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Abstraci, The propeiiies o1 §- deformed boson OpETaiors Wwith |1Uu-g,r:ncuu q\q is a roai
of unity} are analysed by using the representation theory method and their finite-
dimensional representations are thereby obtained. Based on this discussion, reducibilities
and decompositions of g-deformed boson-realized representations of quantum universal
enveloping algebra U_SL(J) are studied for non-generic cases. The explicit matrix elements
of some indecomposable representations are obtained on the g-deformed Fock spaces.
Necessary details are provided for U,SL(2) and U_SL(3). In particular, the Lusztig operator
extension of U,SL(2) is discussed in an explicit form.

1. Introduction

The quantum group and quantum universal enveloping algebra (Quea) [1-6] are deeply
rooted in many nonlinear physics theories through the Yang-Baxter equation [7, 8].
Recently, considerable attention has been paid to the representation theory of QUEA.
The standard theory of mathematics has been developed respectively for the generic
case [9, 10] and the non-generic case that g is a root of unity [11, 12]. Besides these,
the g-deformed boson (oscillator) realization, a g-analogue of Schwinger-Jordan
mapping, of QUEA was presented independently by different authors to simplify
manipulations constructing representations of QUEA in [13-15], where our discussion,
as a continuation of previous work [16-18] about the usual boson realization of Lie
algebras, mainly involves the QUEA U,SL(/)=SL (/). This method of representation
theory is not only easy to comprehend for physicists, but is also a powerful tool to
calculate the explicit matrix elements for the representations of QUEA. Following this
work, various further investigations have been carried out in [19-24].

However, except for [19] and [24], where the non-generic case is discussed to a
smail extent, the discussions of the g-deformed boson reaiization mentioned above
only concern the generic case that g is not a root of unity and there was not a systematic
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analysis for the g-deformed boson realization of QuEA in the non-generic case. In this
and a forthcoming paper, we will systematically study the g-deformed boson-realized
representations of QUEA when g is a root of unity, since this case is very important
for physics [25-27].

This paper is arranged as follows. In section 2 we discuss the representations of
the g-deformed boson algebra, which plays a crucial role in our problem for the
non-generic case. Using the central idea in section 2, we study the decomposition
structure of g-deformed boson-realized representations of SL,(2) for the non-generic
case in section 3 and then discuss the representations of the Lusztig extension ﬁq(2)
of SL,(2) explicitly in section 4. In section 5, we generalize the discussion of SL,(2)
to the QUEA SL,(!) and general results are obtained. Applying them to SL (3}, we
discuss g-deformed boson-realized representations of SL,(3) in detail for p =3.

In this paper the symbols Z, Z,,, C and Z' denote respectively the set of integers,
non-negative integers, the complex number field and the set of lattice points:
{(ny,ny,...,0)|meZ, i=1,2,...,1}. According to Lusztig [11], we can consider p
as an odd integer =3 without losing generality.

2. Representations of g-deformed boson operators for ¢4° =1

The g-deformed boson (g-B) a]g;bra B is an associative algebra generated by the
boson operators a* and @~ =a, N and unity that satisfy

aat-g'aTa=g"=Q [N, a*]=+a* geC. (1

Its elements a, a” and Q generate its subalgebra, called g-deformed Heisenberg-Weyl
{g-1w) algebra. For the generic case, the representation theory of g-B and g-Hw
algebras has been given in [28].

Now, we consider the non-generic case. On the g-deformed Fock space F: {{n)=
a’"|0}|neZ. and a|0)=0, Q0)=10)}, we obtain an infinite-dimensional represen-
tation p

a’lny=|n+1) atn)=[n]jn-1 Qln)=q"|n) (2)
by using the relations
Qatn=qinatno aa+n____[n]a+n—lo+q7na+na

which result from (1). Here we have defined that [f]1=(g"—q~)/(g~q~") for any
operator f or number f.

Although the representation (2) is irreducible for the generic case, it is reducible
for the non-generic case because there exists the singular vectors |k- p) such that
alk- py=0 (this is due to [k p]=0) for ke Z,.

Theorem 1. For the non-generic case, the representation (2) is indecomposable (reduc-
ible, but not completely reducible).

Proof. From (2), we easily observe that there exists an invariant subspace Vi< {lkp +
n)|neZ.} defined by a singular vector |kp), namely, the representation is reducible.
Obviously, a complementary space Vi {|n)|n=0,1,2,..., kp~1} is not invariant.
Now, we need to prove that any complementary subspace for VI*)is also not invariant.
In fact, we suppose that there is an invariant complementary space V' for VI such
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that F= VI¥1@® V'. At least it must have an element with two components separately
in VI and V%), je. we can let this element be
kp—1

|x>= Z C,,lﬂ)‘f' Z bn’lnr>

n=0 n'=kp
where there are a ¢, # 0 and a b, # 0 at least. By action of a™ on |x), we have a non-zero

vector
kp—1

a*lx) = Z caln+kp)+ Z b, |n"+ kp)

n'

[s.=]

=¥ cln+kpye V¥

n=0

e, =b, for n=kp, kp+1,kp+2,....
However, since V' is invariant under the action of representation (2), a™*?|x)e V', that
is to say, V'N V™1 {0}. It is impossible because of the proposal F=V'® VI,
Therefore, the proof is ended.

Now, considering the invariant subspace chain

F=yl0 o ylilo yl2lo o kI 5 ikl

we observe that all the subrepresentations p'*) on invariant subspaces V!*! are also

indecomposable. Although these representations are infinite dimensional, the quotient
representation p™*™ induced by (2) on the quotient space Q(k, m) = V¥ vi™ (m = k):

{l(k, myny=|kp+n)mod V"™ |n=0,1,2,...,(m-k)p—1}

is finite dimensional and its dimension is {(m —k)p. Using (2), we write the explicit
form of ptF™!:

a™|(k, m)n)=|(k, m}n+1) n=0,1,2,...,(m—k)p-2
a*|(km)n)=0 forn=(m—k)p-1
al(km)n)=[n]|(km)n—1)

Q|(km)n}=q"|(k, m}n).

Here, it is pointed out that when m = k + 1, the representation p**™ is irreducible. For
example, for p =3, we obtain a 3p irreducible representation

(3)

00 0 01 0 10 ©
at=[1 0 o a={0 0 [2] Q={0 g 0 (4)
01 0 00 0 00 ¢*

on the quotient space Q(k, k+1): {{(k, k+1)0), |(k, k+1)1), |(k, k+1)2)}. It is easy to
check that (4) satisfies (1} by noticing 4°=1.

The above dlscusswn is naturally generalized to the case of many bosons with the
operators a; =a;, a, and N satisfying

aa+—{ajai for i #j
T lg'afatgti=g""aTa,+Q for i #j

Y + + T A P 5
[N afl=8,(xa)) [N, Nj]=[a?,a]1=0 )

where i=12,...,1
Because of the indecomposable properties mentioned above, the representations
of QUEA in terms of the g-deformed boson operators have new reducible structures,
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3. Representations of SL,(2)

The g-deformed boson realizations of the generators J. and J; for the QuEA SL,(2) are
J.=ala, J.=aja J,=N,—N,. (6)
On the two-state g-deformed Fock space
Fy{lny, n)y=ai"a3"|0)|n,, n,e Z,,, al0)= N)J0) =0, i=1,2}
the representation of SL,(2) [14],
Jiny, m)y=[n]n,+1,n,~1)
J_any=[nJn,—1, ny+1) (7)
Jofny, moy=(ny—nay)|ny, nod
is obtained from the realization (6). On the invariant subspace
VN {(fu(m)=|n, N—n)|n=0,1,2,..., NeZ}
the above representation subduces a { N+ 1)-dimensional representation I":
Jefn(n)=[N-nlfn(n+1)
J_fn(n}y={n]fn(n-1) (8)
Jifu(n)=(2n—N)fn(n)

which is irreducible for the generic case.
However, for the non-generic case, there are two singular vectors fy(ap)} and
Fn(N —Bp) such that

J_fn(ap)=0,J. fn(N-Bp)=0 (9)
for two positive integers « and B = N/p. It follows from (8) and (9) that the subspaces
U,={fulap+n)n=0,1,2,..., N—ap}
and

We={fn(N-Bp—k)|k=0,1,2,..., N—Bp}
are invariant; and U, and Wy (a'> a, B'> B) are respectively the invariant subspaces
of Ui, and W,. Thus, the representation (8) and its subrepresentations on U, and Wy
are reducible in the non-generic case.
According to the singular vectors fy{ap} and fy (N — Bp), there are three types of

Ya
ce "/[2 1 rnlnhna to the characters o nf !I ~ W.

itinn farthe fnnrncnntnhnn <
AALFEE X 15 WALV MLGE G

na
L AU MW IV WIVLILG LIV GG

Type I. When ap—1> N —8p, U, n W, ={0}, the representation (8) is indecompos-
able. This can be proved by the same method as that for the proof of theorem 1.
Type II. When ap—1= N - 8p, we have fy{ap—1}=fy(N—pBp) and
Jiiniap—1)=J. fn{N-Bp)=0
J_fulap)=
that is to say,
ViNi= U, @ W, U, n W, ={0}.
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Therefore, the representation (7) is decomposed into a direct sum of two subrepresenta-
tions separately on U, and W, namely, the representation (8) is completely reducible.

Type III. When ap—1< N —gp,

Ua n W ={fn(ap), fnlap+1), fu(p+2),...,/n(N~Bp)}

is a smaller invariant subspace, which does not have an invariant complementary space.
Thus, the representation (7) is also indecomposable.

Now, as examples, we discuss the case of p=3 for N=3, 4, 5 and 6. In terms of
the matrix units E; such that
(E )i = 8uby
we write the explicit matrices of the representations for N =3,
J.=[2]E;,+E,,
J_=E ,+[2]E,, (10)

Jy= ‘“%El,l _%E2.2+%E3,3 +%E4,4

for N=4,
Jo=E;+[2]Es3+ Es 4
J_=E;;+[2]E;3+ Ey (11)
Jy==2E, 1= E;;+ E 4+ 2E; 5

for N=5,
J.=[2]1E;,+ E; 2 +[2]Es 4+ Eg 5
J_=E 3 +[2]E;s+ E; s +{2]Es¢ (12)
Jy=- %El,l - %Ez.z - %Ez.,s +%E4.4 + %ES.S + %Es,s

and for N =6,

Jo= [2]53,2"' E;q+ [2]E6,5 +Eq
Jo=E »+[2]E,;+[2]Es s+ Es {13)
S = _351.1 - 252.2 - Es,a + Es.s + 2Es,e+3Ev,7-

The decomposition of these representations is illustrated in figures 1(a-d) where
the upward and downward arrows denote the actions of J, and J_ separately. It is
easily observed from figure 1 that the representations (10) and (11) possess the
reducibility of type I; the representations (12) and (13) possess reducibilities of type
IT and type [11 separately.
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Figure 1. Reductions of representations for (a) N =3, (b} N=4,(c) N=5and (d) N=6.

4, Lusztig operators

According to the pew [10] for QuEea, the basis for SL,(2) can be chosen as
u(lm,n, k)y=J7TJ"J% mn keZ,.

For any x€SL,(2),

o0
xX= Z Cmnku(m) H, k)
mn k=0
where C,. (€C) usually are not infinite. We can regard x as an operator on a
representation space V. For a given representation space V of SL, (2}, we extend SL,(2)
to include a class of operators

o
€= Z Emnku(ms n, k) Em.nk € C
m,n k=0
such that their actions on V possess finite limit, where some coefficients E,,., must be
infinite. The extended SL,(2) is denoted by SL,(2) and a representation of SL,(2) is
still a representation of glq(Z), but a representation is not definitely reducible for
§Eq(2) even if it is reducible for SL,(2).
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According to Lusztig {11], we introduce the Lusztig operators
L.=lim [{1/[p])JE]

q"-1

to extend SL,,(Z) for the representation space VLVl We have the following theorem.

Theorem 2. The actions of the Lusztig operators L, on the space V3"! are finite and

e A n<p sa Ay
L_
Tnin}= 1af (n—p) n=apt+n’,Z,35a=1,0sn'sp—-1 1
0 n>N-p
L n)y= 15
+fn(n) {BfN(H+p) N-n=pptmZ . >38=10sm'sp~-1 (15)

Proof. Using (7) and
[(n]=[ap+n']=[n"] lim ([aP)/[p])=«
q 1

we obtain JZ f,(n) =0 when n<p; when n=p,
Jfnm)=[aep+nlap+n —1][ap+n'—2]...
x[ap+n'—p+2][aptn'~p+1]fn(n—p)
=[nln'—1][n"-2]...[1lapllp~-11lp—2]...[n"+2][n'+1]1fx(n - p)
=[apllp— 111 fn{n—p}=0.
Then,
L_fy(n)= ‘},ilrll ([ep}/[pDSfnin—p)=afu(n—p).

Using the same method, we prove (15).

Now, according to this theorem, we analyse decompositions and reducibilities of
the representation (7) as a representation of §iq(2). Because of the actions of L. on
Jn(n) such that

L_fulap)=fulla-1)

"’—JN\“.I’J JNI.\
Lifn(N-Bp)=(c'-B)ININ-(B-1)p] N=a'p+N,0sN'sp—1

the subspaces U, and W are no longer invariant for ﬁq(Z). As follows, we make a
concrete analysis for the reducibilities and decomposations of representations (10)-
(13).

(i) Inrepresentation (10}, there are two 1D SL,(2)-invariant subspaces, {f,(0)} and
{f;(3}}, but they transform into each other under the actions of L.. Hence, only
{£2(0), £3(3)} is an §l:q(2)-invariant subspace;

(ii} In representation (11), there two 2p SL,(2)-invariant subspaces, {f,(0), fi(1)}
and {f4(3), f2(4)}, but they transform into each other under the actions of L.. Hence,
their union {f3(0), £,(1), f2(3), fa(4)} is SL (2) invariant.

(iii) In representation (12), there are two 3p SL (2)-invariant subspaces,

{£5(0), £5(1), £(2)} and {f5(3), fs(4), £(5)}, and
V) = (£:(0), (1), f(2)} DL f(3), £5(4), 5(5)}.

Thus, as a representation of SL,(2), (12) is completely reducible. However, due to the
actions of L., the whole space V.*! carries an irreducible representation of SL,(2);
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Figure 2. Representations of ﬁq&) for (a}) N=3,(b) N=4,{¢}) N=5and (d) N=6.

(iv) In representation (13), there are three 1p SL,(2)-inv

{£:(3)} and {£,(6)}. They transform into one another f L, Hence

Fa)
sl 10ns 1 L, . mence,

they span a 3p ﬁq(Z)-invariant subspace.
The above is illustrated in figure 2(a-d) where the broken upward and downward
arrows denote the actions of L, and L_ separately,

5. Representations of SL {I): general discussion

In this and the following sections, we generalize the method for SL,(2) in the last
section to the general case of SL,{() when g is a root of unity. As we well know, SL,(/)
(I=3) are associated with the standard R-matrices for the Yang-Baxter equation as
well as SL,(2) in the standard case that the usual irreducible representations are used
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[4]. Recently, we obtained new R-matrices besides the standard ones by constructing
and studying the new boson representations of SL,{2) in detail [29]. A similar situation
should naturally apply to SL,({) (/=3). Thus, it is necessary to provide sufficient
details of the new representations of SL_(!) for the construction of the new R-matrices
associated with SL,(!) as follows.

The g-deformed boson realization of QuEa SL (1) is

A A

H;= N~ N,
(16}
E=aja,, F=al,a,i=12,...,1-1
The basic relations (5} ensure that
[His Hr]=0
[H:, E;]= ayE; [Hi, Fj]=—aF; (17)

[Ei, FJ] = 3;;[”;]
G}G_jil —(g+ qil)Gj(;jthj + Gj:th} =0

where a; =28; — 8,;,1— 8;;-, is the element of the Cartan matrix o« of A;_, and G, = E;
or F,.
On the g-deformed Fock space

F: Almy=|m;, my,...,m)=ai™a3;™ai™...a;"™0)
a|0y= N0y =0, meZ.,i=1,2,..., 1}
we obtain a representation of SL_{I) 14

Hilm)=(m;—m;.,)|m)

Er‘lm> = [mi+1]im+ei —e.y) (18)
Elm)=[m]m+e., —e) i=1,2,...,1-1
where m=(m,, m,,...,m)eZ and

el:(lsos"'90)?e2=(0,19"'!0)!"‘!e1=(0!0y"',1)

-are linear-independent unit vectors in Z".

It follows from (18) that the vector |m) for the representation (18) possesses a
certain weight A=(A, Az, ..., A ) =(m~my, ms—my, ..., m_,—my) and different
labels (m,, m,,...,m;)) and (m,+¢, my+c,..., m+c} (ceC} correspond to the same
weight A. The latter is because the representation given by (18) is reducible. In fact,
the sum X/., m; of the labels m; is invariant and then VI™: {|{m)|Z{_, m;= N} for a
fixed N €Z" span an invariant subspace for the representation (i8). Constrained on
the invariant subspace V™ the m such that Z{., m;= N uniquely label the state
vectors and define the corresponding weight A={(m,—m,, my—m,, ..., m_,—m).

For convenience, in the analysis of representation reduction as follows, we introduce
new labels A = (A, Az, Aj_, ) where A;_,=0,1,2,..., A foragiven A; (A;=0,A,,=N;i=
1,2,..., 1), which are equivalent to the constrained labels nr. Then, we rewrite the basis

fN(‘\)=fN(AI”\2s" -1 AJ—I)__-|"'I__/\C|9A2_Al:''' ’Af—l_AI—ZaAJ"/\-i—O
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for the invariant subspace Vi1 where A,=0 and A,= N. On the space Vi"! the
representation (18) defines a finite-dimensional subrepresentation

EfnA)Y=[Aimi— A1 n(Ate) (19a)
FifuA)=[A— Ao (A~ ¢) (196)
HifN(l\)=(2/\i—/\i+1_)t.'—|)fN(/\) (19¢)
whose dimension is
_ (N+I-1)!
AN D=0 20

Here, A is in a domain A" {A=(A,,As,..., A )€Z Y Ae=0,Ay =N, Ai_, =
0,1,2,...,A foragiven A, i=0,1,2,..., 1} of Z'" " and ¢, Z''. For the generic case,
(19) is irreducible and has the highest weight A=(N, 0,0, ..., 0} corresponding to the
highest-weight vector fu (N, N, ..., N}=|N,0, ..., 0). Thus, the representation {19) is
a completely symmetrized representation [14].

Now, we consider the non-generic case. Because each vector fy, (A) in the space
V! corresponds to a sole lattice point A =(A,, As,..., 4 )eA ' cZ™! we can
describe the action of representation (19) on the basis fy(A) by the move of the lattice
point A. Define a hyperplane

7 {A€ZU YA — A= ap}

in the lattice space Z'™". It cuts a domain A%
{AeZ' A — A= ap}

out of A'”", Then, we have the following theorem.

Theorem 3. All the vectors fiy(A) in V{' corresponding to all the lattices in the domain
AY span an invariant subspace V,; of V¥ under the action of representation (19).

Proof. 1t follows from (19a) and (195} that

Eifn(A)=[Ains = A ] In(A +ei) (21a)
i fuA) = [ = Al fn{A — 0. (21b)

Define the subspace W(i, k): {fn{A)e V{'|A;cy—A;=k}. Then,

Vo= T8 W k).

k=ap

From (21) and (19} we observe that, for f,(A) e W(i, kY k= ap),
Eifu(A)e Wi k+1)= V,,
Ffu(A)e Wi k+1)= V,,
Eifu(A)e W(i k)= V,;
Fifn(A)e W(i k)< Vy for j#ii+1

that is to say, the space V,, is invariant under the actions of E;, f;, E;, and F; {(j # i, i+1).
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Considering that all the vectors fy(A) corresponding to all the lattice points A in
the hyperplane = satisfy
[Aii—A]=[ap]=0
we have
EW(i,ap)=0 FoW(i, ap)=0
and
EW(i,k)c W(i,k-1)c V,,
FoWik)ycWik—-1)<cV, k=ap+1, ap+2,...
namely, the subspace V,, is also invariant under the actions of E; and F,,,, and the

theorem is proved.

According to theorem 3, there are many invariant subspaces V,; corresponding to
different hyperplanes II7 for different is and as. Like the analysis of SL,(2), the
discussion of the reducibility of representation (19) results from the situations of the
cross Vo, Vo (@, i # ', i'). Inthe following section, we will use SL,(3) as an example
to discuss this problem in detail.

6. Representations of SL (3)

When p=3, from (19), we obtain a representation of SL,(3):
E fn(Ay, A=A = A 1 (A + 1, 04)
Eyfn(d, A =[N =L 1 fn(A, At 1)
Fufn A, Ag) =[A (A =1, A2)
Fofn (A, A =[A= A0 0 (A, A~ 1)
Hyfn (A, Az) =2 = A5) fn(Ay, Ag)
Hofnl(A, Ay =(2A,— A, = N)fn (A, A))

where A,=0,1,2,...,N;, A,=0,1,2,...,A; for a given A,. This répresentation is
irreducible for the generic case.

In order to analyse the reducibility and decomposition of this representation when
q is a root of unity, we introduce the following 2D lattice diagram {figure 3) to describe

(22)

B
:N F, £,
Ay : F
2
1
0
0 1 2 N A

Figure 3. Diagram for the representation space V' and the actions of representation (22),
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this representation. Here, each lattice point in AOAB denotes a weight vector fy(A);
the upward, downward, right and left arrows denote the actions of E,, F,, E, and F,
respectively.

The fact that {kp)l =0 for ke Z, defines three character lines:

I: A=A =ap
h: N-A=8p
h: Ai=9p o, B, rel,

which depict the reducibility of the representation {22). The three lines cut out of
VI {fn(A1, A;)} three kinds of invariant subspaces,

V.(3): {fn(AL, A A=A =ap}
Us(3): {fn(Ay, &) | N =A== 8p}
W,(3): {fw(Ar, A2)| A, = yp}

with the singular vectors fy(A,, Atap), fu(Ay, N—Bp) and fi(vp, A;) respectively.
These vectors satisfy

E fn(Ay, Aitap)=Fyfu(A,, Mtap)=0
EZfN{/\ls N_ﬂp)=0
Fofn(yp, A7) =0.

The bases for these invariant subspaces V,,(3), Uz(3) and W, (3) respectively correspond
to the lattice points in the shadowed domains of figures 4(a-c).

/| /|

Ay

Ay

e

0 h2

Figure 4. Diagrams for three types of invariant subspaces.
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Considering that a cross of any two of these invariant subspaces is still invariant,
we can obtain some lower-dimensional representations subduced by (22) on the
following invariant subspaces:

Q1= Va(3) n Up(3) n W,(3)
Q= Va(3) 0 Us(3)
Q= Up(3)n W,(3)
Qa=W,(3)n V. (3).

There are various situations of reducibility of spaces that are represented in figures
5(a-f). Here, the shadowed domains correspond to invariant subspaces resulting from
the crosses of original invariant subspaces.

Now, we calculate two representations of SL,(3} from (22). When p =3 and N =4,
we have a 15D indecomposable representation:

E,= Ee.2+ E9,5+ E|3.11 + E,5|14+[2](E7,3+ En.s"“ EI4,12) + E1o,7
F,= EZ,G+ E},?"’ Es,9+ EA,S+[2](E7.10+ Ea,n + E9,12)+ E14,15

B B
i3
Aq 7 A f
i
1y 8
f
0 A, A 0 Ay A
la) ¥
B B
Ai 1 A‘\
2 L i
L
{
/I/ 4 1
0 hp A 0 A A
le) id)
B /B
A /
A1 ! g I! A
.'I'A
0 Az A o Az A
{e} (f)

Figure 5. The invariant subspaces of SL,(3): (a} @ =Q;=Qy=Q,={0}; (b) @ =0Q;=
Q. ={0}, @2 {0} (¢} Qy==0,={0} Q= {0}; {d) Q;=Q:=0Q;={0}, Q, = {0}; (e)
Q== Q4={0}- Q# {0} () &y ={0}- Q. @5, Qu7 {0}
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Es=E; +Egg+ Epyy+ Erg 13t [21(Es 4+ Eg 2+ Eno)+Es,

Fy=FE 3+ Eys+Eg7+ Eio 1 +[2)(Ezs+ Esg+ Ef12) + Ejays

Hy=~E;;—2E;5—3E,4—4Es s+ Eqs— Ey3~2E;o+2E 5,0+ E\ 11y
+3E,313+2E 4,14t Ejs5,15

(23)

H2 = —451‘1 _252,2+2E4,4+4E5,5 - 3E6,6— E7,,.’,+ EB,8+3E9|9_2E10.|0
+2E12,12_ E:3.13+ El4,|4-

From its representation diagram (figure 6), we observe that there exist three invariant
subspaces

5:(3): {£(0,0), (0, 1), £(1, 1)}
5:(3): {/4(0,3), £(0, 4), £u(1, 4}
53(3): {/a(3,3), £(3, 4), fa(4, 4}

on which the representation (23) gives a 3D irreducible subrepresentation.
When p=3 and N =3, we obtain a 210 indecomposable representation:

E=E;2+EstEnstEsntEsiat Egirt Bz
+[2)(Es3+ Enyet Eiz ot Ejq1a+ Ego8)
Fil=E,;+ E; 4+t Ego+ Es o+ Eg v+ Epg00+ Erg o
+i2](Es 2+ Eo 13+ Eroaat Eviast Expa1)
Ey=Es 3+ Egs+ Eg 3t Ej1 10t Ersgat Evg g7t Ezo o
+[2)(E2 1t Esyt Eipot Eig 13t Ei7,16) (24)
Fo=E 2+ E s+ E;3t Egnt EnpastEirt Eon
H{2(Ez3+ Esg+ Eg ot Ey35at Ey718)
Hy==E;3=2E33-3E,,—4Ess—5Es4+ E;7— E99—2E 10— 3E1 1+ 2E 1312
+Enga—Es st 3E 616t Eg st 4E1019F3E2020+ 5E5 0
" Hy=—5E {—~3E,3—E33+ E4 4 +3Es 5+ 5Egs—4E;7—2Eg 3+ Ego+2E,510+4E 1
—3E12— Evsa3t Ervgaat3E1515—2E 16,67 2E1318 = Ei9,19 Eao 20

My 2z

£ A

Aq

Figure 6. 15D indecomposable representation.
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Figure 7. 21D indecomposable representation.

From its representation diagram (figure 7) we observe that there are three ¢p invariant
subspaces

5,(6): {£(0,0), £5(0, 1), £5(0, 2}, £s(1, 1}, f5(1, 2}, £(2, 2}}

5,(6):  {£5(0,3),£:(0,4), (0, 5), £s(1, 4}, f5(1, 5), £5(2, 5}}

8:(6): {fs(3,3),£5(3,4), f5(3, 5), £s(4, 4), £5(4, 5), £5(5, 5)}
on which the representation (24) subduces the sp irreducible representations.

Finally, we point out that the problem will become very complicated when the

Lusztig operators

Ei E2 Fi Fi

[p]! [p]! (plt [p}!
areintroduced to extend SL,(3). Some details concerning this problem will be published
elsewhere.
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