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In this paper a new q-deformed boson realization of quantum algebra sl, (n + 1) is presented 
for the first time, and its representations are obtained in the nongeneric case that q is a root of 
unity. A new type of sl, (2) R-matrices are systematically constructed through the universal R- 
matrix. 

I. INTRODUCTION 

It is well known that R-matrices for Yang-Baxter equa- 
tion play a crucial role in nonlinear physics such as low- 
dimensional integrable field theory, exactly solvable models 
in statistical mechanics, and conformal field theory.lm3 The 
standard way of obtaining an R-matrix is substituting the 
representation of a quantum group (sometimes strictly 
called q-analog of universal enveloping algebra of a classical 
Lie algebra or quantum algebra) into the so-called universal 
R-matrix.“6 The R-matrices obtained in this way are called 
standard R-matrices. Recently, many new R-matrices, that 
are sometimes called nonstandard R-matrices, have been 
constructed by means of the extended Kauffman’s diagram 
technique.’ These new R-matrices associated with classical 
Lie algebras provide new representations of braid group and 
have been Yang-Baxterized to satisfy Yang-Baxter equa- 
tion with a spectral parameter.8.9 The possible relations 
between the nonstandard R-matrices and quantum algebras 
have also been discussed with the sl, (2) case as an exam- 
ple. ‘O 

The main purpose of this paper is to construct a new 
type of R-matrix essentially different from the standard and 
nonstandard ones in the standard way. To this end, we first 
establish a nongenetic q-deformed boson realization of the 
finite-dimensional representations of quantum algebra 
sl, (2) based on the previous works,‘1-‘4 then we generally 
construct a new class of R-matrices associated with sl, (2) 
through the universal R-matrix. Because of the indecompo- 
sition property of the new representations used in this paper, 
the obtained R-matrices possess the following nongenetic 
properties: ( 1) They satisfy the Yang-Baxter equation only 
when q is a root of unity and cannot be obtained from the 
corresponding standard or nonstandard R-matrices by let- 
ting $ = 1. (2) They no longer have the eigenvalue structure 
that the standard and nonstandard R-matrices possess, thus 
the scheme to Yang-Baxterize them may be completely new 
and need further investigation. 

II. A NEW q-DEFORMED BOSON REALIZATION OF 
slq(~+l) 

According to the discussion about the q-deformed bo- 
son operators independently presented by different authors, 
we can define a q-deformed boson algebra .C%? 9 (I) as an asso- 
ciative algebra over the complex number field. It is generated 
by ui+, ui = a,, and Ni (i = 1,2 ,..., I) that satisfy 

u.a.+ = [Ni + 11, a,+ui = [Nil, ui+u, =u,u, 

,;;j,, [Ni,Ujk] = -@,Uj’, (2.1) 
[u+,ui’ ] = 0, [N,,N,] = 0. 

The so-called q-deformed boson realizction of a quantum 
algebra G,:(g) is the image B( G, ) = G,:-& = B(g)} of a 
homomorphic mapping B:G, -+ &’ 4 (I). Now let us turn to 
quantum algebra sl, (n + 1 ), which is generated by X ;’ and 
Hi (i = 1,2,3 ,..., n) that satisfy 

[H,,X,‘] = fc$X,+-, 

[Xi’,X,-] =S,[H,], (2.2) 

xfx,i, - - (4 + q-‘)Xi’X,‘, ,Xj’ + Xj$ lXi’2zOo, - 

where ag = 26, - S, + , - S, _ , . From (2.1) we can easily 
prove that the following elements of SS’ 4 (n + 1) 

xi+ =u+u,;,, x, = -u,u,+,, 

Hi = (Ni + Ni+j + j), 
i= 1,3,5 ,..., n - 1 + t(l - ( - 1)“) 

Xjf = -u,u,+,, xj- =uj+uj;,, 
(2.3) 

Hj = - (Nj +Nj+l + 11, 

j = 2,4,6 ,..., n - J(l - ( - l)“), 

indeed define a q-deformed boson realization of sl, (n + 1 ), 
that is to say, (2.3) satisfy (2.2). 

Before going further we would like to point out that 
there is an essential difference between the above realization 
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and the previous one. The previous q-deformed boson real- 
ization B(s1, (n + 1 )):-@ = B(g)} satisfies 

PI+, 
[&N] =0, N= c N, Vgosl,(n+ 1). 

i=l 

In other words, “the number of particles” remains un- 
changed under the action of 8, but it is not the case now. In 
contrast, there exist someg&, (n + 1) such that [k,N] #0, 
so it is no longer possible to find a finite-dimensional repre- 
sentation space for sl, (n + 1) when q is generic. Fortunate- 
ly, when q is a root of unity we can find some sl, (n + 1) - 
invariant subspaces and finite-dimensional representation 
spaces for sl, (n + 1). This is done in the next section. 

Ill. FINITE-DIMENSIONAL REPRESENTATIONS OF 
s&W+1 1 

For the q-deformed boson algebra ~4’~ (n + 1 ), we de- 
fine a q-deformed Fock space -c?lq (n + 1) 

{lrni) = Im,m,***m,+,) =u,+m’u:mhz,+,7”+‘~0) 

x Im, “‘Yn,+ ,EZ+ 

= co 1 2 , > I-** 11, 

where the q-vacuum state IO) satisfies 

a, IO) = Ni IO) = 0, i = 1,2 ,..., n + 1, 

then we obtain a natural representation p of sl, (n + 1) on 
.Fq: 

gilmj) = Imj + Sij + S,+ ,j>, 

f;tmj)= -[mj][m,+l]Imi-sSij-Si+,j) (3.1) 
htlmjl= f (mi + mi+ 1 + l)fmj>, 

where gi =u,+ai;,, A= -“gui+l* and 
h,= +W,+Nj+, + 1) are the elements of the set 
{X,‘,H, Ii= 1,2 ,..., n + 1). From (3.1) it is easily seen that 
there is ap-invariant subspace Vh”,,, (for a given N& + ) 

lm,)~.T&+ 1)1-&k -Cm*k-, =N . 
k k I 

When q is nongeneric, i.e., qp = 1, V’* , hasp-invariant sub- 
spaces 

Wi$,“,‘l (ai,p) [‘= 1,2,3>..*, gn -j(l - ( - l)“)),c@+ ] 

= lmj)EV’Ntlm,i = Nt Cmzk-, + C m,,>aip 
I 

. 
k k#i I 

It will be shown that in some cases, the quotient spaces 
VI,“,, , /Z W!,“,] , (a, ,p) are finite dimensional. 

Now’we consider sl, (3) as an explicit example. In this 
special case, the q-deformed boson realization is 

H, = (N, +N, + l), e, =X: =~,+a:, 

f, =x,- = -u,u, 

Hz = - (N, + N3 + l), e2 =X,+ = - qZuj, 

fi = X; = uz+ a,+ . 

Correspondingly, we denote the basis of Vi” ’ by 
F( m,n) = jm,N + m + n,n). On this basis we obtain a rep- 
resentation pf iv ,: 

e, F(m,n) = F(m + 1,~) 

f,FCm,nf = - [ml[m+n+NlF(m- !,n), 
e,F(m,nl = - [m + n + N] [n]F(m,n - l), 

fi F(m,nl = Ftm,n + 1 I, 

H,I?m,nl = (2m + n + N+ lIF(m,n), 
H,F(m,n) = - (2~ + m + N + l)F(m,n), 

which is an infinite-dimensional irreducible representation 
in the generic case. But when q is a root of unity, we have a 
series of ptN, -invariant subspaces Wr(a,p):(F( m,n) Jm 
+ n + N>ap}, which is marked by such extreme vectors 
V$F( m,n) jrn + n = ap - N - I] that 

f,V=e,V=O. 

It is easy to prove that for a given N, a, the quotient space 

Q:‘(%P) = Vk*l/W~(a,p):@(m,n) = F(m,n) 

X h4od W&N’(a,p) Irn + n 

Gap-N- 1, m,n>OI 

is finite dimensional and its dimension is 

4 (a,N,pl = t(ap - N + 1) tap - NJ. 
Therefore, p’ N, naturally induces a ;(ap - N-f- 1) 
(ap - NJ-dimensional representation on Qr(a,p). Expli- 
citly, we have 

e,F(m,n) = B(ap - N - 1 - m - n)F(m + l,n), 

f,F(m,n) = - [m] [m + n + N]F(m - l,n), 

e,F(m,n) = - [m + n f N][n]F(m,n - l), 
f,FCm,n) = B(ap - N - 1 - m - n)F(m,n + 11, 

N,F(m,n) = (2m + II + N + 1 )F(m,n), 
H,F(m,n) = - (2n + m + N+ l)F(m,n), 

where@(x) = lforx>Oand@(x) =Oforx~O.Forexam- 
ple, when ap - N = 3 we have a six-dimensional representa- 
tion 

=& +E42 +Est 

;: = [21-G -I- [21&4 +E35, 
e2 = [2lE,, + 4, + [2lE,,, 

f2 =-% +J% -f-Em, 
H, = (N+ lb%, + (N+ 3)EzE,, + (A’+ 2IE33 

i- WS 5)E, I- (N-t- 4)E,, + (N+ 3&j,, 

Hz = - [W+ IS,, + (N+2)E,, + W+3& 

+ (N-I- 3)E, + (N-t 4& + (N+ 5)-G,,]. 

IV. NONGENERIC REPRESENTATIONS OF s&,(2) 

In order to construct nongenetic R-matrices associated 
with quantum algebra sl, (2), in this section we will study 
the nongeneric representations of sl, (2) in detail. 

Using the new q-deformed boson realization of sl, (2)) 

J3 = (N, + N2 + l), J, =~,+a;, J- = -a,+, 

we can obtain a representation 
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J+&(m) =fN(m + 11, 
J-J,(m) = - [ml[N+ mlfN(m - 11, (4.1) 

JzfNO) = (2m + NM,(m), 

on the invariant subspace W,“( a,NGZ + ) : 

t&(m) = (aI+ I”(%+ Y+mlok5y&n +N>apl, 

of the q-deformed Fock space 9, (2) : 

{ Im, m2 ) = a,+ “‘a2+ “‘IO) IN, IO) = ai IO) = 0, 

i= 1,2,m,m,cZ+). 

It is obvious that this representation is infinite dimensional. 
To obtain a finite-dimensional representation let us consider 
thequotient space Q, (n,N) = 9:(2)/W: (N= ap - n): 

g(J,M) = IJ + M,J + M + ap - n)Mod Wt]M 

= -J, -J+ l,..., J}, 

whereJ = (n - 1)/2. Now one can easily see that Q, (n,N) 
carries an n-dimensional representation, which can be writ- 
ten as 

J + 7(J,W =.RJ,M + 1 )B(J - Ml, 

J-j-(J,M) = - [J+M][J+M-np-(J,M- l), 
(4.2) 

J.J‘(J,M) = (2M + ap)f(J,M). 

Besides Wz, there exist other sl, (2)-invariant sub- 
spaces of Y:(2) from which we can construct new repre- 
sentations. It is easy to check that S,” (a,N& + ) 

&.(tn) = [mm + N)EF,N(2)ImWpl 
are also sl, (2)-invariant. As a result, we have the quotient 
spaces Q,” = Y,N(2)/S,N: 

{ Im,m + N)Mod S,NlO(m<ap - 1) 

on which ap-dimensional representations can be construct- 
ed as follows. 

First, we choose a set of bases for Q ,“: 

.@v(J,M) = (a,+ )J+M(u2+)J+M+Nlo)ModS,NIM 

= -J, -J+ l,..., J}, 
J 

where J= (aP- 1)/2, and N= I,2 ,..., ap- 1. Then, we 
give the explicit form of the representation on 
Q:: 

J+&t,(J,M) =fN(J,M+ 1)&J- MI, 
J-fN(JN) = - [J+Ml[J+M+Nl&(JN- 11, 

(4.3) 

J& (J,M) = (2~14 + q + N)fN (J&f). 

It should be pointed out that because in the nongeneric 
case [M + p] = [Ml, we cannot obtain any new representa- 
tions on Q ,” (N>ap) Moreover, we can prove that all of the 
above representations are indecomposable, so we can expect 
that they will give rise to a new type of R-matrix. 

V. NONGENERIC R-MATRICES ASSOCIATED WITH 
s4(2) 

Having constructed the nongeneric representations of 
sl, (2), now we are prepared to obtain the nongeneric R- 
matrices associated with them. First, we rewrite (4.2) and 
(4.3) as 

(J+ )z’ = S$+ ,0(J- m), 

(J- I:‘= [J+ml[J-m+ llSZ’-,, 
(J,):’ = (2m’ + ap)Sz’, m,m’ = -J, -J+ l,..., J 

and 

(J, )l’ = S;‘, ,0(J- m), 

(J-)~‘=[J+m][J-m+l-N]S~‘P,, 

(J, )z’ = (2m’ + ap + N)SK’, m,m’ = -J ,..., J, 

which are convenient to use. Then, we substitute them into 
the universal R-matrix 

@=q (1/2)(J,@J,) 
2 (1-q-2)” 

l t=O in],! 
x (41/2’4~+ aq-“/2’J’J- )nq(1/2)n(n-‘) 

to obtain 

(R “);;I’ = 
2J (1 -q-2)” q(l/2)(2m’ +ap)(2/‘+apyj;‘&’ + qc1/2)~zm’+ap)~2/‘+a~) c 

n=l [nl,! 

xq- n(n-‘1)‘2q(m’-“)nX fi [J+f’+i],[J+ 1 - (1’+i)]4S~‘+nS:~n 
i=l 

and 

(R JJ);;” = q 25 (1 -q-‘)” (I/2)(2m’+~~+.N)~2/‘+n~+N)~~‘~~‘+q~l/2)(2m’+crp+N)(2~‘+ap+N) c 

n=, bl,! 

(5.1) 

xc 
n(n--l)/Zq(m’-l’)nx fi [J+/‘+i],[J+ 1 -N- (Z’+i)],S~‘+.6~L., (5.2) 

i= I 

respectively. The R-matrices concerning two different representation spaces can be obtained in the same way. 
To show that (5.1) and (5.2) can provide some new R-matrices essentially different from the standard and nonstandard 

ones already known to us, we give an example here. Taking a = 1, p = 3, and N = 2 in (5.2), we have 
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r l/2 4 
4 

- I/2 
4 

0 4 

R  ” = 

4 -3/2 0 0 
0 

4 
I/2 

4 
-yq-q-l) 

0  0 

Finally, we would like to point out that the new R-ma- 
trices possess nongeneric properties as mentioned in the In- 
troduction, so many problems naturally arise. Further dis- 
cussions about them are beyond the scope of this paper, and 
will be presented in forthcoming papers. 
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