A new quasitriangular Hopf algebra as the nontrivial quantum double of a simplest \mathbb{C} algebra and its universal R matrix for Yang-Baxter equation

Chang-Pu Sun
Department of Physics, Northeast Normal University, Changchun 130024, People's Republic of China
Xu-Feng Liu and Mo-Lin Ge
Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People's Republic of China

(Received 23 April 1992; accepted for publication 30 June 1992)
Endowing a simple \mathbb{C} algebra generated by two commuting elements and a unit with a noncocommutative Hopf algebra structure, a new quantum double and the corresponding universal R matrix for the Yang-Baxter equation is constructed. The finite-dimensional representations of the quantum double is also studied and a concrete R matrix is presented as an example.

I. INTRODUCTION

The quantum double (QD) theory ${ }^{1}$ is a quite powerful tool in constructing solutions (R matrices) of the quantum Yang-Baxter equation (QYBE). Actually, according to this theory, from a given Hopf algebra one can obtain a unique quasitriangular Hopf algebra (QTHA), which contains a universal R matrix. At present, most of the QD's explicitly built are some " q-deformed" algebras, such as quantum algebras, quantum superalgebras, and quantum affine algebras, ${ }^{2-5}$ and more recent studies ${ }^{6-8}$ show that new QD's can be obtained by parametrizing some kinds of quantum algebras. In this paper our purpose is to establish a new QD from a very simple \mathbb{C} algebra.

II. THE HOPF ALGEBRA A AND ITS DUAL A^{0}

Let A be a \mathbb{C} algebra generated by the elements X, H and the unit 1 , satisfying the relations

$$
\begin{equation*}
[H, X]=0, \quad[1, X]=0, \quad[1, H]=0 . \tag{1}
\end{equation*}
$$

We define the following operations for A :

$$
\begin{gather*}
\Delta H=H \otimes 1+1 \otimes H, \\
\Delta X=X \otimes 1+q^{-H} \otimes X, \quad \Delta 1=1 \otimes 1, \\
\epsilon(X)=\epsilon(H)=0, \quad \epsilon(1)=1, \quad q \in \mathbb{C}, \tag{2}\\
S(X)=-X q^{H}, \quad S(H)=-H, \quad S(1)=1 .
\end{gather*}
$$

By a direct calculation we can prove the following.
Proposition 1: A is a Hopf algebra with the coproduct Δ, the antipode S, and the counit ϵ defined above.

Remark: For the same \mathbb{C} algebra A, we can also endow it with a different but "trivial" (cocommutative) Hopf algebra structure:

$$
\begin{gather*}
\Delta e=e \otimes 1+1 \otimes e ; \quad \Delta 1=1 \otimes 1 \\
\epsilon(e)=0, \quad \epsilon(1)=1, \quad S(e)=-e, \quad S(1)=1 \tag{3}
\end{gather*}
$$

where $e=X, H$.
Now, we try to establish the Hopf algebraic dual A^{0} of A and the corresponding QD $D(A)$. According to the QD theory, we have the following results: (1) A and A^{0} are subalgebras of $D(A)$; (2) there exists a bijective linear mapping $A \otimes A^{0} \rightarrow D(A)$; and (3) the multiplication of $D(A)$ is defined by

$$
\begin{equation*}
b a=\sum_{i, j}\left\langle a_{1}^{i}, S\left(b_{1}^{j}\right)\right\rangle\left\langle a_{3}^{i}, b_{3}^{j}\right\rangle a_{2}^{i} b_{2}^{j}, \quad a \in A, \quad b \in A^{0} . \tag{4}
\end{equation*}
$$

Here, we have used the notation

$$
(\Delta \otimes i d) \cdot \Delta(c)=(i d \otimes \Delta) \cdot \Delta(c)=\sum_{i} c_{1}^{i} \otimes c_{2}^{i} \otimes c_{3}^{i}
$$

where $c=a, b$. To deduce the dual structure of A^{0} we choose

$$
\begin{equation*}
\left\{e_{m n}=X^{m} H^{n} \mid m, n \in \mathbb{Z}^{+}=\{0,1,2, \ldots\}\right\}, \tag{5}
\end{equation*}
$$

to be the basis for A, and define the pairs

$$
\begin{equation*}
\left\langle e_{m n}, Y\right\rangle=\delta_{m 1} \delta_{n 0}, \quad\left\langle e_{m n}, N\right\rangle=\delta_{n 0} \delta_{n 1}, \tag{6}
\end{equation*}
$$

for the basic elements Y and N in A^{0}. Then, from the definition of the dual Hopf algebra, we obtain the following.

Proposition 2:

$$
\begin{equation*}
\left\langle e_{m n}, Y^{m^{\prime}} N^{n^{\prime}}\right\rangle=m!n!\delta_{m m^{\prime}} \delta_{n n^{\prime}} \tag{7}
\end{equation*}
$$

Proof: The proof is easy. Actually, we have

$$
\begin{aligned}
\left\langle H^{n}, N^{m}\right\rangle= & \left\langle\Delta H^{n}, N^{m-1} \otimes N\right\rangle=n\left\langle H^{n-1}, N^{m-1}\right\rangle=n!\delta_{n m} ; \\
& \left\langle X^{m} H^{n}, Y^{n} N^{n^{\prime}}\right\rangle=n!\delta_{n n} \stackrel{\left\langle X^{m}, Y^{n}\right\rangle}{ } \\
\left\langle X^{m}, Y^{n}\right\rangle=\left\langle\Delta X^{m}, Y^{n-1} \otimes Y\right\rangle= & \sum_{k} \frac{m!}{(m-k)!k!}\left\langle X^{m-k} q^{-k H} \otimes X^{k}, Y^{n-1} \otimes Y\right\rangle \\
= & m\left\langle X^{m-1} q^{-H} \otimes X, Y^{n-1} \otimes Y\right\rangle=m\left\langle X^{m-1}, Y^{n-1}\right\rangle=m!\delta_{m n} .
\end{aligned}
$$

In order to establish the Hopf algebra structure of A^{0} and combine A with A^{0} to form a QD, we need to prove the following propositions.

Proposition 3:

$$
\begin{gather*}
N=N \otimes 1+1 \otimes N, \quad \Delta Y=Y \otimes 1+1 \otimes Y, \\
S(N)=-N, \quad S(Y)=-Y, \quad \epsilon(Y)=\epsilon(N)=0 . \tag{8}
\end{gather*}
$$

Proof: The proof directly follows from the equations

$$
\left\langle X^{m} H^{n} \otimes X^{m^{\prime}} H^{n^{\prime}}, \Delta N\right\rangle=\delta_{m 0} \delta_{n 1} \delta_{m^{\prime} 0} \delta_{n^{\prime} 0}+\delta_{m 0} \delta_{n 0} \delta_{m^{\prime} 0} \delta_{n^{\prime} 1}
$$

$$
\begin{gathered}
\left\langle X^{m} H^{n} \otimes X^{m^{\prime}} H^{n^{\prime}} \Delta Y\right\rangle=\delta_{m 1} \delta_{n 0} \delta_{m^{\prime} 0} \delta_{n^{\prime} 0}+\delta_{m 0} \delta_{n 0} \delta_{m^{\prime} 1} \delta_{n^{\prime} 0} \\
\left\langle X^{m} H^{n}, S(Y)\right\rangle=-\delta_{m 1} \delta_{n 0} \\
\left\langle X^{m} H^{n}, S(N)\right\rangle=-\delta_{m 0} \delta_{n 1}, \\
\langle 1, N\rangle=0=\epsilon(N) \\
\langle 1, Y\rangle=0=\epsilon(Y)
\end{gathered}
$$

Proposition 4: Between A and A^{0}, we have the commutation relations
(i) $[N, Y]=-\ln q \cdot Y$;
(ii) $[N, X]=\ln q \cdot X$,

$$
\begin{gather*}
{[N, H]=0=[H, Y]=[H, N]} \\
{[X, Y]=1-q^{-H} .} \tag{10}
\end{gather*}
$$

Proof: A straightforward calculation shows that

$$
\begin{aligned}
\left\langle X^{m} H^{n},[N, Y]\right\rangle & =\left\langle X^{m} H^{n}, N Y\right\rangle-\left\langle X^{m} H^{n}, Y N\right\rangle \\
& =\left(\delta_{m 1} \delta_{n 1}-\ln q \cdot \delta_{m 1} \delta_{n 0}\right)-\delta_{m 1} \delta_{n 1} \\
& =-\ln q \cdot \delta_{m 1} \delta_{n 0} .
\end{aligned}
$$

So we prove part (i). To prove part (ii), we use Proposition 3, obtaining

$$
\begin{gathered}
\Delta^{(2)}(X) \equiv(i d \otimes \Delta) \cdot \Delta X=X \otimes 1 \otimes 1+q^{-H} \otimes X \otimes 1+q^{-H} \otimes q^{-H} \otimes X ; \\
\Delta^{(2)}(\xi)=(i d \otimes \Delta) \Delta(\xi)=\xi \otimes 1 \otimes 1+1 \otimes \xi \otimes 1+1 \otimes 1 \otimes \xi ; \quad \xi=Y, N \in A^{0} .
\end{gathered}
$$

Thus, it immediately follows from Eq. (4) that

$$
\begin{gathered}
Y X=\langle X, S(Y)\rangle \cdot 1+\left\langle q^{-H}, S(1)\right\rangle X Y+\left\langle q^{-H}, S(1)\right\rangle q^{-H}=-1+X Y+q^{-H}, \\
N X=\left\langle q^{-H}, S(N)\right\rangle X+\left\langle q^{-H}, S(1)\right\rangle X N=\ln q \cdot X+X N,
\end{gathered}
$$

and the other relations are obvious.

III. NEW QUANTUM DOUBLE AND ITS UNIVERSAL R MATRIX

Summarizing the above results, we finally obtain the following theorems as the central results in this paper.

Theorem 1: The QD $D(A)$ is generated by the elements X, Y, H, N, and the unit 1 , satisfying Eqs. (1) and (9) and (10), and it is a Hopf algebra with coproduct Δ, counit ϵ, and antipode S defined above.

Theorem 2: Furthermore, $D(A)$ is a quasitriangular Hopf algebra with the universal R matrix,

$$
\begin{equation*}
\widetilde{R}=\exp (X \otimes Y) \cdot \exp (H \otimes N) \tag{11}
\end{equation*}
$$

Proof: One easily observes that

$$
\left\{e^{m n}=(m!n!)^{-1} Y^{m} N^{n} \mid m, n \in \mathbb{Z}^{+}\right\}
$$

is a basis of A^{0} dual to the basis $\left\{e_{m n}\right\}$. Then, the universal R matrix (11) follows from the following equations:

$$
\tilde{R}=\sum_{m, n=0}^{\infty} e_{m n} \otimes e^{m n}=\sum_{m, n=0}^{\infty}(m!n!)^{-1} X^{m} H^{n} \otimes Y^{m} N^{n}
$$

Remark: As a \mathbb{C} algebra, the new QD $D(A)$ can be regarded as the boson algebra B generated by elements $b, b^{-} \equiv b, \tilde{N}$, and E with the following relations:

$$
\begin{equation*}
\left[b, b^{+}\right]=E, \quad\left[\tilde{N}, b^{ \pm}\right]= \pm b^{ \pm}, \quad[E, N]=\left[E, b^{ \pm}\right]=0 \tag{12}
\end{equation*}
$$

by introducing the correspondence

$$
\begin{equation*}
b \leftrightarrow X, \quad b^{+} \leftrightarrow Y, \quad E \leftrightarrow 1-q^{-H}, \quad N \leftrightarrow-(\ln q)^{-1} N, \tag{13}
\end{equation*}
$$

between $D(A)$ and B. But we would like to point out that as is seen above, $D(A)$ carries a noncocommutative Hopf algebra structure, which is essentially different from the cocommutative one usually defined on B :

$$
\begin{gather*}
\Delta \xi=\xi \otimes 1+1 \otimes \xi, \quad S(\xi)=-\xi \\
\epsilon(\xi)=0, \quad \xi=b^{ \pm}, E, \tilde{N} \tag{14}
\end{gather*}
$$

It is also worth pointing out that a similar discussion has been given in Ref. 9, but the QD construction is not investigated there.

IV. FINITE dim. REPRESENTATIONS OF $D(A)$ AND NEW R MATRICES

The remaining part of this paper is devoted to obtaining finite-dimensional representations (FDR's) of $D(A)$ and R. Denoting

$$
\begin{equation*}
N^{\prime}=(\ln q)^{-1} N, \quad K=1-q^{-H}, \quad X^{+}=X, \quad X^{-}=Y \tag{15}
\end{equation*}
$$

we have

$$
\begin{equation*}
[K, \text { everything }]=0, \quad[X, Y]=K, \quad\left[N^{\prime}, X^{ \pm}\right]= \pm X^{ \pm} . \tag{16}
\end{equation*}
$$

Let us define a vacuum state $|0\rangle$ by $\tilde{N}|0\rangle=\mu|0\rangle$ and $Y|0\rangle=0(\mu \in \mathbb{C})$. Then, one can directly verify that the vector space $W=\operatorname{span}\left\{x(m, n)=X^{m} K^{n}|0\rangle \mid m, n \in \mathbb{Z}^{+}\right\}$carries an infinitedimensional representation of $D(A)$:

$$
\begin{gather*}
X x(m, n)=x(m+1, n), \\
Y x(m, n)=-m X(m-1, n+1), \tag{17}\\
N^{\prime} x(m, n)=(m+\mu) x(m, n), \\
K x(m, n)=x(m, n+1) .
\end{gather*}
$$

One easily observes that $V^{L}=\operatorname{span}\{x(m, n)=x(m, n) \mid m+n \geqslant L\}\left(L \in \mathbb{Z}^{+}-\{0\}\right)$ is an invariant subspace. So on the quotient space $Q^{L}=\operatorname{span}\left\{\bar{x}(m, n)=x(m, n) \operatorname{Mod} \cdot V^{L} \mid m+n \leqslant L-1\right\}$, one can get a FDR of $D(A)$.

For example, when $L=2$, we obtain a 3 dim . representation

$$
\begin{gathered}
X=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
N^{\prime}=\left(\begin{array}{ccc}
1+\mu & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & \mu
\end{array}\right), \quad K=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \\
H=-\frac{\ln (1-K)}{\ln (q)}=-\frac{-K}{\ln (q)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & (\ln q)^{-1} \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Substituting this representation into the universal R matrix (11), one obtains a new R matrix,

$$
R(\mu)=\left[\begin{array}{ccc}
I & \tilde{o} & Y \\
\tilde{O} & I & N^{\prime} \\
\tilde{o} & \tilde{o} & I
\end{array}\right]
$$

where I and \widetilde{O} are, respectively, the 3×3 unit matrix and 3×3 zero matrix.

ACKNOWLEDGMENT

This work is supported in part by the NFS of China.
${ }^{1}$ V. G. Drinfeld, Proceedings of the IMC (University of Berkeley, Berkeley, CA, 1986), p. 798.
${ }^{2}$ M. Rosso, Commun. Math. Phys. 124, 307 (1989).
${ }^{3}$ A. N. Kirillov and N. Reshetikhin, Commun. Math. Phys. 134, 421 (1990).
${ }^{4}$ P. P. Kulish and N. Reshetikhin, Lett. Math. Phys. 18, 143 (1989).
${ }^{5}$ M. Jimbo, Lectures on quantum groups given at Nankai Institute of Mathematics, April 1991.
${ }^{6}$ X. F. Liu and C. P. Sun, Sci. China A 35, 73 (1992).
${ }^{7}$ M. L. Ge and X. F. Liu, Lett. Math. Phys. 24, 197 (1992).
${ }^{8} \mathrm{H}$. Yamane, R-matrices with gauge parameters and multiparameter quantized enveloping algebras, preprint of Osaka University, 1990.
${ }^{9}$ C. Gomez and G. Sierra, Quantum harmonic oscillator algebra and link invariants, preprint, 1991.

