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Abstract. The concept of the cyclic boson operator is introduced for the explicit construction
of new representations of the quantum algebra sl,(2) when g is a root of unity. The method
used here can easily be generalized to other quantum afgebras or quantum superalgebras.

The study of the quantum group and its representation theory associated with the
Yang-Baxter equation {YBE) is a hot subject [1-4], especially for the case that g is a
root of unity (or ¢"=1, p=2, 3,...) [5-10]. More recently, De Concini and Kac
systematically studied the irreducible representations of quantum universal enveloping
algebras (quantum algebras) from a purely algebraic point of view when q is a root
of unity [11]. Motivated by the problems in the Potts model, Date er al explicitly
constructed such kinds of representations for U,(sl(n+1)) and U,(AY) [12,13].
Because the elements { )" are non-zero constants in these representations where the
generators f do not belong to the Cartan subalgebra, these representations are called
cyclic representations.

In this letter we report how the g-deformed boson realization method constructing
the representations of quantum algebras in generic cases (g”" # 1} [14-18] can be
generalized to obtain such cyclic representations. We also obtain the cyclic representa-
tions with the multiplicities larger than one for quantum algebra sl,(2) as a completely
new result, so far as we know. The discussion is followed with sl,(2) as example, but
the method used can be applied to other quantum algebras or superalgebras.

The key to the study in this letter is the introduction of the cyclic boson operators.
For the usual g-boson operators [14-16] a" =a", a = a and N satisfying

aa*-q'ata=Q" [N,a*]=%a" (1

where we defined Q*=¢*". When g” =1, we easily prove that (a*}” and (Q*)
commute with a® and QF; that is to say, they belong to the centre of the g-boson
algebra [18] B, generated by a® and Q. Thus, we can impose the additional relations

(@)= p. pe=peC p=neC (Q*) =1 (2)

(C is the complex number field) on the algebra B, when g" =1 and there does not
appear any contradiction. The operators a® and Q" satisfying (1) and (2) simul-
taneously are called cyclic boson operators while the finite-dimensional algebra B,
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with the basis
a+man(Q+)K K=0
K)= .
{f(m,n, ) {a+’"a"(Q")'K,K<O R

is called the cyclic boson algebra, which is generated by the cyclic boson operators.
Associated with the cyclic boson algebra B, defined above, the cyclic Fock space
F, is defined as a span

m!n!iK=0’l!2!""p_l}

{F(m)=a*"0)]al}=0, Q"10) =10, m=0,1,2,..., p~1}

for n =0. This space naturely carries a p-dimensional representation:

a*F(m)=F(m+1) 0O=sm=p-2
a*F(p-1) = uF(0)
aF(m)=[m]F(m—-1)  [m]=(q"—¢"")/(g—q ") (3)

Q*F(m)=q""F(m).

Now, we consider the quantum algebrasl, (2) generated by f, and Jo(or K* =g
and the relations

[Je, J1=[21] (=(K"~K")/(g—q""))

[Jo, Jo]=%J. (orKJ.,=¢*J.K,K*=K K~ =K™). (4)
It follows from (1) and (3) that, on the space F,,
~ a(qA+lQ—_ q—a—10+)
- q-q
satisfy the basic reiations (4); namely, equations (5) define an operator representation
of s1,(2), which is called the cyclic boson realization of sl,(2). From this realization,

we immediately get an irreducible representation of sl (2) on F, through the representa-
tion (3} of B, as follows

J.F(m)=F(m+1) Osmsp-2
JoF(p—1)=pF(0)
J.Fim)=[m][A+1-m]F(m—1)
K=F(m)=g¢**""*F(m).

Then, we reconstruct the cyclic representation first given by De Concini and Kac (see

remark 4.2(b)in[11]} in a special case that one of two parameters in their representation
is taken to be zero. In an analogue

1210),

J.=a* I

K*=(Q*y¢™ (5)

(6)

m

-1/2
‘I’J-(M)={ Il ([j+K][)t—j—K+1])} F(j+m)

LK=—j+1 J
¥.(—j)y=F(0) m=—j+1,—j+1,—j+2,...,j forj=(p—1)/2
of the angular momentum basis for SO(3), the representation (6) is rewritten as follows:
LU (m)y={(A—j—mllj+m+1]}'*¥ (m+1) ~j<m<sj-1
T ¥, (my={[j+m][rA—j—m+1]}""*¥,(m-1)
K*¥;(m)=g*2""™"" ¥ (m) (7)

J+wj(f)=ﬁzq’j(_j) ‘
ﬂ={ TJI ([f"’k][(f\"f)_K“"l])m}‘ﬂ--

K=—j+1
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Now, let us try to construct a new cyclic representation of sl,(2), which has not
been given in an explicit form by any other author up to now. To this end we first
give another cyclic boson realization

Je=ay K*=(QD)%(Q3:) g™
J_=a;+a1[2N2—N,+1+A] AcC
ock space F.(2):

{F(m, n)= a.“"a;"io)| a|0=0,Q7|0),i=1,2; mn=0,1,2,...}

(8)

corresponding to the two-state cyclic boson algebra B (2) with the generator a;=a;,
a; and QF (i =1, 2). Here, we follow the original definitions about the multi-state case
in three early works [14-16] and let the boson operators of different states commute
with each other, i.e.

aa’—q 'aja;=Q;=q"

[N, ail=zxa7 i=1,2

[xjsyr']=0 i#j xay=aia Q1
where the cyclic conditions are (a])* = peC (i=1,2). Then, on F,(2), we obtain a
p°-dimensional representation

J.F(m,n)=F(m+1,n) 0=m=p-2
J.F(p—1,n)=pu,F(0, n)
JFimn)=F(mn+1)+[ml{2n—m+1+A)JF(m—1,n) O0sn=sp-2 (9)

F B = 1Y — . D 0T ITy 11E5( 1 .
JE\, P 1]\, VT W A— W — 10— 1, P

K*F(m, n)=g**"~"**F(m, n).

It is irreducible if w; # 0 and A is not an integer. Because there exist the weights with
multiplicities larger than one, it cannot be covered by the work of De Concini and

Kac [11] in an explicit form. For example, the weight vectors F{(m+ &k m) (m=0, 1,
2 n— l\ onyrpcnnnd to the same wmoht 2k — A In fact. the formal (‘vchc‘ conditions

ETRIY 4 Copa it L. 1o 282 1all, i3 L L

F(p,n)=p. F(0,n) F(m, p)=p.F(m,0)

enable one to represent the basis F{m, n) by the lattice point {m, n) on a torus
§'x 8" {(m, n}|(m+p, n+p)={m, n)}, but the representation given in [11] only corre-
sponds to a circle. Therefore, we say the two representations, given by us and by
De Concini and Kac, have different ‘topologies’.

Finally, we study another representation

J.F(m, n)=[n]F(m+1,n-1) Osm=<p-2 lsn<p
F(p—1,n)=[n]u,F(0,n—1) lsn<p
J_F(m n)=[m|F{m—1,n+1) Osnsp-2 (10)

J . F(m, p—1)=[m]p,F(m—1,0)
K*F(m,n)=qg=" """ F(m, n)
of s1,{2} on the space F.(2) in terms of another realization

J.=aia; J_=aja, K"=Q7Q;. (11)
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In order to reduce this representation, we formally extend F.(2) to the space
F.(2): {F(m, n)e E.(2), F(p, n), F(m, p)}. Limited by the cyclic conditions F(m, p) =
w2F{m, 0) and F(p, n)=u,F(0, n), F.(2) returns to F.(2). Then, we immediately find
an invariant subspace V:{F(m, n)e F.(2)|m+n=N or N+p} for N <p. Here, we
have considered the connections F(N, p) = u,F(N,0) and F(p, N)=u,F,y, N). If
F(m, n) are also denoted by a lattice point {m, n) on the above defined torus §'x §7,
then the invariant subspace V is denoted by a set of lattice points

ON)>(ILLN-1)>- - >(n,0)~(N,p)>(N+1,p—-1)>- -
»(p—1, N+1)>(P,N)~(0, N)

on a closed line on the torus $' x S'. Considering the dimension p of V is independent
of N, we choose p vectors
F{m, N—m) 0=sm=<N

m)=
() {F(m—],N+P+]—m) N+l=m=sp+i1

as the basis for invariant subspace V where fiuy (N +1)= 3 fn (N}, fu(p+1) =1, [y (0).
Then, we explicitly write down the p-dimensional representation on it :

Jofn(m)=[N-m]fy(m+1} 0=m=N-1 mzxp
JIn(N)=0
JoSn(p)=EN +1]u, fn(0)
J_fvim)=[m]fu(m-1) 1=m=N+1
J fn(0) =0

(12}
J_IN(N+2)=[N+1ju fn(N)
Lfnmy=[N+1~-mlfu(m+1) N+ismsp-1
J_fu(m)=[m—1)fn(m-1) N+3=smsp

K*fn(m)=q*=*" N fy(m)
K:t:fN(m) — inm#(N+2}fN(m).

Because the complementary space {fn (N +2), fn(N+3),...,fv{p)} and any others
to the invariant subspace {fn(0), fn(1),. .., fn(N)} are not invariant, the representa-
tion (i2) is indecomposable (reducibie, but not completely reducible). The similar
circumstance can appear for the general representations in remark 4.2 of [11] when
the special parameters are taken.

Based on this letter, the systematic works on the g-boson realization of cyclic
representations for quantum algebras and superalgebras are being prepared for publica-
tion. The new representations obtained in this letier can be used for the construction
of new solutions of the vse through the scheme in [13]. Finally, it is pointed out that
the main results and the central idea are not covered by some recent studies [19-20]
by other authors,

The authors thank Professors M Jimbo, P Kulish and Z Y Wu and Drs H C Fu and
X F Liu for useful discussions. This work is supported in part by the National Science
Foundation of China.
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