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Abstract. In this paper high-order adiabatic approximate solutions of the Schrodinger 
equation for a quantum system with a slowly changing Hamiltonian are presented. We 
not only obtain Berry’s phase factor and strictly prove the quantum adiabatic theorem in 
the first-order approximation, but also discuss an observable effect of the second adiabatic 
approximation. 

1. Introduction 

Recently it has been recognised that in quantum mechanics there exists a new topologi- 
cal phase factor, namely Berry’s phase factor [l]. This phase factor is not only used 
to explain the Aharonov-Bohm effect and Aharonov-Susskind effect [2], but has also 
been verified in more recent experiments [3-61. 

In theoretical aspects, the concept of Berry’s phase has appeared in many areas of 
physics, e.g. anomalies in gauge field theories [7], the quantum Hall effect [8], the 
Born-Oppenheimer aproximation [9], and so on. Berry and other authors have also 
discussed the classical counterparts of the quantum Berry phase [IO]. 

Berry’s phase factor was discovered by Berry in investigating the quantum adiabatic 
theorem [ 111. Let 

A = A [ R , ( ~ ) ,  R , ( t ) ,  . . . , R ~ ( ~ ) I =  A [ ~ ( t ) l  (1) 

be the Hamiltonian of a quantum system, which varies with the parameters 
R I (  t ) ,  R,( t ) ,  . . . , R,<t) depending on time t.  When the Hamiltonian changes from a 
certain initial value H[R(~ , ) ]  at time to to a certain final value I j [ ~ ( t , ) l  at time t , ,  if 
the system is initially in an eigenstate q5,[R(to)] of f i [ R ( t o ) J ,  then it will, under the 
adiabatic limit T + m ,  pass into the eigenstate 4 , [ R ( t l ) ]  of H [ R ( t , ) ]  at time t , .  This 
result is known as the quantum adiabatic theorem. According to it, when the Hamil- 
tonian is transported round a closed path c in parameter space M :  { R }  from to to t ,  , 
for which R (  t o )  = R (  t , ) ,  the wavefunction at time t ,  is 

I+(~I)) = e x p ( k  J‘‘ E,[R(~’)I  dt‘) e x p [ i v n ( c ) l ~ 9 , [ ~ ( t ) ~ )  (2)  
10 

where 
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is a geometrical phase factor in addition to the familiar dynamical phase factor, which 
is called Berry’s phase factor. Berry’s phase v,,(c) is mathematically interpreted as a 
holonomy of a Hermitian line bundle over the paramter manifold by Simon [ l ] .  

In this paper we will pay attention to the high-order adiabatic approximation and 
the manifestation of the second term in an observable quantum process. 

2. Motion equation in the changing representation 

The changing representation is a state space spanned by all the eigenstates 
& [ R ] ( m  = 1 , 2 , .  . . , N )  of the Hamiltonian H [ R ]  at time t for the eigenvalues E , ( R ) .  
The evolution operator U (  t, to)  of this system in this representation is expressed as 

N 

U ( t ,  t o ) =  m , k = O  1 e x p ( i  1‘ ‘0 d r ‘ ) C m k ( t ) 1 4 m [ R ( t ) l ) ( ~ k [ R ( ~ O ) l l  (4) 

where 

C m k ( 0 )  = a m k  RI= R (  t ’ ) .  

Substituting (4) into the Schrodinger equation 

a 
at 

i h -  U ( t ,  to) = A [ ~ ( t ) l ~ ( t ,  to)  

we obtain the motion equation in the changing representation: 

c m k  ( t )  + ( 4 m  [ R II &m [ R I )  c m k  ( t )  

( 5 )  

In order to study the influence of the changing rate of f i [ R (  t ) ]  on the behaviour of 
the solution of ( 6 ) ,  we define 

and rewrite ( 6 )  as 

(8) 
By considering b m k ( t O )  = 8 m k r  the Volterra integral equation of (8) is obtained as 
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3. Highsrder adiabatic approximate method 

by parts, we have 

Z d l d l  
& , - E n  d S  &-E, ds E,-E, 

exp(iam,(S)T)----- F ( S ) + .  , 

where 

a , , ( S ) =  h-’ los (E,[R’]-E,[R’])dS’ 

E, = E,[R]. 

By defining an operator 

i a  0 * m n  =- a (  - )+-- 
as E,-E, Em-En  as 

(1 1) can be written as 

If 1 / T  is sufficiently small, it is reasonable to assume that bmk(S) can be expanded 
into a rapidly converging power series in 1/ T, i.e. 

We substitute the expression (16) into both sides of (15) and obtain an equality between 
two power series in 1/T. In order that this equality be satisfied, the coefficients of 
each power of 1/ T must be separately equal, giving 
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4. Manifestation of first- and second-order approximate solutions 

According to (4) and (18), under the adiabatic limit T-co, the first-order evolution 
operator is 

(19) 

which just gives the known quantum adiabatic theorem and the results obtained by 
Berry. 

When the adiabatic condition does not hold, we consider the second-order approxi- 
mation in an experiment of a spinning particle in a magnetic field, which has been 
considered under adiabatic conditions by Berry. A polarised beam of spin-; particles 
along a magnetic field splits into two beams, one of which passes through a constant 
magnetic field Bee,, while the other passes through a varying magnetic field 

(20) 

where b ( t )  need not be uniform along a closed path in the parameter space M :  
{&, By,  B,} and p ( t )  satisfies p ( 0 )  = 0, p (  T) = 27r. The Hamiltonian is 

B( t ) = Bo( sin 8 cos p ( t ) e, + sin e sin p ( t ) e, + cos ee, ) 

where wo = igBo is the dynamical frequency. 
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From (4) and (7) ,  we see that the wavefunction at time t ,  is 

I$( T ) )  = [exp(-sin2 i 8 2 ~ i )  + l]exp(-iwt)l&+[B(O)]) 

when the particle is initially in an eigenstate Iq5+[B(O)] of A[B(O)] with eigenvalue 
hw,, where 

i h  sine ‘ a 
f(t) =- - [ B ( t ’ )  exp(2iw,t’-i$sin2i8p(t’))] exp(iicos2$3p(t’)) dt‘. 4Wo 10 at’ 
If we adjust the path length of the beams such that the dynamical phases for both 
beams are the same when beams are combined in a detector at time T, the predicted 
intensity contrast is 

(24) I ( @ )  = Io C O S ~ [ $ T (  1 -COS e)] + f 2 (  T ) /  T 2  

I [ @ )  = zo  COS^[;^( 1 -COS e)]. 

which leads to an extra term f 2 / T 2  in Berry’s result 

(25) 

It would be interesting to see the above prediction experimentally verified. 
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