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Abstract. Verma representation theory for classical Lie algebra is extended to study the
representation of quantum universal enveloping algebra (quantum algebra) for the non-
generic case that ¢ is a root of unity. On certain subspaces and quotient spaces of the

Verma space, finite- and infinite-dimensional irreducible or indecomposable representations
of sl,(3) = U,(s1(3)) are obtained in explicit matrix forms.

1. Introduction

At present, the quantum algebra U (L) (a g-analogue of universal enveloping algebra
of a classical Lie algebra L} is an important topic in mathematical physics [1-3]. This
is because of its crucial role in nonlinear integrable systems of physics through the
Yang-Baxter equation (vBe) [4, 5]. The representation theory of quantum algebra is
progressing rapidly from different directions [6-12]. Although the g-deformed Boson
realization [10-12] is a useful method to construct explicit matrices of representations
for quantum algebras, it is only powerful enough for symmetric representations of
quantum algebra (A,}, = U,(sl({+1)} and (C;)g = U, (sp(2{}). In order to obtain the
representations with another symmetry, we have studied the regular representation
with (A;), as an example [13], which is closely related to Vera’s theory [14] for Lie
algebra.

In this paper we will generally consider an extension of Verma’s theory for the
quantum algebra with sl,(3) as an illustration. Since the discussion of the generic case
that ¢ is not a root of unity is only a g-deformation of the Lie algebra case (for the
study of Lie algebra A,, see [15] and [16]), we will mainly pay attention to the
non-generic case that g is a root of unity, ie. ¢"=1(p=3,4,5...).

We first describe the main results and some technical details in this paper as follows.
In section 2, through a quite lengthy calculation and by induction, we write down
some g-deformed commutation relations (g-relations) among the bases ofslq(S) These
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[8, 18] for the quantum algebra into account. In section 3, we expllcu!y construct an
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infinite-dimensional representation {quantum Verma representation) on the so-called
quantum Verma module with a lower weight by making use of the obtained g-relations.
In order to get the finite-dimensional representations, which are necessary for
constructing solutions of the vBE, two distinct classes of invariant subspaces are
indentified by some extreme vectors on the guantum Verma space in section 4. As the
induced transformations of the quantum Verma representation on the corresponding
quotient spaces, the finite-dimensional representations are constructed explicitly in
both the generic case in section 5 and the non-generic case in section 6. In the former
case, the obtained finite representations are either irreducible or completely reducible.
In the latter case, the extreme vectors are defined by the non-generic condition ¢” =
(p=3,5,...) and our construction leads to the finite-dimensional indecomposable
(reducibie, but not completely reducible)} representations.

Finally, it is pointed out that these new representations can be used to construct
non-generic R-matrices [17] for vRE through the universal R-matrix of sl (3) [18].

2. The g-deformed commutation relations and bases for sl (3)

The quantum algebra sl (3} is an associative over the complex number field C and
has generators E;=E[, F,=E; and H,(i=1,2) that satisfy the basic g-deformed
commutation relations

[H,, E{]=%2E} [H,, E5]=FE3}
[H,, EY]=FE{ [H., ES}=x2E3 (2.1)
[E., F1=98,[H] [H, H]=0 Lj=1,2
and the Serre relations
EFEL —(g+q )ETELEF+ELL Ef =0 (2.2)

where [f]1=(g" —q™/)/(g—q") is defined for any operator and number f and geC.

When g1, (2.1) just are the commutation relations satisfied by the Chevalley
basis of classical Lie algebra A, =su(3), and {E,, F;} corresponds to the simple roots
a,=e,—e and a,=e,—e,;, when e, =(1,0,0), e;=(0,1,0) and e;=(0,0,1). So we
need to find the third pair { E5, F;} corresponding to the third positive root 2y = a, + a; =
e, — e, for the construction of the basis of s1,(3}. According to Rosso [8] and Burroughs

(18],

E,=E E,—qE,E, F,=F F,—gF,F,. (2.3)
It follows from (2.1} and (2.2) that

E,E,=q 7 'E\E, E.E,=qE \E;

FE,= E;F + E; K, F,E.=E,F,—gE K7’ (2.4)

K,E.=gE,K, K7'E.=¢ 'E,K3'

where K, =g and K,=g¢". By induction we prove
EzE;n=q_mETEJ_q_l[m]ET_]EJ

EsE{=q"EVE; EiEl=q "E;E;
F\E}=EjF,+[n]E.E{7'K, F,E4=E{F,-q[n]E,E{7'K5'
FE!=EF-(g-q ) 'EI"(q""'K,=q'"K7") i=1,2

(2.5)
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Using (2.1), (2.4) and (2.5), we can easily arrange the basis for s1,(3) as
EMESENFVFIFRHOH (2.6)

(where m;, n; and ;€ Z° ={0,1,2,...}, i=1,2,3; j=1,2) because we may commute
any of the generators E;, F; and H,. This is just a special case of the g-analogue of
raw theorem for sl (/+1) proved by Rosso [8], which is a generalization of the pew
theorem for Lie algebra.

3. Quantum Verma module for sl (3)

Because an associative algebra itself is a linear space, the left transformation L:
s1,(3)~ End(sl,(3)) defined by

L{ig) X=g-X Vg, X e51,(3)

determines an infinite-dimensional representation of sl,(3), which is called the left
regular representation. As g1, it becomes the master representation of su(3) [15],
which is a subrepresentation obtained by constraining the regular representation of
su{3)-universal enveloping algebra in its subalgebra su{3}).

Let # be the Cartan subalgebra of sl,(3), which is generated by H, and H,. If A
AeJ*, ie. A is a linear function on 3, then {F, H,—A(H)Wi=1,2,3; j=1,2,
1=X(0,...,0)} generate a left ideal I{A) =5s1,(3) (2., F;+2.., (H,— A(H,})), which
is a left invariant subspace of sl (3). The corresponding quotient space

V(A)=V(A,, 45)
=sl,(3)/ T(AYA; = A(HN: {fi(m, n, k)= ETESE{ mod I(A), m,n, keZ"}

with the action of sl,(3) induced by L is called the quantum Verma module {a
g-analogue of the Verma module for classical Lie algebra). When ¢ - 1, it becomes
the usual Verma module, an indecomposable standard cyclic module with the lowest
weight A: (A}, A5} [19]). Here, |A)=£,(0, ¢, 0) is such an extreme vector that

Hi|A) = A;|0) F{A)y=0 i=1,2.

Using (2.5) we explicitly write the representation p'*! of sl,(3) on the quantum
Verma space V(A) as follows:

H film,n kY=02m—n+k+A)fi(m n k)

Hyfilm,n, k)=02n~m+k+A)f,.(m, n k)

E filmyn k)=f(m+1,n k)

F filmn K =g"[k]filmn+1, k—1)—[mlm—-1-n+k+A]film—1,nk)
Efilmn kY=g "f(mn+1,k)—q"" '[m]film—1,nk+1)

Fyfilm,n, k) =g"[n][1-A,—nlfi(m, n~1, k) —q' =" (k] fi{m+1,n k—1).

According to Rosso [8], some theorems about representations of classical Lie
algebras can be directly generalized to the quantum algebra in the generaric case. So,
when A is a dominant integral function, i.e. A(H;) =4, €Z” ={-1,-2,...}, the Verma
representation p'*) may induce some finite-dimensional representations on certain
quotient spaces. These representations, which are irreducible for the generic case, are

(3.1)
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no longer irreducible for the non-generic cases. This is because [ap]=0 when g" =1
and « € Z* and some new extreme vectors result from [ap]=10. We need to point out
that what we study here is the quantum Verma module with the lowest weight and the
discussion about the quantum Verma module with the highest weight is just parallel
to the former discussion. In particular because of the symmetry of weights under the
Weyl group, the finite-dimensional representations resulting from the quantum Verma

representation with highest weight are equivalent to those resulting from the quantum
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reasons we only need to study the case with lowest weight.

4. Two classes of invariant subspaces

In this section we will determine two classes of
asses of
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' "' subduces new representations.

4.1. The first class of invariant subspaces

Invariant subspaces of the first class,
S, =sl,(3)- o {E"ESESv\m, n, keZ™)

are standard cyclic modules [19] defined by such extreme’weight vectors v that
pM(Fyv=0 Hy=M(H)v= My i=1,2 4.1

where M{e #™*) is a weight function so that M, --A, =0 or M, A,=0 for M,=A,.
The lowest weights of these standard cyclic modules are M: (M, , M)

Lwh-L A 4 LTS LGRS FRALR GRS Lup s ) ¥l

The weight space V{M,, M;]= aﬁ(a, B € Z) with weight (M,, Mz) can be labelled
by two indices & and 5:

a=12M +M,—2k,—A2) B=12M;+M,=2A— X))
It is easy to see that V,z = V[ M,, M,] is spanned by the weight vectors
{fila—k B—k Kk)I|k=0,1,2,..., min{a, 8}

where min{a, B)=a, if o <8, and min(a, 8) =8, if a > B.
Let

min(a, 8}

v= ¥ GCfle-kB-kkleVy, (4.2)
k=0
be an extreme vector satisfying (4.1). Then the equations p"* (F)o =0and p"(Fy)o =0
respectively give
gk +11C - [a—kl[a-B+k+r,—1]C,=0
@ PNk 1] Coan — g (B - KI[1 - B+ k= A,]Ci = 0.

Because the recurrence relations (4.3) determine some extremal vector o, they must be
identical and thereby @ and 8 must be chosen carefully. Then,

g P k1] [B—k][1-B+k-A.lg"
Mk+1] [a-kl[a—B+k+r, —1]

(4.3)
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ie.
1+q*2“—)\3)(1 _ q2(f3—k)) — q2(ﬂ—.ﬂ)+q2(lfp\|!(q—2a _ q—Zk). (44)
For three well-defined solutions of (4.4)
(I} k=a=0 B=1-4x,
{11) k=p=0 a=1-4, (4.5)
we get three extreme vectors
v, = f1(0,1-4,,0) v;=fi(1-4,,0,0)
—2=A Ay k
v= X ( I (g™ 3-A, —/\z—i][i+/\1—2])) {4.6)
k=3-4, i=3—x,

XH(2—A —A—k2-A - A -k k)

where Cye C, v, v, and v, respectively possess weights
M(1)=(A, +A,-1,2—4,) M(2)=(2-A, A +A-1)
M@3)=(2-4,,2—-A,).

The corresponding subspaces S(v,), S{v;) and S{v;) are denoted by S,, S, and S;
respectively. It needs to be pointed out that S, is ill-defined by (4.6) for the non-generic
case because [ap] =0 (acZ™).

4.2. The second class of invariant subspaces
For the non-generic case that g is a root of unity, it follows from [ap]=0 (a & Z) that

Flf:\(ap’ n, a3p):0

Fofi(m, azp, a;p) =0 for a,, a,, aseZ" (4.7)
that is to say, fi{e,p. a.p, a;p) are extreme vectors that satisfy
Fifilayp, azp, asp) =0 i=1,2
H fila,p, asp, a;p) =[(2a,— as+a)p+ A, 1fi(e,p, @2p, a1p) (48)

Hyfi(a p, asp, azp) =[(2a;— ay+ az} + A,] fi( @ p, @z p, asp).

For given «,, a; and a; the extreme vector f, (a,p, a,p, a;p} defines an invariant
subspace S[a]=S{a,, az, a;): {film, n k)m=a,p, n= asp, k= a,pl.

In this non-generic case, though the invariant subspaces §,, 5; and 5; are still
invariant, they are no longer irreducible for some situations. For example, if S[a] < §;,
then S[a] is an invariant subspace of S;. We will discuss the latter in detail.

5. Representations on quotient spaces for the generic case

From Verma theory we know that the quotient module of a maximal proper submodule
is finite-dimensional and irreducibie so long as the highest {or lowest) weight is the
dominant integral weight. This conclusion can be generalized to quantum algebra, but
we must distinguish two cases, generic and non-generic. For the generic case, the
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conclusion is the same; for the non-generic case, the dominant integral weight results
in a finite-dimensional representation, but it is not irreducible for some situations. In
this section, we only discuss the generic case. This is the basis for the discussion of
non-generic case in the next section.

In contrast to the results or classical Lie algebra for A, and A,e Z~, the subspace
$12=35,+ S, is a unique maximal proper submodule generated by E}™: and E|"* and
thus the quotient space Q(A) = V(A)/ S, is a finite-dimensional p'*'-invariant subspace.
On this space, p'*! induces a finite-dimensionai representation, which is irreducibie
for the generic case.

Now we consider the basis vectors for Q(A, A,)=0Q(A). Define

ﬂ(m, n, k) =f;\(m9 n5 k) mOd (SI + SZ)
then f,(1—A,,0,0)=/,(0,1—A,,0)=0. Because
E;EV=Y C(m,n}E;EV'E]™" (5.1)
5=0
there are some constraints among the vectors f,(m, n, k),

LQ=A,nky=—g™ ¥ C(1-A,mg"" "fi{l-2—5,n—s,5+k) (5.2)

=1
=1

where C,(m, n) is given by the following recurrence relations:

—mn

CU(m') n) = q
Coi(m, n+ D =g"""" " ' —n]C,(m, n) (5.3)
CAm n+ D =g"""[Cm, n)—g[m+1-51C_,(m n)l.

Just as for the case of Lie algebra A,[15], the above constraints result in complicated
expressions for representations on {}{A}). Therefore, we only study the representations
induced by p' in an explicit form for some special case.

It is observed from (3.1) that the subspace J(A): {fi{lm, 1— A+ n kYm n keZ"}
is an invariant subspace. This is because the action of p!'*’ does not change a vector

—i

£ 5 NS - 2 [ T B, ol AU S N WA 1 IS Y s TP Y. P S T T T
UM, A K A= 1 —A) IO JLiim, B, KJK <1 —A) UL € quotcni space Yyia)=
VA I (E(m k) =fi{m n kymod J(A), m,eZ", n=0,1,..., —A.}, the rep-
resentations p!*! induces a representation

HFE(mnk)Y=02m—-n+k+ A} F,(mn k)

H,F,im,n k)y=(2n—m~+k+A;}F,(m, n, k)

E F(mn ky=F(m+1,n,k)

FF(m n k)=8(-A,—n-1)g"[k]F,(m, n+1,k—1)—[m] (5.4)
x[m—1—-n+k+ArJF(m—-t,nk)

E.F(m, n k)=6(-Xs—1-m)q "F.mn+1,k)—q " '[m]F\(m-1,nk+1)

FFm, n k) =g"[nl[1-A,—n)F.(mn—1,k)—q" """ "[k]F(m+1,nk—1)

where

1 for x=0
0 for x <0.

6(x)={
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For the special case of A, =0, the representation (5.4) is rewritten as follows:
H F,im k)=02m+k+Ar)F,(m, k)
HyF (m, k)= (k—m+A,) Fy(m, k)
E\F\(m k)=F,(m+1,k)
FiF(mky=—[m][m—1+A,+k]F,[m—1,k)
EyF{m, ky=-—-q ' [mJF.(m—1,k+1)
FF(m k)=—g[k]lF.(m+1,k-1)

where F,(m, kY= F,(m,0, k).
Define the subspace W(I) (e Z7): {F,(im, k)|m+ k=1}. Because (5.5) result in

H WD), HyW(l), E;W(I), F,W(l)= W(1)
E,W(l)e W(i+1) E,W(1-A,)={0}

{5.5)

the subspace

S(y= ¥ W)

f=1—4,

}: {F(m, k|A)) = Fy(m, k)
mod S{A, )10<m+k< A s 1te-dimensional On 7(A,) (5.5) induces a finite-
dimensional representation

H Fim, kIA )= (C2m+k+A)F(m, k|A;)

H F(m, k|A,))=(k—m)F(m, k{r,)

is invariant and its mmﬁpnt gnace (A )= n() ,\-_m/ Sih.
ur"‘-v AGI VI A AT

EF(m klA)=0(-1-x—m—KkYF(m+1, kA,
FiF(m kA ) =—[m]l[m+1+x1,+k]F(m—1,k|A,) (5.6)
E;F(m, k|A)=—q ' [m]F{m—1,k+1|A))
FF(m, kA )= —q[k]F(m+1,k—1[x;)
with the dimension
dim (A, =31-A,)(2~A,). (5.7)

6. Representations for the non-generic case

6.1. The representations induced by p™

We notice that S[a] is an invariant subspace. On its quotient space Qfa,, a3, a;]=
V(LY S[eal: {w#{m,n k)=fi(mn k)mod S[a]0smsa,p-1, O0sasa,p—1, 0=
k=a,p—1}. p"*!induces a finite-dimensional representation

Houvimn K)=2m—-n+k+a)vim n k)

Y. ( w 1Y
2} VA, i, K
ElV(mv n, k)= B(QIP_z_m)”(m'*'l, n, k)

Fiv(m, n k)=8(a,p—-2—n)g'[klv(m n+1,k—1)~[m]

x[m-1=-n+k+AJe(m—1,n k) 61
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Ev(m, m k)=0{a;p—2-n)g "v(m, n+1,k)

—q " '[m]6lasp—1—k)v(m—1,nk+1)
Fov(mn kY=g "[n)[1-A;—nlv(mn—1,k)—q" " “0(a,p-2-m)v(m+1nk—1)
with the dimension

dim Q[ ey, a5, a3] = a, a0, p.

Now, we prove that the representation (6.1) is indecomposable (reducible, but not
completely reducible), if there is an «;=2. In fact, when i=1, {}[a,0,0;] has an
invariant subspace W,:{v(m, n k)|(a,~1}ps=m=a,p—1, O0sasa,p—-1, 0sks=
a;p—1} with dimension d =(p—1)a,a;p°. If there exists an invariant subspace W,
complementary to W, i.e. W,@® W, = [, a,a,], then there is a vector

b p=i
v= C,,v({m, n, k)
m=k

with C, #0 and k< (&, —1)p. Acting on v by E,, we have
E VP = ¥ Cuim+(a,—1)p—k n k)

=k

= Corv{im' +{a;—1)p, n k}#0)e W,
m=0

Due to invariance of W, E\*"""7~%, c W, that is to say, W, W, #{0}. Then a
contradiction appears and so an invariant complementary space for W, does not exist.

6.2. The non-generic structure of the representation (5.6)

In order to analyse the reductions of representation (5.6) when g is a root of unity,
the representation (5.6) is illustrated in figure 1. Each lattice {(m, k} in AOAB denotes
a weight vector F{m, k|A,) and the arrows in the figure represent the actions of E; and
F (i=1,2).

On the character lines I,: m=8,p and L,: k=8,p (8,, B.€Z" and =—\,/p), the
lattices (B,p, k) and {m, B,p) correspond to extreme vectors F(B p, kir,) and
F{m, B,p|A,) respectively. In fact, it follows from (5.6) that

FIF(Bp, klA)=0 E,F(m, Bapir,) =0 E;F (B p, k[A;) =0.

The extreme vectors F(B,p, k|A,} and F(m, B.p|A.} define the invariant subspaces
U(B): {F(mynA)em(d)m=8,p} and M(B,):{F(m, nlAYe =(A,)|n=B,pl,

' |
"‘IB
£z
\F, £
-— —
£y
A m
0 } Y

Figure 1.
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respectively. U(B,) corresponds to AACD and M () corresponds to ABEF, as shown
in figure 2.

If U(B)nM{(B,)#{0}, i.e. (B,+82)p=<-A4,, then U(B,)~ M(B,) is a smaller
invariant subspace and representation (5.6) induces a representation with lower
dimension (see figure 3).

Now we see an example with —~A, = —3p and p = 3. On the ten-dimensional invariant
subspace U(1)n M(2):

{F{3,3]9), F(4,3]9), F(5,319), F(6, 3|9), F(3,4(9), F(4,4|9), F(5, 49},
F(3,59), F(4,5)9), F(3,6|19)}

the representation (5.6 induces new representations

H,=18e¢,,+ 20, +22¢33+24e,,+19%e55+ 21 e+ 2365+ 20055+ 22e0y+ 21 €110

H,=3(e, teynteste,) td(ess+eq,+ e7)+ 5(egs+ €90) +6€10 10

E =e teptentestensteg

Fy=—[2]es;—es— 2T eqr —[2]ews

Er=—q (esa+[2]ees+ ese+[2]eq7 1 €100)

Fy=—gle;st ez tent[2]eg+[2]ess).

where ¢; is a 10 x 10 matrix unit so that (e;}, = 6.5,

Finally, we point out that the representation (5.6) is indecomposable and its
reduction is completely classified in this section, but for the other representations in
section 5, the reductions are very complicated and not discussed in this paper. In fact,

L K

Figure 2.

G :\
I
B,p I AL o

0 D -ABe -3

Figure 3.
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for the non-generic case without introducing the Lusztig operators [7], further work
is needed for the complete classification of reductions for any representation of any
guantum algebra.

Note added in proof. After this paper was submitted, we received some preprints, ‘representations of quantum
group at root of unity' Kac and de Concini, and RIMS (703, 709) by Jimbo e al, in which general
representation theory in the generic case is fully built from a purely mathematical point of view. However,
our main results (for indecomposable representations) are not covered by these works. In particular, we
give some explicit constructions that are useful for concrete problems in physics.
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