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The exotic quantum double and its universal R matrix for the quantum Yang- 
Baxter equation are constructed in terms of Drinfeld’s quantum double theory. 
As a new quasitriangular Hopf algebra, it is different from those standard quan- 
tum doubles that are the q deformations for Lie algebras or Lie superalgebras. By 
studying its representation theory, many-parameter representations of the exotic 
quantum double are obtained with an explicit example associated with Lie alge- 
bra Aa. The multiparameter R matrices for the quantum Yang-Baxter equation 
can result from the universal R matrix of this exotic quantum double and these 
representations. 

I. INTRODUCTION 

In recent years, the quantum Yang-Baxter equation (QYBE) It2 has become a focus of the 
attention from both theoretical physicists and mathematicians. This is because the QYBE is a 
key to the complete integrability of many physical systems appearing in the quantum inverse 
scattering methods,‘14 the exactly solvable models in statistical mechanics,’ and low- 
dimensional quantum field theory.6 In solving the QYBE in a general way and classifying its 
solutions (R matrices) algebraically, a remarkable mathematical structure, the quasitriangular 
Hopf algebra (loosely called quantum group), is found in connection with the QYBE.‘-lo 
Among these developments, the Drinfeld’s quantum double theory’ provides one with a gen- 
eral construction to systematically obtain solutions of the QYBE in terms of the quantum 
doubles (QDs), which usually are the “q deformations” of certain algebras, and their repre- 
sentations. The recent studies show that, not only the standard R matrices,“-” but also the 
nonstandard ones,1”16 such as the R matrices with nonadditive spectral parameters,17-23 the 
colored R matrices,2’29 can be obtained in the framework of Drinfeld’s QD theory, but for the 
latter the cyclic representations, other nongeneric ones at roots of unity3e-38 and some param- 
etrization of the quantum (universal eveloping) algebras39*40 need to be considered. The pur- 
pose of the present paper is to search for the exotic quantum doubles, other than those “q 
deformations,” so that the new universal R matrix can be obtained for the QYBE based on 
Drinfeld’s quantum double theory. 

For our discussion to proceed conveniently, we need to outline some basic ideas in Drin- 
feld’s QD theory so that the notations used in this paper can be clarified. Suppose we are given 
two Hopf algebras A, B and a nondegenerate bilinear form (,): A X B+ C (the complex field) 
satisfying the following conditions: 

. 

WM2) = (A,b),b, 8 bz), -4,b1,b2~ B, 

(4lB) =E,&), UEA, 

(1.1) 
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(S,&),S,(b>) = W), UEAA=B, 
where for C=A, B, AC, +, and Sc are the coproduct, counit, and antipode of C, respectively; 
1 c is the unit of C. Drinfeld’s QD theory (for a comprehensive reviews see the Refs. 41 and 42) 
states the central results in the QD theory as follows. 

Theorem 1: There exists a Hopf algebra D satisfying the following conditions: 
( 1) D contains A and B as Hopf subalgebras. 
(2) The mapping A X B+ D:u 8 b-+ub is an isomorphism of vector space. 
(3) For any uEA,bE B, we have multiplication 

bu= C (ui(l)S(bi(l)))(ui(3),bj(3))ui(2)bj(2), 
Li 

where c,(k) (k= 1,2,3; c=u,b) are defined by 

(1.2) 

A2(~)=(id@A)A(~)=(A~id)A(~)= CCi(l)OCi(2)Oci(3). 
i 

Theorem 2: There exists a unique element 

R= &z,eb,EAXBCDXD 
m 

obeying the “abstract” QYBE 
Aha ,%+.A 

RnR423=R23R&m (1.3) 

where a, and b,,, are the basis vectors of A and B, respectively, and they are dual each other, 
i.e., (a,,b,) =&,,; 

kl2= Ca,ab,el, I?13= Cu,Blmb,, l?23= C, lau,Ob,, 
m m m 

where 1 is the unit of D. 
Up to now, the QDs built explicitly are only the quantum (universal enveloping) algebras 

and superalgebras and their parametrizations. They are the q deformations of the universal 
algebras and possess a “standard” quantum double structure that both the subalgebras A and 
B are noncommutative and noncocommutative. This symmetric structure reflects the duality of 
A and B. Notice that these standard quantum doubles approach the usual universal enveloping 
algebras (UEA) in the classical limit q+ 1. In this paper, we will construct so-called exotic 
quantum doubles (EQD) that are not those q deformations and possess asymmetric dual 
structure that one of the subalgebras A and B is commutative but noncocommutative and 
another cocommutative but noncommutative. As new quasitriangular Hopf algebras, these 
EQDs naturally enjoy the QYBE, but they have not the usual classical limit. 

This paper is arranged as follows. In Sec. II, we take the sub-Bore1 subalgebra of the UEA 
of the classical Lie algebra as the Hopf subalgebra A with cocommutative coproduct in the QD 
construction and then built its quantum dual as a noncocommutative but commutative Hopf 
subalgebra B. In Sec. III, we combine A and B to form the exotic quantum double and thereby 
obtain the new universal R matrix for the QYBE. In Sec. IV, we discuss an explicit example of 
EQDs, which is connected with the Lie algebra A2 in details. In Sec. V, we study the repre- 
sentation theory of the EQD with the above example and construct a class of many-parameter 
representations to built the many-parameter R matrices for the QYBE. Finally, in Sec. VI, we 
give some remarks on the problems and the possible developments in the EQD. 
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II. QUANTUM DUAL FOR NONSIMPLE LIE ALGEBRA 

Let b+:{a,fi,r,...} be the system of all positive roots with respect to a simple root system 
of a classical Lie algebra L. Cartan elements h EH (the Cartan subalgebra) and all the positive 
root vectors {e,, 1 ag4+} generate an associative algebra A with the relations on the Cartan- 
Weyl basis 

[h, d =dhh, [e,, es1 =Na,flor+fi, (2.1) 

where adP and the coefficients Nas enjoy the structure of the Lie algebra L. In fact, the 
algebra A is a subalgebra of the Bore1 subalgebra of the universal enveloping algebra (UEA) of 
the Lie algebra L. Defining the algebraic homomorphisms Ad +A 0 A,& + C, and the alge- 
braic antihomomorphism ,%A +A by 

A(x)=xe 1+18x, S(x)=-x, e(x)=O, (2.2) 

where x~{h,e~ 1 a++}, one gives the algebra a “trivial” (cocommutative) Hopf algebraic 
structure. It is a well-known fact in the theory of Hopf algebra since we can regard the algrbra 
A as a UEA of the nonsimple Lie algebra with basis {h,e,,ae++}. However, the Hopf alge- 
braic dual (quantum dual) B of A is nontrivial (non-cocommutative) due to the duality of B 
to A. Now, we derive the structure of A in terms of this duality. 

Because A is cocommutative, its dual is an Abelian algebra with commuting generators. So, 
the associative algebraic structure is quite simple. To consider the Hopf algebraic structure, we 
set an order for the basis of A: If a--B is a nonzero positive root, then we say a >P; the basis 
for A is written down to enjoy this order as 

={0,1,2 ,... } 
I 
. 

Suppose that the dual Hopf algebra B to A is generated by the dual generators t and f, 
(are++) to h and e, , respectively. They are defined by the following pairs in terms of a bilinear 
h-m (9) 

(kt) = l,(w) =Q(ea,fa> = l,cV,f,) =O, (2.3) 

where x and y are the basis elements of A other than h and e,, respectively. 
Proposition 1: For m,,n,,mEZ+ (ae#+), 

h” rl[ earn”2 II e =&,I m! II ma! 6,a,n,, > (2.4) 
OrSC+ ac:bf LX++ 

namely, the vectors 

fm, b(m,m,)=~ n 2, 
* arc++ a 

form a dual basis for B to u(m,m,): 

~~hm,Mhn,)) =&,,, n a,+,=. Or++ 
Pro& Thanks to the duality between A and B, we have 

(2.5) 
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(h’,P)=(A(h’),t”‘-l~t)= f: . k=O k,,,“-,,, (h’-k~hk,P-‘~t)=I(h1-‘,f”-1)=~~4S,,m. 

Similarly, for G= e, , F= f a, a l r$+ , respectively, 

(G”‘,F”) = m!6m,n. 

Then, 

(hmGn,Fs)= kzo r$o (m-k);;n-r)!d (hm-kGn-‘~hkGr,FsFs-‘) . . 

= j. j. (m--k);;n-r)lrl Sn-,lS,-k,o(hkGr~Fs-‘) 

It follows from the above calculations that 

Wm,ma),b(n,n”)) =W’J”) n (e~,~aa)=m!S,,n n ma!Sma,na. 
as4+ ae4+ 

In this position, we can deduce the Hopf algebraic structure, i.e., (A= A,, E=E~, S=SB) 
of the algebra B. Let us first consider A ( fY) . Notice that the linear form ( ,A ( fY) ) is nonzero 
only on ey60 l,hn8ey,hne,eeg (/?>a): 

Consequently, 

(hne,~eg,fy)=((h--p(h))“eae,,fy) 

=(--B(h))“(e,eS-Na,pe,+B,fr) 

= -(-P(h>)“N,,ss(a+P,s>. 

m (--y(h)W’ A(f,)=f,@l+ c n=O n. I 

where 
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s(a,P)= I 1, if a=P; 
6, if a z p 

i 
1, 

e(a)= 0, 
if cr(#O)Efj+; 
if aQfj+. 

For S(f,) and /?> a, the only nonzero pairs are 

(h”e,eS,S(fy))=((-l)nS(eaeah”),S(fy)) 

= ( - 1 )“(ese,~“,f,> 

= (- l)“((h-P(h) -cr(h))“(e~~-N,,se,+~)~~~) 

= --CB(h) +4wx,fA2+~,,; 

(h”ey,S(fy>) = - ( - 1 YG(e~“M(fy) > 

= - ( - 1 )“(e#h”,fy) 

= - (- lYY(h-y(~))“e7,f7) 

= -(y(h))“. 

Consequently, 

Oa Y(h)“t” S(fy)=- c 
n=O 

n! fy- aD:4+ zv,,pe(B-a)S(a+B,Y) I? (B(h)+ny(h))“rfJfla 
n=O 

In the same way we derive A(h), S(h), and e( f,). These results are listed as follows. 
Proposition 2: The duality between A and B results in the commutative associative algebraic 

structure and the non-cocomutative Hopf algebraic structure defined by 

A(t)=te l+let, 

A(fy)=f,,@ l+e-y(h)r 0 fy- C C(atB,y)e-P(h)*fa~fB, 
a&b+ 

C 
a&b+ 

(2.6) 

S(h)=-eerch)*h, S(l)=l; E(fy)=e(h)=O, e(l)=l, 

where 

C(a,P,y) =Na,~ W-a)Na+D,,y). 

III. THE QUANTUM DOUBLE AND ITS UNIVERSAL R MATRIX 

In this section we show how the algebra A and its quantum dual B can be combined to 
form a quasitriangular Hopf algebra with the exotic structure. To define the multiplications 
between A and B, we need to use the following formula: 
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Q e-8(h)rg fs- C C(a,B,y)C(a,6,B)e-8(h)rfor~e-S(h)tfo8 fs. (3.1) 
am&4+ 

Using the above equations and the definition ( 1.2), we calculate the commutators [e,, f ,,I, 
[h, fJ, and 16 xl: 

= - 1 +eyfy+e-r(h)f; 

- aa;4+ C(a,Lty) -t l,S(e+h)‘)) (e,9f&-8(h)rfc, 

= C C(v,P,y)f~-- Z+ C(a,rl,Y)e-‘l’h”f,+e,fy; 
I%++ 

ffi= W(e- y’h”))(l,l)fy+(1,,S(e-y(h)r))(l,l)hfy+Y(h)fy+hfy; 

rx=(l,l)(l,l)xt. (3.2) 

The above results are rewritten as follows. 
Proposition 4: The multiplication between A and B is defined by the following commuta- 

tors: 

Lea, f,l= l-e-a(h)f, [h, f,] = -a(h)f,, 

[e,, fB] = E+ C(y,a,DWa(h)tfy- ,$+ C(a,y,P)fy, a # 8, (3.3) 

[t, x] =O,x=h,e,. 

The above commutators combine the algebra A with its quantum dual B to form a non- 
cocommutative and noncommutative Hopf algebra D(A) = D as the quantum double of A (or 
B) . As an associative algebra, it is generated by h,t,e, , f LI, (a Er$+ ) and the unit 1 obeying Eqs. 
(2.1), and endowed with the Hopf algebraic structure by Eqs. (2.2) and (2.6). Now, let us 
show that this Hopf algebra D is also quasi-triangular. In fact, the construction of Drinfeld’s 
QD theory automatically perseveres the existence of the quasitriangular structure. Intertwining 
A and B, the universal R matrix is a canonical element 
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li= 2 Owc-J~b(m,m,)=eh’t n exp(e,sf,). (3.4) 
m,m,=O(aqbf) asd+ 

This element J? ( E D Q D) endows the Hopf algebra D with a quasi-triangular stucture enjoyed 
by the following relations 

iA =aA(x)i, 

n ,. n  

(A@id)R=R13R23, 

(id@ A)l?=i,sit2, 

A n 
(~@id)R=l=(ide~)R, 

(3.5) 

(Seid)k=I?-‘=(ideS)I?, 

where u is such a permutation that a(x ey) =y OX,X,JJY D. Equations (3.5) imply that the 
above-constructed universal R matrix satisfies the abstract QYBE. It is not too difficult to 
verify the above relations (3.5) by a straightforward calculation. 

In the above discussion, we have constructed a new quantum “group” (quasitriangular 
Hopf algebra) D associated with an arbitrary classical Lie algebra in terms of Drinfeld’s QD 
theory. In comparison with the “standard” quantum “groups” that are the 4 deformations of 
UEAs of classical Lie algbras and superalgebras, our quantum “group” D possesses some new 
features: ( 1) D has not the usual classical limit since it is not a q deformation of the QEA, (2) 
it has an exotic subalgebraic structure that the subalgebra A is cocomutative but not commu- 
tative and the subalgebra B is commutative but not cocommutative. This asymmetric structure 
is quite different from the symmetric structure that both A and B are noncommutative and 
non-cocommutative. We will call D exotic quantum double. 

IV. EXAMPLE OF THE EXOTIC QUANTUM DOUBLE FOR A2 

In this section an explicit example of the exotic quantum double will be given in connection 
with the classical Lie algebra A,. In this example, the subalgebra A is taken to be an associative 
algebra generated by h,a,b, and the relations 

[h, al =w,[k bl =b, PC, (4.la) 

[a, [a, bll=o=Cb, Lb, all. (4.lb) 

The generators a and b can be regarded as the root vectors with respect to the simple roots al 
and a2, respectively, for A2. The third positive root vector corresponding to aI +a2 is just the 
commutator of a and b, i.e., 

c= [a, bl, (4.2) 

which satisfies 

[c, a] =0= [c, b], [h, c] = @+l)c. (4.3) 

The first equation in Eqs. (4.3) results from the Serre relation (4.lb). If we take hi and h2 as 
the Cartan elements in the Chevalley basis for A, and 
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[h,, a] =2a,[hl, b] = -b, 

[h2, a] = -a,[h2, b] =2b, 

then 

2/J+l ,u+2 h h=3h1+3 2. 

3447 

(4.4) 

(4.5) 

The cocommutative Hopf algebraic structure of A is endowed with 

A(x)=xe l+lex, 

S(x)=-x,S(l)=l, e(x)=O, e(l)=l. (4.6) 

Let B be the quantum dual to A; and t, d, f, and g be its dual generators to h, a, b, and 
c, respectively. According to the last section, a straightforward calculation gives the Hopf 
algebraic structure of B: 

A(d)=de l+e+‘ed , 

A(f)=fe l+e-‘e f, 

A(g)=ge l+e-(p’+l)feg-e-rde f, 

S(d) = -&‘d, 

s(g) = -e(p+l)r(g+d@ f ), 

Nf )=e% 

and the multiplication relation between A and B, 

[kdl=--pd, [h,fl=-f, [h,gl=-(p+l)g, 

[a, d] = 1 -e-p’, [b, f]=l-e-‘, [c,g]=l-e-(p+‘)‘, 

[a, gl= -f, Lb, gl =e-‘4 

[a,fl=o=[b,dl, [c,dl=O=[c,fl, 

(4.7) 

(4.8) 

[t, xl =Q x=a,b,c,h. 

The quantum double D( 2) is generated by a, b, c, h, f, d, e, and f with the relations (4. la), 
(4.2), (4.3), and (4.8) as an associative algebra. Its quasitriangular Hopf algebraic stucture is 
endowed with by Eqs. (4.7) and the universal R matrix 

(4.9) 
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V. THE REPRESENTATION THEORY AND MANY-PARAMETER R-MATRICES 

One purpose of building quantum double is to obtain the solutions of the QYBE in terms 
of its universal R matrix and matrix representations. In order to find the solutions of QYBE 
associated with the exotic quantum double D, we should study its representation theory. In 
fact, for a given representation Tlxl of D, 

TIXl:D+End( V), 

on the linear space Y where x is a continuous parameter, we can construct an R matrix 

R(x,y)=T[% TLy’(k) 

satisfying the QYBE: 

R~,~(x~)R~,~(x,z)R~,~CY,Z) =R~,~(~~z)RI,~(x,z)R~,~(x,Y), (5.1) 

Here, x, y, and z appear as the color parameters” similar to the nonadditive spectrum param- 
eters in QYBE. The R matrices without additivity were first found in Refs. 17 and 18 for the 
chiral Potts model in statistical mechanics. Thus, it is necessary to study the representation 
theory and construct the many-parameter representations for the exotic quantum double D. 
However, to write down an explicit representation of a general D is rather overelaborate. So, 
we only discuss the typical example D(2) in this section, but the main ideas and method can 
be directly applied to the general case. 

To simplify our discussion, we have to distinguish between the trivial and nontrivial D 
modules. 

Definition I: The action of an operator on the representation space V is called trivial if its 
kemal is the whole space that it acts on. 

Definition 2: A D(2) module V is called trivial if at least one of the generators of D acts 
trivially on V; otherwise, it is called a nontrivial module. 

Before studying the representation theory of D( 2)) we would like to give a remark on the 
above definitions. To study the trival D( 2) module is much easier than that of a nontrivial one. 
In fact, the structure of a nontrivial D( 2) module collapses into that of the module of a simpler 
algebra D’. For example, if the action oft in D( 2) is trivial, one need only to study the module 
of the associative algebra generated by h,a,b,c,d,f, and g with nonzero commutation relations 

[a, bl =c, [a, gl = -f, [b, g] =d, 

[h, al =w [h bl =b, 

[h>gl=(p++k, [h,dl=-pd, [h,fl=-f. 

For this reason, we will mainly study the nontrivial D(2)-model. 
Having the above description, we are now in the position to prove a proposition as a central 

result for the representation theory of D( 2). 
Proposition 5: There does not exist a finite-dimensional irreducible D(2) module. 
Prooj Suppose there exists a finite-dimensional irreducible D(2) model V and 

T: D-+ End( I’) is the corresponding finite-dimensional irreducible representation. For simplic- 
ity we by x denote T(x) as follows for XE D( 2). Since r belongs to the center of D, its 
representative must be a nonzero scalar in nontrivial finite-dimensional irreducible represen- 
tation according to the Schur lemma. Otherwise, if t is zero, V is trivial. Because C is an 
algebraic closure, there must be an eigenvector v such that 
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hv=&, ~EC. 

Noticing the vectors v,av,a2v ,..., a”v ,..., correspond to the distinct eigenvalues ~,~+~,~+2~,...,{ 
+ np,..., for ,u # 0, we come to the conclusion that there exists rEZ+ such that nonzero 
vectors v,av,a2v ,..., ar-‘v and a’-’ v = u are linearly independent and a’v = 0. Similarly, there are 
s,qeZ+ such that the nonzero u,bu,b2u,... and b”- ‘u = w are linearly independent and bw = b”u 
=O; the nonzero vectors w,cw,c~w,....,c~-~ - w-z are linearly independent and cz= cqw = 0. Then, 
we can prove that az=bz=cz=O and thus the vector z generates a D(2) submodule 

S=Span{F(m,n,l) =dmf”$zIm,n,IeZ+} 

under the action of D(2). Thanks to the irreducibility of V and its finite dimension, we must 
have S= V and conclude that there must exist m’, n’, I’ so that 

dF(m’- l,n,l) =O, fF(m,n’- 1,Z) =0, gF(m,n,l’- 1) =0, (5.2) 

that is to say, the dimension of V is m’n’l’ of S. However, it follows from Eq. (5.2) that 

O=adF(m’- l,O,O) =ad”‘z= [d”‘a+m’( 1 --e-p”)]z=m’( 1-e-p”)z, 

that is, m’ =O. Similarly, n’ =I’ =O. This means the D( 2) module is trivial. 
According to the above proposition, for the study of nontrivial representation, we only 

need to focus on two cases, the indecomposable (reducible, but not completely reducible) 
representations and the infinite-dimensional irreducible representations. Now, we only discuss 
the latter. To construct an infinite-dimensional irreducible representation explicitly, we define 
a Verma-like space 

Url,r) =SpanC IM) = I m,n,l) =ambnc’I O(q,r)) 1 m,n,lEZ+} 

based on the vacuumlike state I 0( 7,~)): 

(5.3) 

where q,rre C. The existence of the vacuumlike state I 0( v,rr) ) is easily proved by considering 
that c and h commute with each other and (a,b,c), (d,f,g), and (h,t) act as the “lifting” 
operators (for the positive roots), the “lowering” operator (for the negative roots), and the 
Cat-tan operators, respectively, for a classical Lie algebra. 

Proposition 6: On the Verma-like space, the infinite-dimensional representation T[77r1, 

hlM)=[rl+mp+(l+p)Il IW, alW= IM+e’), 

blM)= IM+e2)-mlM--e1+e3), clM)= IM+e3), (5.4) 

dlM)=m(e+‘“--1) IM-e’), f IM)=n(emrr-l) IM-e2), 

gl&f)=l(e-(p+‘)“- 1) IM-e’)+mn(e-“-1) IM-e’---e2) 

is irreducible. Here et = ( l,O,O), e2= (O,l,O), e3 = (O,O, 1) are the unit vectors in the lattice 
space Z3:{M= (m,n,l> I m,n,lEZ+). 

Prooj Using the commutation relations of D(2), we can first prove by induction for 
nez+: 
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du”=a”d+n(e-“‘- 1)8-i , 

fb”=b”f+n(e-‘-- l)b”-‘, 

(5.5) 

ba”=a”b-nca”-‘, ab”=b”a+ncb”-‘, 

ha”=a”hfnpaR, hb”=b”h+nb”, 

hc”=c”h+n( l+p)b”. 

Equations (5.4) follows from Eqs. (5.5) and (5.3) immediately. It is not difficult to verify that 
Eqs. (5.4) indeed define a representation of D( 2). By considering that the indices m, n, and 1 
not only decrease but also increase by unit 1, it can be proved that this representation is 
irreducible if it is nontrivial. 

Let us make an observation that there exist many parameters ,u, P, and 7. Among them, ~1 
and 71 are allowed by the quantum double structure and the representation theory respectively 
while rr is due to the existence of the central element t. Since 7 and 7~ can be used to distinguish 
the different representations, we can set x= (7,~) and obtain the colored R matrices with 
two-dimensional color parameters x where the parameter p is intrinsic and plays the similar 
role to that of the q in the standard quantum double quantum algebras. In fact, for a rank I 
classical Lie algebra, we can introduce I- 1 independent intrinsic parameters to the corre- 
sponding exotic quantum double since its Cartan subalgebra is I dimensional. 

VI. DISCUSSIONS 

To conclude this paper, we should give some remarks on our exotic quantum double and 
its relations to the known results, such as the Hopf algebraic structure for the function algebra 
on the formal group,42P43 the extended Heisenberg-Weyl algebra (the boson algebra) as a 
quantum double,44P46 and so on. 

(i) From the construction of the exotic quantum double in this paper, we can see that a 
commutative (Abelian) algebra, e.g., the subalgebra B, can be endowed with a non- 
cocommutative Hopf algebraic structure and its quantum dual and quantum double can be 
deduced as noncommutative algebras. Such a process can be regarded as the inversion of the 
construction in this paper and maybe provide us with a scheme of “quantization” from com- 
mutative object to noncommutative one. An example of this “quantization” was given45 re- 
cently. A simplest associative algebra is generated by two commuting generators X and H. Its 
non-cocommutative Hopf algebraic structure is defined by 

A(H)=Hel+leH, A(X)=X@l+e-HeX, 

S(H) = -H, s(x) = -8X, E(X) =()=6(H). 

Let Y and N be the dual generators to X and H, respectively. Its quantum dual has a cocom- 
mutative Hopf algebraic structure and the elements X, Y, H, and N generate a quantum double 
D( 1) with the only nonzero commutation relations 

[Iv, X] =X,[N, Y] = - Y,[X, Y] = 1 -e-H. 
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This quantum double D( 1) is a special example of the exotic quantum double where A is a 
“half” of UEA of A r. There exists a homomorphisim 

a-+X, a++ Y, E-+1-emH, &h----N 

from the boson alg:bra generated by the creation operator a +, the annihilation operator a, the 
number operator N, and the central operator E to this exotic quantum double where the only 
nonzero commutation relations for the boson algebra are 

ia, a+] =E, [rj, a] = -a, [fi, a+] =a+. 

This example shows the so-called “quantization” from commutative object to noncommutative 
one in which the quantum Yang-Baxter equation is enjoyed by the universal R matrix 

ff=exp(X@ Y)exp(N@H). 

(ii) It has to be pointed out that there are some difficulties in the futher development in 
constructing other exotic quantum doubles. When one takes the subalgebra B to be the whole 
UEA of a classical algebra, we hardly write down the dual basis explicitly and so the con- 
struction scheme of this paper cannot work well. The similar problem also appears in the 
discussion in terms of the formal group. How to generalize the method and ideas of this paper 
to work on the case of the whole UEA other than a Bore1 subalgebra is the first open question 
we should mention. The second open question is how to find a finite-dimensional representation 
for the exotic quantum double except the example of A1 mentioned above. It is well known that 
the finite-dimensional R matrices usually make sense in the quantum inverse scattering method 
and even in the exactly solvable models in statistical mechanics. Thus, it is also expected that 
some new finite-dimensional R matrices can follow from the exotic quantum double through its 
universal R matrix where the finite-dimensional representations of the exotic quantum double 
must be used. However, although we can do it for the special case of A, by building the 
finite-dimensional indecomposable representation of D( 1) on certain quotient space of linear 
space D( 1 ), we cannot obtain a finite-dimensional representation for other higher-rank exotic 
quantum doubles by the same method due to the existence of the multicenter in certain 
subalgebras. Therefore, there needs to be futher works on finite-dimensional representation of 
the exotic quantum double 

(iii) In the formal group theory of Lie algbera,43 the bialgebra structure of the dual to the 
UEA of a classical Lie algebra can be given abstractly in terms of the formal group. It is not 
difficult to further define the antipode for this dual bialgebra. So, in this abstract way, the Hopf 
algebraic structure can be endowed with the dual Hopf algebra of the UEA. However, writing 
out the explicit Hopf algebraic structure, namely, the explicit multiplication relations, coprod- 
uct, antipode, and counit for the dual generators, completely depends on the explict evolution 
of the Baker-Comppell-Hausdortf formula for classical Lie algebra. However, it is much more 
difficult to do it even for the simple case, e.g., SU(2). The study in this paper avoids this 
evalution so that not only the dual Hopf algebraic structure is obtained, but also the corre- 
sponding quantum double-the exotic quantum double is built for the Bore1 subalgebra of the 
UEA of arbitrary classical Lie algebra by combining the two subalgebras dual to each other. 
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