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Abstract. In this paper high-order adiabatic approximate solutions of the Schrodinger
equation for a quantum system with a slowly changing Hamiltonian are presented. We
not only obtain Berry’s phase factor and strictly prove the quantum adiabatic theorem in
the first-order approximation, but also discuss an observable effect of the second adiabatic
approximation.

1. Introduction

Recently it has been recognised that in quantum mechanics there exists a new topologi-
cal phase factor, namely Berry’s phase factor [1]. This phase factor is not only used
to explain the Aharonov-Bohm effect and Aharonov-Susskind effect [2], but has also
been verified in more recent experiments [3-6].

In theoretical aspects, the concept of Berry’s phase has appeared in many areas of
physics, e.g. anomalies in gauge field theories [7], the quantum Hall effect [8], the
Born-Oppenheimer aproximation [9], and so on. Berry and other authors have also
discussed the classical counterparts of the quantum Berry phase [10].

Berry’s phase factor was discovered by Berry in investigating the quantum adiabatic
theorem [11]. Let

H=H[R\(1), Ry(1),..., Ry(1)]= H[R(1)] (1)

be the Hamiltonian of a quantum system, which varies with the parameters
R,(1), Ry(1),. RN(t) depending on time t. When the Hamlltoman changes from a
certain initial value H[R(to)] at time t, to a certain ﬁnal value H[R(t }] at time 1,, if
the system is initially in an eigenstate ¢,[R(#,)] of H[R(to J, then it will, under the
adiabatic limit T - o0, pass into the eigenstate ¢,[R(#,)] of H[R(t,)] at time t,. This
result is known as the quantum adiabatic theorem. According to it, when the Hamil-
tonian is transported round a closed path ¢ in parameter space M: {R} from ¢, to 1,,
for which R(t,) = R(t,), the wavefunction at time ¢, is

()= exp(i—ng’ ER(1)] dt') expliv,(c)]ié.[R()]) (2)

where

exolivi (e =exp( = (0u(R1|§ g, (71)aR) 3
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is a geometrical phase factor in addition to the familiar dynamical phase factor, which
is called Berry’s phase factor. Berry’s phase v,(c) is mathematically interpreted as a
holonomy of a Hermitian line bundle over the paramter manifold by Simon [1].

In this paper we will pay attention to the high-order adiabatic approximation and
the manifestation of the second term in an observable quantum process.

2. Motion equation in the changing representation

The changing representation is a state space spanned by all the eigenstates
¢ [R}(m=1,2,..., N)of the Hamiltonian H{ R] at time ¢ for the eigenvalues E,,(R).
The evolution operator U(¢, t,) of this system in this representation is expressed as

U(t, to) = k:oexP(i_H E.[R'] dt’) Coi ()| dm[ R W[ R (1)]] (4)
where
ka(0)=5mk R,ER(t’)

Substituting (4) into the Schrédinger equation
d A
iﬁ(; U(t, 15) = H[R()]U (4, t,) (5)

we obtain the motion equation in the changing representation:

ka(t)+<¢m[R]|(£m[R]>ka(t)
= - ‘ék Co(1) eXP<%J (Em[R']—En[R’])dt’)(¢m[R]I¢5n[R]>- (6)

In order to study the influence of the changing rate of I:I[R(t)] on the behaviour of
the solution of (6), we define

T=t~1t, S=t/T .
bo(S)= Coi(TS)  R=R(TS) @
and rewrite (6) as
d
abmk<5)+<¢m[m‘fs¢m[R]>bmk(S)
i\T s
== ¥ bu(S) exp(‘ﬂ (En[R]-E,[R] dS')<¢m[R]‘i¢n[R]>.
n®m So 88
(8)

By considering b, () = 8,.«, the Volterra integral equation of (8) is obtained as

S 3
bmk(t)+ .[50 <¢m[R] 'a_s ¢m[R]>bmk(s) dS

=5mk_ Z j bnk(s’)<¢m[R’]‘£¢n[R']>

n#*m S,

xem:(%rj (Em[R”]—E,,[R”])dS") ds’. (9)

0
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3. High-order adiabatic approximate method

For simplicity we let S;=0=1t, in the following sections. Integrating

s : s
o= bu()( %[R]l——m[k])exp(ﬂ (B[R]~ B[R d57)dS' (10

0

by parts, we have

~ih F(S -ih\’ . 1 4 1
I = 22 explian(5)T) 2 ;+(—;) exXpliam(5)T) T 3= 55 F(5)
—i#\* . I d 1 d 1
+<-—T—> exp(iam,(S)T) E.—E dSE.-E, as E —E F(S)+...
(11)
where
S
amn(s)= h-l J‘ (Em[Rl]—En[R'])dS’
0
F(S)= mk(S) ¢m[R]l_¢n[R]> (12)
E,=E,[R].
By defining an operator
O“"‘£<EM—EH>+EM—EJ§ (1)
(11) can be written as
P _-h 1+1 -
Imn=1§0(—71.> eXp(i@mn(S) THEn = En) " (Opmn) (@m[ R1I [ R]). (14)
Then, differentiating (9), we have
d mk(S)+<¢m ¢m[R]> mk(s)
lh 1+1
- —nZ:m 1Z ( ) (;
T, (S
x(ii"—g—‘jf(-ﬂ<omn>'<¢m[m s 8:LR1)bun(5) ). (15)

If 1/ T is sufficiently small, it is reasonable to assume that b, (S) can be expanded
into a rapidly converging power series in 1/ 7T, i.e.

bmk(S)=§(3}—ﬁ) BU(S). (16)

We substitute the expression (16) into both sides of (15) and obtain an equality between
two power series in 1/7. In order that this equality be satisfied, the coefficients of
each power of 1/ T must be separately equal, giving

d

= ba‘,’a<5>+<¢m[kl)f§ ¢m[R]>b£?£<s> =0
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bl + mm‘ ¢m[R]>ka(S)
(S) an
- 8 [exp({iTan, by (l—h—1)
=l = _ L= T (6,) b S
) hgo ngm as( Em —En ( ) ( )
x <¢> [R]li ¢ [R]>ﬁ“‘)
m aS n .
Considering the initial conditions
bol=6, bil=0 i=1,2,3,...
we successively solve equation (17), obtaining
s 3
b[O]( )-8mk eXP(_J <d’m[R,]‘—¢m[R,]>dS,)
0 38
s 3
blk(S) =exp( —J <¢m[R']'— ¢>m[R']>dS')
. (18)

X L fis) exp(J- d’m[R”]LE ¢m[R”]>dS") ds’.

4. Manifestation of first- and second-order approximate solutions

According to (4) and (18), under the adiabatic limit T - o, the first-order evolution
operator is

U(no) Z exP("L <¢M[R,]‘—:_I ¢m[R’]>dt’

m=0

X exP(% L E,[R'] dt’)|¢m[R(t)]><¢m[R(to)]l (19)

which just gives the known quantum adiabatic theorem and the results obtained by
Berry.

When the adiabatic condition does not hold, we consider the second-order approxi-
mation in an experiment of a spinning particle in a magnetic field, which has been
considered under adiabatic conditions by Berry. A polarised beam of spin-} particles
along a magnetic field splits into two beams, one of which passes through a constant
magnetic field B,e,, while the other passes through a varying magnetic field

B(t) = By(sin 8 cos B(t)e, +sin 6 sin B(t)e, +cos be,) (20)

where B(1) need not be uniform along a closed path in the parameter space M:
{B., B,, B,} and B(t) satisfies 8(0) =0, B(T)=2s. The Hamiltonian is

N e R cos 6 sin 8 exp(—iB(t))
H[B(1)]=g5'B ﬁ“"’[sin 8 exp(iB(1)) —cos 8 } 1)

where w,=3gB, is the dynamical frequency.
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From (4) and (7), we see that the wavefunction at time ¢, is
|¢(T)) = [exp(-sin® 1627i) + 1]exp(~iwt)|¢.[ B(0)])

A7)
T

+

exp(~imcos’ 160)|6_[B(0)]) (22)

when the particle is initially in an eigenstate |¢.[B(0)] of I:I[B(O)] with eigenvalue
hwy, Where

f(t)=1—f;—sln—0J' %[B(t') exp(2iwot’ — i1 sin?16B(1"))] exp(ilcos?168(t)) dt'.  (23)
wWo 0

If we adjust the path length of the beams such that the dynamical phases for both
beams are the same when beams are combined in a detector at time 7, the predicted
intensity contrast is

Iioy= Iy cos’[3m(1—cos 8)1+ f(T)/ T* (24)
which leads to an extra term f°/ T? in Berry’s result
Ig = I, cos’[3m(1—cos 6)]. (25)

It would be interesting to see the above prediction experimentally verified.
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Note added. After this paper was written, from a paper by Aharonov and Anndan [12] and the referee’s
report on my paper, I discovered that the experiment I propose, bridging the gap between small and large
T, has now been carried out by D Suter, G Chingas, R A Hariss and A Pine.
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