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Endowing a simple C algebra generated by two commuting elements and a unit 
with a noncocommutative Hopf algebra structure, a new quantum double and 
the corresponding universal R matrix for the Yang-Baxter equation is con- 
structed. The finite-dimensional representations of the quantum double is also 
studied and a concrete R matrix is presented as an example. 

I. INTRODUCTION 

The quantum double (QD) theory’ is a quite powerful tool in constructing solutions (R 
matrices) of the quantum Yang-Baxter equation (QYBE). Actually, according to this theory, 
from a given Hopf algebra one can obtain a unique quasitriangular Hopf algebra (QTHA) , 
which contains a universal R matrix. At present, most of the QD’s explicitly built are some 
“q-deformed” algebras, such as quantum algebras, quantum superalgebras, and quantum affine 
algebras,*-’ and more recent studies”* show that new QD’s can be obtained by parametrizing 
some kinds of quantum algebras. In this paper our purpose is to establish a new QD from a 
very simple C algebra. 

II. THE HOPF ALGEBRA A AND ITS DUAL A0 

Let A be a UZ algebra generated by the elements X,H and the unit 1, satisfying the relations 

[H,X] =o, [1,X] =o, [ l,H] =o. (1) 

We define the following operations for A: 

AH=H@l+leH, 

AX=Xs N-q-Hex, Al=1 o 1, 

e(X) =6(H) =O, E( 1) = 1, qd, 
(2) 

s(x) = -x4”, S(H) = -H, s( 1) = 1. 

By a direct calculation we can prove the following. 
Proposition I: A is a Hopf algebra with the coproduct A, the antipode S, and the counit E 

defined above. 
Remark: For the same C algebra A, we can also endow it with a different but “trivial” 

(cocommutative) Hopf algebra structure: 
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Ae=e@l+lee; Al=l@l; 

e(e) =O, e(l)=l, S(e)=-e, S(l)=l, 
(3) 

where e=X,H. 
Now, we try to establish the Hopf algebraic dual A0 of A and the corresponding QD D(A). 

According to the QD theory, we have the following results: ( 1) A and A0 are subalgebras of 
D(A); (2) there exists a bijective linear mapping A Q A0 -+ D(A); and (3) the multiplication of 
D(A) is defined by 

ba= c (a$(G))(a$$aib& ad, b&4’. 
Lj 

(4) 

Here, we have used the notation 

where c=a,b. To deduce the dual structure of A0 we choose 

(e,,=XmH”Im,nGZ+={0,1,2 ,... }), (5) 

to be the basis for A, and define the pairs 

(emn, 0 = bd~, GhJ9 = S,OS,I , (6) 

for the basic elements Y and N in A’. Then, from the definition of the dual Hopf algebra, we 
obtain the following. 

Proposition 2: 

(emn, Y”“N”‘) =m!n!G,,,S,,, . 

Prooj? The proof is easy. Actually, we have 

(H”,Nm) = (AH”,N”-’ 8 N) =n(H”-‘,Nm-‘) =n!&,,, ; 

(7) 

(XmH”, Y”N”‘) = n!Snn, (X”, Y”), 

(x”,Yy=(Ax”,yn-‘@ Y)= ; (m:;),k, (Xm-~q-k%Xk,Yn-l@ Y) . . 

=m(XmelqMH eX,Yn-leY)=m(Xm-l,ylr-l)=m!S,,. 

In order to establish the Hopf algebra structure of A0 and combine A with A0 to form a QD, 
we need to prove the following propositions. 

Proposition 3: 

N=Nel+leN, AY=Yel+leY, 

S(N)=-N, S(Y)=--, e(Y)=e(N)=O. 

ProoJ The proof directly follows from the equations 

(8) 

(X”H” Q Xm’H”‘,AN) =Sm~SnlSm~~n~O+SmOSnOSm,~n,, , 
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(X”H”e X”‘H”‘AY) =Sm,SnOSm,~n,O+Sm~nOSm’lSn’O, 

WmH”,S( Y)) = -SmlS,, , 

(XmHn,S(N)) = -S,no& , 

(l,N) =0=6(N), 

(l,Y)=O=e(Y). 

Proposition 4: Between A and A’, we have the commutation relations 

(i) [N,Y] = --In q* Y; 

(ii) [N,X]=lnq.X, 

[N,H] =0= [H,Y] = [H,N], 

[X,Y]=l-q-Y 

Proo$ A straightforward calculation shows that 

(XmH”,[N,Y])=(XmH*,NY)-(XmH”,YN) 

(9) 

(10) 

= (S,F%I -In 4 * &A~to) -hd,~ 

= --In q. SmlSnO . 

So we prove part (i). To prove part (ii), we use Proposition 3, obtaining 

8’*~(~)=(id~A)A(~)=~~1~1+1~~~1+1~1~~; c=Y,Nui’. 

Thus, it immediately follows from Eq. (4) that 

YX= (X,S( Y)) * l+ (q-H,S( l))XY+ (q-H,S( l)>q-H= - 1 +XY+q-H, 

and the other relations are obvious. 

Ill. NEW QUANTUM DOUBLE AND ITS UNIVERSAL R MATRIX 

Summarizing the above results, we finally obtain the following theorems as the central 
results in this paper. 

Theorem 1: The QD D(A) is generated by the elements X, Y,H,N, and the unit 1, satisfying 
Eqs. ( 1) and (9) and ( lo), and it is a Hopf algebra with coproduct A, counit E, and antipode 
S defined above. 

Theorem 2: Furthermore, D(A) is a quasitriangular Hopf algebra with the universal R 
matrix, 

k=exp(Xe Y) .exp(Hs N). (11) 
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Pro& One easily observes that 

{emn= (m!n!) -’ PN” 1 m,n&+} 

is a basis of A0 dual to the basis {e,,}. Then, the universal R matrix ( 11) follows from the 
following equations: 

R= jJ emnBemn= 
m,n=O 

,$, (m!n!) -‘X”H” 8 Y”N”. 

Remark: As a C algebra, the new QD D(A) can be regarded as the boson algebra B 
generated by elements b, b- = b,N, and E with the following relations: 

[b,b+] =E, [ii+] = +b*, [E,N] = [E,b*] =0, (12) 

by introducing the correspondence 

h-+X, bf+-+Y, E+-+l-qdH, NH-- (In q)-‘N, (13) 

between D(A) and B. But we would like to point out that as is seen above, D(A) carries a 
noncocommutative Hopf algebra structure, which is essentially different from the cocommu- 
tative one usually defined on B: 

A‘$=csl+le& S(l)=-<, 

E(g) =o, g=b’,E,N. 
(14) 

It is also worth pointing out that a similar discussion has been given in Ref. 9, but the QD 
construction is not investigated there. 

IV. FINITE dim. REPRESENTATIONS OF o(A) AND NEW R MATRICES 

The remaining part of this paper is devoted to obtaining finite-dimensional representations 
(FDR’s) of D(A) and R. Denoting 

N’=(lnq)-‘N, K=l--q-r X+=X, X-=Y, (15) 

we have 

[K,everything] =0, [X,Y] =K, [N’,X*] = &X*. (16) 

Let us define a vacuum state IO) by .% IO) =y IO) and Y ] 0) = O(,u&) . Then, one can directly 
verify that the vector space W= span{x( m,n) =XmKn ( 0) 1 m,n&+} carries an infinite- 
dimensional representation of D(A) : 

Xx(m,n) =x(m+ l,n), 

Yx(m,n) = -mX(m- l,n+ l), 
(17) 

N’x(m,n) =(m+p>x(m,n), 

Kx(m,n) =x(m,n+l). 
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Oneeasilyobserves that VL=span{x(m,n)=x(m,n)Im+n>L} (L&Z+-{Co}) isaninvariant 
subspace. So on the quotient space QL=span{Z(m,n) =x(m,n) Mod. VLIm+n<L-l}, one 
can get a FDR of D(A). 

For example, when L=2, we obtain a 3 dim. representation 

xE(w a k); y=( -:’ & F)), 
Nk( ‘T ; &), K=(; & !), 

Hz- 
ln(l-K) -K 

In(q) =-In(q)= 

Substituting this representation into the universal R matrix ( 1 1 ), one obtains a new R matrix, 

where I and 0 are, respectively, the 3 x 3 unit matrix and 3 x 3 zero matrix. 
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