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Abstract. In this paper we introduce the concept of cyclic boson algebra and study its
representations. Using this algebra to realize sl,(3}, we construct the cyclic representation
of the quantum universal enveloping algebra U (si{3))=sl,(3) on the g-Fock space.
Restricting this representation to the subalgebra sl (2) (<s!,(3)), we naturally obtain the
irreducible cyclic representations of s1,(2).

1. Introduction

Quantum group, quantum algebra (g-analogue of a universal enveloping algebra) and
their representation theory play a crucial role in the construction of solutions (R-
matrices) to the quantum Yang-Baxter equation (QyYBE) [1-5]. Recently, the representa-
tions of quantum algebras at roots of unity have attracted much attention in both the
mathematical field [6-8] and the physical field [9-13]. Concini and Kac, especially,
have made a systematical study on the representation theory of quantum algebras in
the case that g is a root of unity, and Date, Jimbo, Mike and Miwa, motivated by the
problems in the Potts model, have given some concrete cyclic representations studied
theoreticaily by Concini and Kac,

The aim of this paper is to try to establish a procedure to construct explicitly the
cyclic representations of a quantum algebra through the g-deformed boson realization
[14-19]. The so-called realization theory originated from the Jordan-Schwinger map-
ping of Lie algebras [18] and was later generalized to associative algebras, including
quantum algebras [14-17]. To get a clear picture of the realization method, let us
review it. Suppose A and S are two associative algebras over the complex number
field C. If there exists a homomorphic mapping ¢ : A S such that the image ¢(A) is
a subalgebra of S, then ¢(A) is called an S-realization of A. In fact, ¢(A) defines an
operator representation of A. As a result, a representation of S naturally subduces a
representation of A =p(A)< S. We call this subduced representation an S-realization
of the representation of A. In a practical problem, § is always chosen to be ‘simpler’
than A, by which we mean that it is easier to obtain the representations of § than to
obtain those of A. About this realization method there are the following three cases
worth mentioning:
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(i) Ais a Lie algebra; S is the Heisenberg-Weyl algebra generated by the creation
operators and annihilation operators or the differential algebra generated by the
operators Z and d/dZ on the Bargmann space [19-21]. Correspondingly, ¢(A) is
called a boson realization or a differential realization.

(ii) A is a quantum algebra; S is the g-deformed boson algebra or the differential
algebra. In this case, ¢(A) is called a g-deformed boson (or oscillator) realization and
a differential realization respectively {9, 22].

(iii) A is a quantum algebra; § is an associative algebra generated by X, Z and 1
satisfying XZ = gZX and Z™ = X~ =1, So far as we know, this realization first appears
in {23], where it is used to construct cyclic representations of some quantum algebras.

In this paper, we will introduce an associative algebra called cyclic boson algebra
and choose it as the above-mentioned S, Thus, the realization to be obtained is what
we call cyclic boson realization, which, as will be seen, is the key to all our discussion.
This paper is constructed as follows. In section 2 we give the definition of the cyclic
boson algebra and construct its representations; in section 3, some realizations of the
quantum algebra s1,(3) and its subalgebra sl (2) are listed; in section 4, the cyclic
representation of sl,{(3) is constructed on the cyclic Fock space; in section 5, we discuss
the representation of sl (2) resulting from that of sl,(2) as a subalgebra.

2. Cyclic boson algebra and its representations

Let us first recall the definition of the g-deformed boson algebra B, [15-18)]. As is
known, it is defined as an associative algebra over C generated by the g-deformed
boson operators a;, a; = a; and Q7 = g*™ satisfying the relations

P S . I e e Far arl_n
did; — 4 YU; d; — 0y Li¥jy ¥} =V (2 1)
[M) a;t]=:t8ga;t l=1323 sl

where g C. Now, we have:

Proposition 1. If g is a primitive pth root of unity, i.e. g” =1, the elements a;” and
Q7 (i=1,2,...,1) belong to the centre of B,.

Proof. The proof follows from the equations

aa;"= ["]aT—IQi‘F q_"aT"a.-

(2.2)

GIfEQ:zq'leiari a?:Qi_=‘L'il Jar
where [n]=(g"— ¢~ ")/(g—q"). Using equation (2.1), one can easily prove them by
induction. O

Since (a7)” are central elements of B,, we can restrict them to be constants without
causing contradictions in the algebraic structure.

Definition 1. A cyclic boson algebra is an associative algebra generated by a; and Q7,
which satisfy equation (2.1) and

(af) =¢.eC. (2.3)



Cyclic boson algebra 163

Having given the definition, we now turn to consider its representation. In the following
we denote the cyclic boson algebra by B.([). Let

UMZU(.U.I,}LZ,...,}L;) (u.,-EC,iil,Z,...,l)
be such a common eigenstate of Q; (i=1,2,...,1) that
Qu, = q"u,. 2.4)

As a result of equation {2.4) we call it a cyclic vacuum state.

Definition 2. The cyclic Fock space F.(1) is a span of the linear-independent states

F{m)}=F(m;, my, ..., m)=al™a;™...a/™v,
m;€{0,1,2,...,p—1} i=1,2,...,1L
From the definition one can easily write down the action of B/} on #F (1)
a;y F{m)= F(m,+8;) O=m=<p-2
a;F(mi>|m,=p—1 = §j+F(mi)| =0
& F(m;)=[m;+ w1 F(m,— 8;) 1=m=p-1 (2.5)

ajF(mi)lm}=D = {#j](§+)_1F<mi)|rn,=p—l
Qj Fim)= ¢~ F(m,).

Proposition 2. If the parameters u; satisfy

Do dlpei + 1 + 21 [ +p— 1)=& - &
then equation (2.5) defines a p'-dimensional irreducible representation p: B.(I)~
End(F.(1})) of B.{).

Proof. Forl=1,wedenote £,,, QF, ar and F{m,) by £,, QF, a* and F(m) respectively.
Then, we rewrite equation (2.5) as

atF(m)=F(m+1) D=m=p-2
2.6a
{a+F(p—1) = £.F(0) (2.6a)
aF(m)=[m+u]F{m—1) l=sm=p-1
- (2.6b)
aF(0) =[u](&) " F(p—1)
Q*F(m)=q*" " F(m). (2.6¢)
It follows from (2.6b) that
APEMOY = (g VI, 411 [t n—11E{D e lea)
LN Lo+7 lf“‘JLP" ' 2l M 215 vy N&s ¥
On the other hand, from equation (2.3) one has
afPF(0)=£_F(0). (2.8)
Comparing (2.7) with (2.8), we get
Eo-éo=[ullut+t]...[p+p~1] (2.9)

For an arbitrary [, the proof is the same. It is easy to check that when equations
(2.6a-c) are satisfied all the relations in (2.2) and (2.3) will be kept on the cyclic Fock
space F.(I). In other words, (2.5) defines a representation of B.(/). The dimension
and irreducibility of this representation follow from (2.5) directly. O
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3. The cyclic boson realization of sl (3) and sl (2)

The cyclic boson realization ¢(sl,(k)) ={g = g(g)|g €sl,(k)} is determined by a homo-
morphic mapping ¢ :sl,(k)—> B.(!). In this section, we consider sl (2) and sl,(3). We
would like to point out that for a quantum algebra, there may exist many different
realizations.

Dunmacitinm 2 Barthn avantaimm alaoakeas o1 79Y Tainl 257 cactamadad ¥ ped I7E_ xS
£ FULRRIMLISURE O, 17U LI \.lu:uu.u 11 GIEGUICI. qu\L}, WIlIGLL 1> 55 icialcu Uy Jy dllIU - q
satisfying
[J+J-1=[4] [f5, J.]==21, (3.1)
the following mappings define three cyclic boson realizations:
(i) @:sle(2)~ B1):
J.=at J_=a[r+1-N] R*=Q*¢™ (3.2)
(ii} ¢:s1,(2) = B.(2):
j+=a1+a2 j_=a;a1 Ied:: Tl ;2 (3.3)
(iii} ¢ :s1,(2)> B.(2):
Jo=a! J =al+a,[2N,— N, +1] K*=Q7%07%¢™. (3.4)

Proof. The proof follows from the observation that aa;=[N,+1], afa,=[N;] and
aiaj =ajya7 (i#j), which is equivalent to (2.1). a

For the quantum algebra sl,(3) generated by E,, F, and K; (i = 1, 2} satisfying

K.-K[?
e B T
(3.5a)
K7 E =q*"vEKY KiF=¢""FKT
GG, ~(g+q 7 ")G.G,G,+ GG =0 L
(3.50)

i ij=1,2 G,=E or F,
we have the following proposition.
Proposition 4. There exists a realization of sl,(3) determined by ¢: s1,(3) » B.(3)
E,=a!
Fi=qMala;—a,[Ny— Na+ Ny—1—-4,] (3.6a)
Kt =q"a?Q7' Q3"
E,=a}Qi'-97'Q7'mal
f;}z = @i+ A, — Ny - ‘Ilﬂzogla:as

£ FA yE2 ]yl
Ky=q""Qz°Q 3

——
(5]
=0
o

S

where A, and A, are complex parameters.
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Proof. The proof follows from direct calculation. g

It is worth pointing out that on the usual Fock spaces %,
{lm)=a""|0}] al0) =0, Q|0)=0}
and &,

where a* and a; (i=1, 2} only satisfy equation (2.1), the realizations (3.2) and (3.6}
define the so-called Verma representation of sl (2) and the Verma representation of
sl;(3) respectively.

4. The cyclic representation of sl (3)

We construct the representation of sl,(3) from the realization (3.6). The action of sl (3}
on %3} is defined by

goF(mIs m;, m3)=‘P(g)° a':'mlaE'MZa;m3v gE{E! F‘is Q:b i= 1: 2}-

"

Proposition 5. The following equations define a p*-dimensional representation of sl,(3):
E,F(m,, my, m;)=F(my+1, m,, my) {(m#p-1)
E,\F(p—1, my, my)=£,,.F(0, my, m;)
F,F(m,, my, m;)
=g M[my+us)F(m, my+1, my—1)
[+ [+ ) —(ma+ o)+ (my+ ) = 1= A, JF(my — 1, my, m3)
(m#0,my=p—1,m;#0)
FF(m,,p=-1, m,)
=q "[my+ pa]é F(my, 0, my—1)
—[m+p dlmi+mtptus—AJF(m—1,p—1, m,) (4.1a)
F,F(0, m;, m;)
=g M+ u.]F(0, my+1, m;—1)

_lwl
&

F F(my, my,0)

[pe1— (mot po)+(ms+ u3) —1-X1F(p -1, m;, m3)

—[my+u Jlm +p—{ma+ o)+ s —1—AJF(m,— 1, my, 0)

K F(m,, my, my)=g*Xmsd=(mtud ¥ b= By my,my).



166 C-P Sun et al

E,F(m,, my, my)
=g O R(my, my+ 1, my) — g TR Imy 4w, JF(my - 1, my, myt+1)
(m#0, my#Zp-1, my#p—1)
EsF(0, my, my) = q~" F(0, my+1, m3)—{—g:—] g~ et E(p— 1, my, my+1)
E,F(my, p=1,my)=q ™*"& F(m,,0, m)~q *{m+u)F(m~1,p-1, m+1)
E,F(m,,my,p—1)
=g ™ F(m,, my+ 1, p=1)— g~ my + w18 F(my— 1, my, 0)
FF(m,, my, m)
= g™ 14 Ay — (my+ po) [ my + p)F(my, my—1, my)
=gt lmat TR (my 1, my, my—1)
(m,;#0, m=p—1, my#0) (4.1b)
F,F(p—1,m,, ms)
= g™ [ 1+ A~ (mat pa}] [ma+ 2] F(p—1, mo— 1, my)
g R e+ 1€ F(O, ma, my—1)
F,F(m,,0, m;)

= g™ 1+ Ay = (my+ ;)] Leal Flmy,p—-1,m,)

»
— g my+ s JF(my+1,0, my—1)
F,F(m,, m;,0)
=g" A= (my+ ) + 1] [my+ p1F(my, my~1,0)

_ ql+»\2—(mz+u2) [2“_3] F(m1+ 1, mz,p—l)

3+

K;F(ml s M, m:}) - qi(Z(m2+u2)_{ml;—“l)+(m3+nj)_1\2)F(mla m;, m3)‘
Proof. 1t is proved through lengthy but straightforward calculation. O

Remark 1. When p,, £, #0 (i =1, 2), the representation (4.1) has neither the lowest
nor the highest weight, and Ef and F? are non-zero constants in this representation.
So it is an irreducible cyclic representation. In fact, according to Kac and Concini,
the dimension D of an irreducible representation of a quantum algebra G, satisfies

D<p"™ m = (dim G —rank G)/2 (4.2)

where dim G and rank G are respectively the dimension and the rank of the Lie algebra
G corresponding to the quantum algebra. For sl,(3), dim G=8, rank =2 and m =3.
Thus, the representation (4.1) is an irreducible cyclic representation with the maximum
dimension.
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Remark?2. If[p;]1=0(i=1,2),(4.1) determines a representation with the lowest weight,
which can be obtained on the cyclic Verma module

{f(mls ms, m]) = ETIE?ZE;"JUA[ ni,, m;, mBEZ+}

where Ef=¢&, (i=1,2,3), Fio,=f0,=0, Kiv,=q "v, (i=1,2) and E;=
E,E,—qE,E, is the generator corresponding to the third root of Lie algebra A,.

5. The boson representation of sl (2)

Since s1,(2) is a subalgebra of sl,(3), the restriction of the representation (4.1) to it
naturally defines a representation of it. This representation is given by (4.1a). According
to Concini and Kac (see equation (4.2)), this p*-dimensional representation of sl (2}
is reducible. We are trying to find an irreducible cyclic representation from it.

In (4.1a), we let ;=0 (i=2,3). Then we obtain the representation of sl (2):

E,F(m,, my, m3}=F(m,+1, my, m;) (m#=p—1)
E\F(p—1, my, my) = £, F(0, my, my)
F,F(m,, m;, m;)
=g M[m1F(my, my+ 1, my— 1) —[m+ p ] [(my+ ) =my+ my—1-24,]

X F{m,—1, my, m,) (m#=0, my#p—1,m#0)
FF(m,p—1,m}=—{m+pud[m+tm+p —A1]1F(m—1,p-1,ms} (5.1)
F,F(0, my, m,)

=g M [m,]F{0, my+1, m;—1)

_[.U-:]
v

FiF(my, my,0)=—[m+p,][m+p,—my— 1 —MIF(m—1,m,, 0]

K:th(ml s My, m3) = qtu(m‘-hu’)Mm2+m3_l\l)F(ml » M3, m3)‘

{)—mytmy—1-AJF(p—1, m,, )

We note that V,
{F(m,0,0)= F(m)im=0,1,2,...,p—1}
is a p-dimensional invariant subspace for the representation defined by (5.1), so we

have:

Proposition 6. On the space V., the representation (5.1) subduces an irreducible cyclic
representation of sl (2)

E.F(m)=F(m+1) (m#p-—1)

E\F(p—1)=¢£,,F(0)

FFm)=[m+u][1+A,-(m+u,)} F(m—1) (m#0)
]

FFO)=[A;+1—u,]- ¢ F(p—1)

1+

K Fm)= gm0 F(m).
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Remark. When pu =0, this representation can be directly obtained on the cyclic Verma
module

{f(m)=ETv,|meZ"}

where Ef=¢,,, Fiv,,=0and Kiv, =q™ v, .

6

We have seen that the g-deformed boson realization is indeed a powerful method of
constructing representations of a quantum algebra. In fact, not only can it greatly
simplify the calculation made to obtain the explicit representations of a quantum
algebra, but it can also stimulate one’s imagination: the fact that the special cyclic
boson (with &.=0 and p =2) satisfies a;>=0 may lead one to make a guess at the
relation between a general cyclic boson and an anyon. Finally we point out that the
method discussed in this paper can be generalized to other quantum algebras in a
straightforward way.
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