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Abstract. The quantum superalgebra U, (osp(2, 1)) is embedded into the Z"-algebra and
its cyclic representations are presented in the non-generic case.

Quantum groups, quantum algebras and the theory of their representations are deeply
rooted in the nonlinear integrable physical systems associated with the Yang-Baxter
equation (YBe) [1-5]. Recently, representations of quantum universal enveloping
algebras (quantum algebras) at roots of unity, especially the so-called cyclic representa-
tions, have drawn much attention [6-14], and new solutions to the YBE have been
constructed through them [15, 16].

Besides quantum algebras, quantum superalgebras, as the g-deformation of the
usual universal enveloping superalgebras, have also been introduced to construct
solutions to the YBE in the generic case (g not a root of unity). To find new solutions
associated with a quantum superalgebra, we naturally begin by looking for its new
representations.

To this end, let us first recall the realization theory of quantum algebras. As we
know its essence is to embed a quantum algebra, which has a ‘complex” structure, into
a ‘simpler’ algebra. One remarkable example of this method is the g-deformed boson
realization of a quantum algebra [17-19]. In this case, one expresses the generators
of a quantum algebra with the generators of the g-deformed Bose algebra and makes
sure that all the commutation relations remain. In other words, the quantum algebra
is regarded as a subalgebra of the g-deformed Bose algebra. So its representations are
naturally subduced by the representations of the Bose algebra. In the above discussion,
if one uses the operator algebra on Bargman space in place of the g-deformed Bose
algebra, one will get the differential realization of a quantum algebra.

Now, the question is whether one can find another algebra to replace those
mentioned above. Recent work on cyclic representations of sl,(n+1) by Date et al
[14] implies a positive answer to this question. In their paper, the associative algebra
Z" over C, which is generated by X, Z and [ satisfying

ZX =gXZ ZN=xN=1 (1)
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is used. This algebra is closely related to Z"-model, so we will call it the Z"-algebra
in the following discussion, and denote it by Z".

In this paper, we will use the £” algebra to realize the quantum superalgebra
U,(osp(2, 1)) generated by V., V. and g*" satisfying the commutation relations
[20-22] '

i qzn _ q—zy
ViVt VoV = T a=a T [H, V.]=£3V.. (2
For convenience, we define
e.=2V, h=2H  k*'=g¢*"
Then the algebraic relations among the generators of U,(osp(2, 1)) can be written as
k—k™!
ee_te e =——— £y
4—49q L)
ke k™ '=gq"e,.
Consider a mapping IT from U (osp(2 1)) to Z":
N—1
Me)= ¥ AL, Z"X"=68,
mn=0
,. (4)
Mk)=CZ=k

Mk ")=Cc'z" =k

where {Z™X" =f(m, n)|e<m, n< N —1} is the basis of Z" and A}, ,; C belongs to
the complex field C. Using (3), one can easily prove that if A, , and C satisfy

Ab.=0n#1 AL, =0n%N-1

m+m'=§MndNA;,A;IN_I(q_'"?q”'):O nZl, N~-1

T AnATwa(a e =-C/a=q7) ©)
T AnAnna(g " +q")=1/C(g~q7")

then 7 is a homomorphism mapping. We call the image of this homomorphism mapping
a Z"-realization of U, (osp(2, 1)). It is worth pointing out that (1} implies the condition
g™ =1. Accordingly, only in the non-generic case can one use the Z"-realization.

We notice that (5) contains N equations, but there are altogether 2N coefficients
to be determined. So we can expect there to exist non-trivial solutions. As an example,
we write down a simple realization

é+=A;1X
é_= (Atna Z+AN, Nl‘lzi\’_l)XN;1
C 1 1 1 1 1 .
- VU N = 6
AN g 11 AN N T A G- a 1+g ©

In order to obtain the representations of U,{osp(2, 1)) we now turn to consider
the representations of Z". Obviously, its regular representation p = Z" » End(Z") can
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be written as

Zf(m,n)=f(m+1,n) Zf(N—1,n)=f(0, n) m=0, 1,...N—2(7)
Xf(m,n)=q "f(m,n+1) Xf(m, N—1)=q""f(m, 0) n=0,1,... N-2.

This is an N°-dimensional representation. Denote the left ideal generated by (Z—1)
by L, then on the quotient space Z"/L, (7) induces a representation

Zf(n)=q"f(n) Xf(N-1)=f(0)
Xf(n)=f(n+1) n=0,1,2,...N-2

where f{(n)=£(0, n) Mod L.
This is none other than the representation frequently used in physics. Using the
realization (6), from (8) we get an N-dimensional representation of U (osp(2, 1)):
é.f(n)=A5 f(n+1)
é—f(") =(Ajn_1- q"—1+A?~1—1 N-1' ql_n)f(" ~1)
kf(n)=Cq"f(n)
k' F(my=C"'q7"f(n).
One can easily check that €Y = (Ag)™ and &Y =TIN3' (Ao g+ An_ nong ), i
this representation is cyclic. It is due to the condition XV =2" =1,
Before concluding this short paper, we would like to point out that using the cyclic

representations given above, one may obtain new R-matrices associated with
U,(osp(2, 1)) by means of the method presented in [4].

(8)
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