linear algebraic equations [20]. In this forward step, in order to getM modes accurately,
many more spatial pointsN ′ � M need to be used. In this case,M = 40 and one can choose
N ′ = 80 or 120. The perturbations used are exactly those in (14)–(16). It is clear from these
examples that the method works satisfactorily.
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Figure 2. (a) Perturbative inversion of a smooth potential (same as figure 1(a)) usingN = M = 6.
The forward problem is evaluated analytically and exactly. The regularization parameter used was
α = 10−8. (b) Similar perturbative inversion for a potential without a cusp on the extended interval.

3. Total inversion

In this section we show how TI can be achieved by an iterative process of PI. To describe the
method, and to exhibit its formal similarity with Newton’s method for the solution of equations,
it will be useful to adopt an abstract notation. Let all the eigenvalues and eigenfunctions be
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Figure 3. Perturbative inversion where the original potential isV (x) = 0 and the perturbation
1V (x) is a step, using (a) σn = n3/2, (b) σn = n2, (c) σn = n3 and in all casesN = M = 40.
The input1V is shown by the solid line, and the reconstructed values are shown by the stars. The
regularization parameter used wasα = 10−5 in all cases.

collectively denoted asλ ≡ {λn} andf ≡ {fn}, and let the potential be simply denoted asV .
The eigenvalues are determined by the potential, which we express as a functional relation:

λ = F(V ). (17)
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Figure 3. (Continued)

The forward perturbative expression (3) is then written schematically as a functional derivative

1λ = δF
δV
1V (18)

while the PI methodology described in sections 2.2 and 2.3 provides the action of the inverse
functional derivative

1V =
[
δF
δV

]−1

1λ (19)

for any given1λ and any unperturbed potentialV .
Now the problem of TI is to find a potentialV that satisfies (17), whenλ is prescribed.

The process is now obvious. Start with an initial guessV (0) (which we shall simply take to
be the zero potential), and construct a series of improvementsV (j) as follows. (a) For any
V (j), calculate the eigenvaluesλ(j) = F(V (j)) and the corresponding eigenfunctionsf (j).
(b) The next iteration is then obtained by Newton’s algorithm:

V (j + 1) = V (j)−
[
δF
δV

]−1

[λ(j)− λ] (20)

where [δF/δV ]−1[λ(j) − λ] is obtained by PI, in whichK andµ are calculated using the
eigenfunctionsf (j) found in the last step.

There are two measures of convergence:

D2
j+1 = ‖V (j + 1)− V (j)‖2

12
j = ‖λ(j)− λ‖2 ≡

∑
n

|λn(j)− λn|2 (21)

where in practicen is summed over theM modes under consideration. The iteration is stopped
whenDj+1 is less than a preset tolerance.
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Figure 4. Perturbative inversion where the original potential isV (x) = (x − 2a)2 and the
perturbation1V (x) is given by (14)–(16). The truncation wasN = M = 40. The input1V
is shown by the solid curve, and the reconstructed values are shown by the stars. The regularization
parameter used wasα = 10−8 in all cases.

Figure 5 shows the implementation of this algorithm, usingV (x) = U(x) (without a
formal small parameterε), whereU are the three potentials in (14)–(16). The starting potential
is zero, and each figure shows the potential reconstructed after one and two iterations (except
for figure 5(b), where the potentials recovered after the first and second iterations are too close
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Figure 4. (Continued)

to distinguish). In all cases, the tolerance of 10−2 was reached in only two iterations.
For smooth potentials such as that in figure 5(a), it is again possible to achieve accurate

total inversion using very few points and very few iterations (figure 6(a)). Also, to illustrate the
situation when the potential is large (so thatV = 0 would be a poor initial guess), figures 6(b)
(c) show the result of TI for the same potential scaled up by factors of 10 and 50, respectively.
Since the starting point (V = 0) is farther from the solution, more iterations are required,
as expected. In these examples using a coarse mesh, there is again a small problem at one
endpoint; as with figure 2, this problem would not occur if the potential does not have a cusp
on the extended interval.

Further convergence beyond two steps is difficult to show in figure 5; instead, it is more
convenient to see how the two measures of convergence depend onj . Figure 7 plots ln| lnDj |
versusj for the examples of figure 5; those for ln| ln1j |are similar and not shown. These plots
agree asymptotically with the formj ln 2 + const expected from Newton’s method, indicating
the very rapid rate of convergence.

4. Conclusion

In this paper we have constructed an efficient algorithm for the inversion of the potential
of a conservative system from its NM spectra, based on numerical techniques that are well
established and familiar. The trick is to first consider the linear problem of PI, and then to
reduce the more difficult problem of TI, through a Newton-like method, to a series of linear
steps as well. The method has been shown to be stable and accurate, and convergence in the
TI case is rapid. The method is therefore a practical one when the spectra are known.

The size of the truncation required (N orM) depends on two factors. First, if the spatial
resolution required (say the typical length scale of variation ofV ) is δ, then one obviously
needsM > Mδ = a/δ. There is, however, another condition. Let the range of the potential
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Figure 5. Total inversion of potentialV (x) = U(x) andU(x) is given by (14)–(16). The inputV
is shown by the solid curve. In (a) and (c), the first iterate is shown by the broken curve, and the
second iterate by the stars. In (b), the first iterate is too close to the second, and is not shown. The
regularization parameter used wasα = 10−4 in all cases.

and hence the range of the kinetic energy beR = max(V )−min(V ). Identifying the kinetic
energy for each moden approximately with(nπ/a)2, we see that the number of modes that
must be retained should satisfyM > MR ≡ (a/π)

√
R. Applied to the case in figure 6(c) with

a = 1,R = 50, we findMR ≈ 1, so truncation toM = 6 is adequate.
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Figure 5. (Continued)

An intriguing question is whether the method can be generalized toopen, nonconservative
systems, e.g., the same differential equation (1) onI = [0, a], with a real potentialV (x)
(no absorption) but with outgoing boundary conditions at one end. One can think ofI as
an optical cavity, with a partially transmitting mirror atx = a; in fact the scalar model of
electromagnetism in such a cavity [21] is described by a wave equation to which this KG
equation can be transformed [22].

In such open systems, the analogue to the NMs are quasinormal modes (QNMs), which
are factorized solutions8(x, t) = f (x)e−iωt with Imω < 0 because energy or probability
are carried off by the outgoing waves. Thus, open systems are physically nonconservative and
mathematically not self-adjoint, so that the equations are no longer of a Sturm–Liouville type.
Nevertheless, in a broad class of such systems the QNMs are complete [23,24], and a formalism
can be developed that closely parallels that for NMs in closed, conservative systems [22,25,26].

It is thus natural to attempt a generalization of the NM inversion formalism to QNMs. For
NMs on [0, a], two sets of eigenvalues are required: the nodal and antinodal set as described
in section 1. However, each QNM eigenvalueω is complex, and in a sense carries twice the
amount of information. Thus, one might conjecture thatoneset of eigenvalues, corresponding
tooneboundary condition (i.e., outgoing waves atx = a) would be sufficient. A generalization
of the present formalism to nonconservative systems would help to answer this conjecture.

A potential application concerns gravitational waves emitted by matter falling into black
holes. These waves, in each angular momentum sector, are described by a KG equation [27].
Numerical experiments [28] show that the signal could be dominated by QNMs [29] in many
cases. Their complex frequencies can be extracted from the signal, but would not be those
of a bare black hole; instead, they are those of a black hole perturbed by its astrophysical
environment—adirty black hole [30]. If the perturbation, i.e., the astrophysical environment,
can be ascertained from the frequency shifts through a PI algorithm, then one could begin to
develop a new tool for gravitational wave astronomy. Thus the inversion problem for open
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Figure 6. (a) Total inversion of the smooth potential in figure 5(a), usingN = M = 6. The circles
are the first iterate and the stars the second iterate. (b) Total inversion for 10 times the potential.
The circles shows the first iterate and the stars show the fourth iterate. (c) Total inversion for 50
times the potential. The circles show the second iterate and the stars show the sixth iterate. The
regularization parameter used wasα = 10−4 in all cases.
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Figure 6. (Continued)

Figure 7. A plot of ln | lnDj | versusj corresponding to the three examples in figure 5 (from top
to bottom). The stars in each series have been displaced vertically for clarity. The lines are drawn
with slope ln 2, which is the behaviour expected from Newton’s method.

systems is of great interest, since gravitational waves are likely to be detected in the next
decade [31]. Work on nonconservative systems will be reported elsewhere.
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