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Abstract, Applying the method of the g-deformed boson realization for the quantum group

Tt vra chagat afctandard hasio fas haroneacantor: o
to the case where g is a root of unity we establish a set of standard basis {or the representation

space of the quantum universal enveloping algebra U, ,(C)) associated with a typical
subalgebra chain of U, (C;). On this basis we systemaucally obtain irreducible and indecom-
posable represcntations of U,{C;) and its subalgebras. We discuss U,(C,) in detail.

1. Introduction

In this paper, the second part of a series, we will study the quantum universal enveloping
algebra (QuEA) [1-8] (C;), = U,(C,) when g is a root of unity.

We first review notation and some results for {A,_,), from the preceding paper
[29] which will be used in this paper. As the central part of the g-deformed boson
realization, the g-deformed boson algebra is an associative algebra over the
complex number field C. it is generated by elements a, = a;, a7, N’i and I satisfying
the g-deformed commutative relations [13-15, 19-24, 28]

N —&ij
aa; =8;9" +q "a q

[N, aj}=+8;a; (1)
[aF,aj]1=0

srhhama S — 1 P amd -~ Whaem ~ -1 tha alanhea B {1V han~oaacs thha P, |

1CIC l’J -_ 1’ A’ e ,l allu q f= ) ¥YIiicll lf — 1, LIv alscuna ‘}qulj UoLuilivy UIc usudal
boson algebra.
On the g-defermed Fock space F,(/),

{lmy=Im,, my, ..., m)=ay™a;™...a;™|0)|

m=(m]am2 ’m’)ez'ﬂ’ a1|0>=Na|0>=Os 1= 1,2, ,I}

the g-deformed boson realization of the QUEA (A._}), is
+ o
Ei=a;a.4, Fi=aia 2)
H;=N,= Ny, i=1,2, =1
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where
Z'={(m,my,...,m)=mlmecZ ={0,1,2,.. ), i=1,2,..., 1}

is the l-dimensional lattice set. Because

! I 1
(5.2 ~]<[R £ n] =] 3 ~] =0
i=1 i=1 i=1

there explicitly exists a finite-dimensional (A,_,),-invariant subspace in F,(1). This is
the starting point of the discussion in the preceding paper [29]. A g-deformed boson
realization {X;} of a QuEa such that [X;,2{_, N.]=0 is called a homogeneous g-
deformed boson realization; conversely, if [X,, 2., N;]1# 0, then the realization {X;}
is called an inhomogeneous g¢-deformed boson realization.

However, a homogeneous g-deformed boson realization of QuEa (C;), cannot be
found. We need some skill to obtain finite-dimensional representations of (C,), through
its inhomogeneous g-deformed boson realization when ¢” =1 and p is an integer =3.
In this paper, associated with a subalgebra chain of (C,),. a set of standard basis for
the representation of (C;), is well defined so that the reduction of representation is
automatically realized when a representation of an algebra is restricted on its subalge-
bras in this subalgebra chain. In particular, the positive integers A;, A,_,,... and A, in
the index (A, As, ..., A;} of the basis for a representation of (C,}, label the irreducible
representations of (A,_,), (A;_;),...and (A,), respectively, when g7 #1 (p=1,2,...).

2, The g-deformed boson realization of the (C,),-subalgebra chain

The Quea (C,), is an associative algebra (over C) generated by E,, F;, and H, (i=
1,2,..., 1) satisfying the g-commutation relations

[(H,, E;] = ayE; [H,, F]=—aF 3)
[Hi, H]=0 [E;F]1=8,[H],,

and the Serre relations
G;Gjy— (a+ 97 GG Gyt Gyt G =0 1sj=i-2
GG;_,~(g+ ¢ ")GG,_,G;+ G,_,G; =0 1=j=I-1
mio(—1)’“[.’,]qz([m}qz![3—m]qzl)”G?Z{"G,Gj"_1 =0 @
G=EF

where
ay =28 — 8y — By oy=—28;,_, ay=—"08,_,
ay =1 Lj=1,2,...,1-1 [fl=(t! =t )—t!
g=geCigsisi-1) q;=q2

(m]t=[m][m-1],...[2L1] [fli=g =[S}

In fact, E;, F, and H (i=1,2,...,k) are closed under the operation of the g-
commutators and the relations of (A, ), [29] are satisfied by them fork=1,2,...,1-L
They generate a subalgebra (A,),.
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The g-deformed boson realization of a Quea U,(L):{x} is the image
B(U,(L)):{x,=B(x;)} of an isomorphic mapping B:U,(L)~> %,(!). By taking the
g-deformed boson realization of (A,_,}, [14, 29] into account, the ¢g-deformed boson
realization of (C,), is written as [28]

E;=ala., F =a}.,q H=N,-N., i=1,2,...,1-1 )
1 1
,'5,=[—2—]a;‘2 F,=—[—Zja% H, = N, +1.

We can check that relations (3) and (4) hold for the above realization due to the basic
relations {1). We need to point out that realization (5) is only an alternative to the
result of [19]. However, we make a simple but important observation that the realiz-
ations of E;, F; and H, also satisfy the g-commutation relations and the Serre relations
of (Ay), for 1,2,...,k where the fixed k takes 1,2,...,I—1. Thus, realization (5)
actually defines a realization of subalgebra chain I:

(Cr)q = (At—l)q >(A2)>... 2 (A2)q = (Al)q'

Because E;, F, and H, (j=k, k+1,...,1-1) generate a subalgebra (C;_,.1) of (C)),,
(3) also gives a realization of subalgebra chain II:

(C)g 2 (Croi}g 2(Cradg 2. . 2(G5), 2 (Cy),e
The basic subalgebra chains I and II can derive other subalgebra chains, e.g.
2 (An(D}g 2 (A1) =.. . 2 (A1),
(Cy2(Cis1)g 2(Cip)g ... 2(C),
U
(A1-3(3))g=2... 2 (A,
(A1-2(2))g 2 (A1-3(2)) 2. .. 2 (A4(2))g
where ¢ in (A, (1)), denotes the different embedding of (A,), in (C/),, e.g.
(A(1))y={H,, E,, F\}
(At(2))q ={H,, E;, F3}

U

Since the realization of the subalgebra (A,), in chain I is homogeneous, we will
build up a standard basis associated with this chain so that finite-dimensional
representations are easily obtained in this paper.

3. Representations of subalgebra chain I of (C)),

Using (1) and (3), on the g-deformed Fock space ¥,({), we obtain a representation
T, of (C)),:
Ejlm)=[m]lm+e{l) - e, (1)}
Film)=[m1|m—e(l)+ e..(I})
H|m)=(m; —m,,)|m) i=1,2,...,1-1
Ejlm)=[2]""|m+2e(1))
Film)=~[2]1""[m_,][m]|m - 2e(1))
Hj|m) = (m; +3)|m)

(6)
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where
el(l)=(1a 0: .. -90)
e(2)=(0,1,...,0,,...,e()=(0,0,...,1).

1t follows from {6) that (—1)’::—'"‘-' is invariant under the action of I'; and so this
representation I, is reduced a direct sum of two representations I'T and 'y, i.e.

Ir,=ryer;.
Correspondingly, the reduction of the space F,(I) is
FN=F,(HDF (D)
Fa: {lm)(=1)* =" = £1},
The discussion on % ,(!) parallels that on %/(!) and so the following discussion
only focuses on %, (!). Define the standard basis
FAITY=|A, A=A, A= Aa, oy Al — ALy, 20 — AL

for F,(I) where J=1,2,...,A=(A, As,..., A ) €Z"™" and A_,=0,1,2,... for
given A, (k=2,3,4,...,; ;;=2J). Let Ao =0. Then, on the above new basis, representa-
tion (6) is rewritten as

Ef AN =[Ain—Alf(A+ea(i-1)|7) (7a)
FfAN) =[x =i 1f (A —e(I-1)|T) (7b)
Hif(AD) =(2A— Ay — A ) (A i=1,2...,1-1 (7¢)
Erfl-‘-' y=121" IH, 1|_,r+1” (7d}

Ff (A7) =—[2127 = Ao J[20 — Ay - 11 (A - 1) (7€)
Hif (AJ)=(2J = A +2) f(AD). (71)

To show the characters of the standard basis f(A|J) we tentatively consider the
case where g is not a root of unity. In this case, the representation I'7: (C/), > End
{F, (D) is irreducible. Because J is invariant under the action of {A,_;), through the
representation I'7, it labels an irreducible representation [/ 1of (A;_,) ,ontheinvariant
subspace

i
VL {fAl) e F (D} = {Iml, Mas.oompl Loy =21}

1 n faN

1 T owxrt o1 i 1 P L UL ~ (24 . P e
for a fixed J. When the irreducible representation I';"° of (C;), is restricted on its
subalgebra {(A,_,), there is an automatic reduction:

[+s]
Fﬂ(Af—l)q = Yo Ir{?/!
J=0

Fi(h)|=So V'L

J=0

Similarly, A, labels an irreducible representation T of (Ay-1), on the invariant
subspace

V[Ak] {f(’\*") j:\k(Ala LR ) Ak—])‘:‘ |m)|m Ezk#l,kil mi = ’\k}

i=1
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for fixed A;, Axsr,... and A, Correspondingly, we have

A
1"“k+|] — L [’\k]
k41 I(Ak—l)q_ Z$ I

Ar=0
'\k-i-l
A ]_ [A
Vist= ye Vi
Ap=0

4. A theorem on indecomposable representations of (C)),

Now, we return to the discussion of the case where ¢ is a root of unity. In this case
the above reduction and decomposition of a representation will still be preserved, but
some invariant subspaces for g”# 1 are no longer invariant while the irreducible
representions carried on them are no longer irreducible. The foregoing results from
[ap] =0 (« € Z) when g° = 1. Correspondingly, there exist such extreme weight vectors
FAlIN A= Ai=a;p, o, € Z) that Ef(AlJ)= Fo f(AlD)=0.
Theorem 1. In %, (I} there exists a (C,),-invariant subspace S;(j, @) spanned by the
weight vectors

{fAD s —A; = ap, JeZT) acZ”.
When /=2, there is not an invariant complementary subspace for S,(J, «); that is to
say, the representation I'; of (C;}, is indecomposable (reducible, but not compietely
reducible),

Proof. For keZ” we define a subspace W(j, k):{f(A)e F (DA —Ar, =k} of
F 4(I). Then,

S, @)= Yo W, k).

k=oap

It follows from (7a) and (74) that

Ej+1f(”-” = [Aj+2 - Aj+1]f(A + ej+l([ - 1)“)

Fr fAN) =[Ayar ~ A1 (A — et (1 = 1], 8)
From (8), (7a) and (7b) we observe that

Ein f(AlN e W(j, k+1) <= Si(j, )

Ef(Al7)e W(j, k+1) = 5(j, a) (j*i-1}
Ef(AlJ)e W(j, k)< $i(j, o)
Ff(AlD) e W(j, k)< S}, @) i#j,j+1

EW(I-1,kK)cW{i-1,k}<=§(I1-1,a)

for f(A|lS}e W(j, k)= §(j, a). Due to [A; 1 —A]1=[ap]=0,
Eif(AlJ)= F. f(AlJ)=0

for f(A|Fye W(j, ap). For f(A|JYe W(j, k) and k=ap+1,ap+2...,
Ef(AlN)e W(j, k—1)< Si(j, a)

Eo f(AlNe W(j, k—1)<= 8i(j, a) j#l=1
FW(-1,ap+1)={0}
EW(l-1,k)c W(I—1,k-2)c §(I-1, a) k=ap+2.

The above analysis shows that for any f(A|J)eS(j, a), Ef(A/J), Ff(AlJ),
H,f(Al0) € §,(j, v); that is to say, S,(J, a) is invariant.
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Now, we prove that there is not an invariant compiementary space for S (j, a).
Assume that there is an invariant subspace $; (j, a) so that (1) = 5,(j, )® §,(Jj, a).
There must eXist a vector

v= Z e f(Al)+ z hhf(Al)=v,+y,

Aje1—Amap Ajpr—Ay<ap

which has a ¢, #0 and a b, #0 at least. Let b, correspond to such a vector f(A|J)
that k= );,,—A; is a minimum. Then,

(Epv) ™ *0i(#0) € S,(j, @) (15j+{)“”**v(¢0) € 5,(j, a).
Due to this presumption

(Ejs1)™*v e 54, a).
Thus,

Si(j, @) N Si(j, a) # {0},

This conclusion and the presumption are contradictory. O
A corollary immediately follows from theorem 1.

Corollary. When g” =1, there exists an {A,_,)-invariant subspace SV e J, ) spanned
by the vectors :

{F (AN — A= ap}
in Vi*' for fixed J. When !> 2, there is not an invariant complementary space for
SY71(j, @); the representation I'l*’! is indecomposable.

In fact, this corollary is theorem 1 of the preceding paper [29] and some discussions
inthe preceding paper can be regarded as special cases of this present paper. Therefore,
in the following discussions we are no longer concerned with the subalgebra (A,),
of (C[)q.

5. Finite-dimensional representations of (C),

According to the above general analysis, we study the representation I'; of (C,),:
E, f(n|N=[2T-n]f(n+1]J])
F f(nl)={n]f(n|J)
H, f(n|l7)=2(n—J)f(n|])
Eyf(nid)=[2]""f(n|J +1)
Ef(nlJ)=-121"'127 —n][2 ~n-1]f(n|J ~1)
Hyf(n)l)=(J —n+3)}f(n|))

where f(n|J) =a;"a3’ ""|0) and for a given J, n=0, 1,2,..., 2J. This representation is
illustrated in figure 1 where a lattice {J, n) denotes a weight vector f(n|J), the upward,
downward, rightward and leftward arrows denote the actions of E,, F,, E, and F,,
respectively.

(9)
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The character lines /,;: n=8p and 1,: 2J —n = ap cut two invariant subspaces
SALBYBeZ): {f(nlFye F (Dln=Bp}
5,2, a)(@cZ™):{f(n|J)e F;(2)})2) —n= ap}

out of #(2) (see figures 2 and 3). The representation I'; subduces new representations
on the two spaces, which are still mﬁmte dimensional. However, the sum S,(a, B
8.(1, B)+8,(2, @) is invariant under . So there is a quotient space

Qe B)= 9"';(2)/5'12(a, ﬂ){f ”U) =f(”ff) mod S,;(a, 3)|
0<2f-n=ap-1,0=sn=gp-—1}

illustrated as the unshaded domain in figure 4. Then, we have the following theorem.

Theorem 2. On the quotient space Q,,(a, 8) the representation I'; induces a finite-
dimensional representation of (C;),; with dimension

dim Qyx(a, B) =¥ aBp®+ a(ap)a(Bp)) (10)
where a(x)=31—{-1)%),

Proof. For a given Bp, n p values 0,1,2,..., p—1 for each n, because J is an

integer,
n/2=J<(ap+n-1)/2

and J takes 3(ap+ o(ap) values for even J and i(ap - o(ap)) values for odd J. Since
there are 3(Bp+a(Bp)) even integers and 3(Bp — o(Bp)) odd integers in the chain

[ £
n ! q
‘F_z fz n
2i=n
Fs P
v 4 315209, B]
31 s Bp
/
Y

01 2 3. J 0 4
Figure 1. The representation space Figure 2. The invariant subspace S,(1, 8)

0 0 J
Figure 3. The invariant subspace 5:(2, ).  Figure 4. The quotient space Q,,(a, 8).
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0,1,2,3,...,p—1, the pair (J, n) takes
3(Bp+o(Bp))alap + o(ap))+3(Bp — o (Bp)ilap — alap))
=i{app’ - o(ap)a(Bp))=dim Qix(aB)
values; i.e. the dimension of the quotient space is dim Q.(a8). O
Naturally, on the quotient space Q,,{a8), I'; induces a finite dimensional rep-
resentation I'5: (C), » End(Q,(a, B)):
gf (n|d)=T3(g)F (n|7}=T3(g)f (n|J)=gf (n})).

This induced representation is determined in an explicit form by (9) and such extreme
vectors f(Bp—1|J) and f(2J+1—ap|J) that

E,f(Bp—1|J)=E.f (2] +1-ap|l]) =0,

As an example, when p=3 and @ = B =1 we obtain a five-dimensional irreducible
representation
E, = E4+[2]Ey, E,= [2]_‘(521 + Esy)
Fy=Ey+[2]Es, Fy=—(E;+ Eq)
H=2{E,— Ep}

Hz=%(E11+5522+3E3+E44+5ESS)

where E; is a unit of a matrix, i.e. (E;)u= 8xb.
Finally, we consider an invariant subspace chain

Fa(2)282(1,1) 2 85(1,2)>...285(1,i)>. ...
On each quotient space Q, = 8,,(1, i)/ S5(1, i+1),
{f(nlNy=Ff(nJ)mod §;,(1,i+1)|0=<2J—n<p-l ipsn=<(i+1)p}

I'; induces a quotient representation ['L1*. Then, the representation I'J is reduced to
; 2z
a semi-direct sum of I'Y1*, i.e.

ry=r"@ri*g.. orie....

(11)

6. Discussion

Up to now we have explicitly constructed a class of representations of the quantum
algebra (C,),, which contains both irreducible and indecomposable representations.
The status of the results in this paper and the relevant open questions are discussed
as follows,

(i) Although, from the generally mathematical point of view, the representation
theories of quantum groups (quantum algebras) have been built for both generic [9, 10]
and the non-generic cases [11, 12, 30-32], it is still necessary to explicitly give the
representations in matrix form for the needs in physics [25-27]. In this paper we first
obtained a class of symmetric tensor representations in explicit form. Our results
not only contain irreducible representations (e.g. the i(p’—(a(p))?)])-dimensional
representations for {C,},), as explicit examples of the general theory, but also contain
indecomposable representations {e.g. the representations on the spaces Qqi{a, 8)-
(@, B=2) for (C;),), which is completely new. In particular, the introduction of the
analogue of boson operators not only simplifies the process of constructing the
representations, but is also formally familiar to physicists.
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Considering our recent studies in which new solutions of the Yang-Baxter equation
were constructed from a new family of explicit representations for sl,(2) [33], we hope
that the representations of (C;), obtained in this paper with the explicit forms can
also be used for the construction of other new solutions for the Yang-Baxter equation.

It is necessary to point out that we have not obtained all of the irreducible
representations of (C,;),. As for (A;),, we only obtained a class of symmetrical rep-
resentations because only I boson degrees were used for the /-rank quantum algebra
(C)),. How to generaiize the g-deformed boson reaiization method to get aii the
irreducible representations of (C,}, is still an open question. Maybe the g-analogue
of the Borel-Weil construction for Lie algebras [34] is needed for this question.

(ii) It worth noticing that, when g - 1, realization (3) becomes an operator rep-
resentation of the Lie algebra C, and contains a subalgebra su(1, 1} generated by E;,
F; and H,. Because this subalgebra is non-compact, realization (3) naturally results in
infinite-dimensional irreducible representations for both the Lie algebra C, as the limit
for g—»1 and the quantum algebra (C,), with generic g (g #1). Such a realization
associated with non-compactness is called a non-compact boson realization of quantum
algebra and usually given an infinite-dimensional non-unitary irreducible representa-
tion for the generic case.

For the non-generic case the fact that finite-dimensional representations of (C;),
can be obtained from its infinite-dimensional representation by taking ¢” =1 shows a
completely ‘quantum’ picture without the ‘classical’ limit. In fact, as g » 1, the infinite-
dimensional representation becomes a representation of the corresponding Lie algebra,
but the finite-dimensional representations do not make sense. Such a finite-dimensional
representation of the quantum algebra (L), cannot regarded as a simple g-deformation
of a representation of the corresponding Lie algebra [16-18].

(ili} The results of this paper highlight a g-deformation scheme by which such a
completely ‘quantum’ finite-dimensional representation for the quantum algebra can
be constructed. (a) For a given Lie algebra L, we try to find a non-compact boson
realization of L and then use it to construct an infinite-dimensional representation,
which is usually irreducible and non-unitary. (») We perform a g-deformation of this
realization so that it becomes a g-boson realization of the quantum algebra (L),
associated with L. Correspondingly, the representation of L is deformed into an

infinite-dimensionai represeniaiion of {L),, which is irreducible when g is noi a root
of unity. (¢) Taking the non-generic condition [ap] =0 (a € Z) caused by g* =1 into
account, we can find a finite-dimensional invariant subspace, on which we obtain a
finite-dimensional representation of the quantum algebra (L),. As for (C;),, the (A;),

case can also be successfully handled using this scheme [25].
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