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According to ’t Hooft @Class. Quantum. Grav.16, 3263 ~1999!#, quantum gravity
can be postulated as a dissipative deterministic system, where quantum states at the
‘‘atomic scale’’ can be understood as equivalence classes of primordial states gov-
erned by a dissipative deterministic dynamics law at the ‘‘Planck scale.’’ In this
paper, it is shown that for a quantum system to have an underlying deterministic
dissipative dynamics, the time variable should be discrete if the continuity of its
temporal evolution is required. Besides, the underlying deterministic theory also
imposes restrictions on the energy spectrum of the quantum system. It is also found
that quantum symmetry at the ‘‘atomic scale’’ can be induced from ’t Hooft’s
coarse graining classification of primordial states at the ‘‘Planck scale.’’ ©2001
American Institute of Physics.@DOI: 10.1063/1.1380250#

I. INTRODUCTION

Recently, Gerard’t Hooft postulated that there should be a dissipative deterministic t
underlying quantum gravity at the so-called ‘‘Planck scale.’’1,2 In his theory, the generic quantum
mechanics is no longer the crucial starting point. Rather, a deterministic theory with dissipat
information at the ‘‘Planck scale’’ is needed to derive quantum mechanics at the ‘‘atomic sc
It seems that this viewpoint can solve problems concerning locality and causality in the so-
Planck scale physics such as quantum gravity, which are quite different from those in the
quantum field theories in some flat background space–time based on the holographic princ
quantum gravity theory.3

In ’t Hooft’s opinion, at the ‘‘atomic scale’’ quantum states are equivalence classes of pr
dial states at the ‘‘Planck scale.’’ In Ref. 4, this point of view was illustrated through a sim
model. According to ’t Hooft, if we only care about the temporal evolution of equivalence cla
the information within each equivalence class could be ignored. Then from a non-time-reve
evolution, which characterizes a deterministic process with dissipation at the ‘‘Planck scale
can obtain a time-reversible evolution of the properly defined equivalence classes of prim
states. Taking the equivalence classes to be quantum states we are then able to intro
reversible evolution law at the ‘‘atomic scale.’’ Apparently, here the central problem is ho
classify the Planck scale states with respect to a deterministic evolution. ’t Hooft’s solution t
problem is as follows. He argues that two Planck scale states are equivalent at the ‘‘atomic
if, after some finite time interval, they evolve into the same state. This leads to a natural defi
of equivalence classes: Two states are in the same equivalence class if and only if they evo
the same state after some finite time interval. Then, quantum states are identified with
equivalence classes.

Most recently we made clear the mathematical structure of ’t Hooft’s theory using quo
space construction and related concepts.5 Let the primordial states span a linear space. We find

a!Electronic mail: suncp@itp.a.c.cn
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the equivalence classes defined by ’t Hooft can be identified with the cosets of the inv
subspace spanned by those primordial states annihilated by the time-evolution operator. T
Hilbert space of quantum states is just the corresponding quotient space and the time-rev
evolution at the ‘‘atomic scale’’ can naturally be induced on the quotient space by the dissip
deterministic evolution operator. Following this line, in this paper, we will make a further ana
of the mathematical aspect of ’t Hooft’s theory and then discuss some physical conseq
implied in the theory. We will also probe the spectral structure of finite dimensional qua
system with an underlying deterministic structure and extend ’t Hooft’s idea to study qua
symmetry problem.

II. SOME MATHEMATICAL RESULTS

In this section we present some mathematical results closely related to the ’t Hooft eq
lence class theory. In the following,I, J stand for index sets not necessarily finite; ifV1 is a
subspace ofV,vPV, the elementv1V1 in the quotient spaceV/V1 is denoted byv̄. All the vector
spaces to be considered are over the complex number field. Physically, one should bear i
thatV will be the linear space spanned by so-called primordial states at the ‘‘Planck scale’’~see the
following!. For convenience, we list the mathematical definitions of some concepts appearin
Hooft’s theory as follows.

Definition 1: A linear operatorTPEnd(V) is called deterministic if there exists a bas
$v i u i PI % of V on whichT acts in the following way:; i PI , ' i 8PI s.t.Tv i5v i 8 . Such a basis is
called aT-deterministic basis. If, moreover,T is singular~noninvertible!, then it is called dissipa-
tive deterministic.

Remark 1:In ’t Hooft theory,T represents a deterministic time-evolution process~with dissi-
pation! at the ‘‘Planck scale.’’

Definition 2:An injective map from a set to itself is called a permutation of the set. A lin
operatorTPEnd(V) is called a permutation operator if there exists a basis ofV on whichT act as
a permutation.

Definition 3:A linear operator on a vector space is called unitarizable if there exists an
product on the vector space such that it is unitary relative to it.

Remark 2:Physically, time-reversible evolution is described by a unitary operator, a
reversible but not unitarizable operator usually does not correspond to any practical evolu
quantum mechanics.

Definition 4: Let V andW be two vector spaces,TPEnd(V) andSPEnd(W). If there exists
an isomorphismw betweenV andW such thatwT5Sw, T andS are called equivalent.

Having prepared the above-given definitions, we now state one of our central results.
Proposition 1:Let V be a vector space,TPEnd(V) is dissipative deterministic andV1 is a

T-invariant subspace such that the induced operatorT̄ on the quotient spaceV/V1 is nonsingular,
then T̄ is a permutation operator; conversely, ifSPEnd(V) is a permutation operator, then the
exists a vector spaceV8, a dissipative deterministic operatorS8PEnd(V8), and anS8-invariant
subspaceV18 of V8 such that the induced operatorS̄8PEnd(V8/V18) is equivalent toS.

Proof: Let $v i u i PI % be a T-deterministic basis. Then there exists a subsetJ,I such that
$v̄ i u i PJ% is a basis ofV/V1 . By definition

T̄v̄ i5Tv i5 v̄ i 8 ~ i ,i 8PI !. ~1!

As T̄ is nonsingular, we clearly see thatT̄ acts as a permutation on the basis$v̄ i u i PJ%. This proves
the first half of the proposition. For the second half, let$v i u i PI % be a basis ofV on whichS acts
as a permutation, take an arbitrary elementw¹V, and define

V85span$v i ,wu i PI %,
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V185V. DefineS8PEnd(V8) such thatS8uV5S andS8w50. It is then trivial to verify thatS8 is
dissipative deterministic andS̄8 is equivalent toS. The proposition is thus proved.

Remark 3:This proposition, as we will see in the following, tells us that ’t Hooft ’s underlyi
dissipative deterministic dynamic law at the ‘‘Planck scale’’ can only produce very special
reversible evolution at the ‘‘atomic scale.’’

Keep the notations in the above-given proposition. We have the following corollary.
Corollary: If V/V1 is finite dimensional, thenT̄ is unitarizable.
Proof: According to the proposition, there is a basis ofV/V1 on whichT̄ acts as a permutation

If dimV/V1,`,T̄ is periodic, namely, there exists a positive integern such thatT̄n51. Let p be
its period. Choose an arbitrary inner product~,! on V/V1 and define a new inner product^,& as
follows:

^v̄,w̄&5(
j 51

p

~ T̄j v̄, t̄ j w̄!, ; v̄,w̄PV/V1 . ~2!

It is then easy to show thatT̄ is unitary relative to the inner product^,&.
Proposition 1 shows us that an invertible linear operator can be induced from a determ

operatorT if and only if it is a permutation operator. The following proposition characterizes
permutation operator on a finite dimensional space.

Proposition 2:Let V be a finite dimensional vector space,TPEnd(V). T is a permutation
operator if and only if it is diagonalizable and its eigenvalues can be grouped into some c
say,Dn1

,Dn2
,¯ ,Dnr

, such thatDnj
( j 51,2,̄ ,r ) exactly consists of thenj nj th roots of unity

with the same multiplicity.
Proof: Let $v i u i 51,2,̄ ,n% be a basis on whichT acts as a permutation. First, supposeT is

a cyclic permutation of the basis, namely, we have

Tv15v2 ,Tv25v3 ,¯ ,Tvn215vn ,Tvn5v1 . ~3!

ThenT is a periodic operator of periodn, and its minimal polynomial isln21. Consequently,T
is diagonalizable and its eigenvalues are exp(i 2kp/n) (k51,2,̄ ,n), thenth roots of unity. Now
let T act as a general permutation on the basis. We notice that the basis elements can be
into some classes on each of whichT acts as a cyclic permutation. Thus the ‘‘only if’’ part of th
proposition easily follows.

Conversely, supposeT is diagonalizable and its eigenvalues can be grouped into some cl
Dn1

,Dn2
,¯ ,Dnr

in such a way thatDnj
( j 51,2,̄ ,r ) exactly consists of thenj nj th roots of

unity with multiplicity mj . Then there is a basis$vk,l
j u j 51,2,̄ ,r ; k51,2,̄ ,nj ; l 51,2,̄ ,mj %

such that

Tvk,l
j 5expS i

2kp

nj
D vk,l

j . ~4!

Define the subspaceVj ,l of V as follows:

Vj ,l5span$vk,l
j uk51,2,̄ ,nj%.

Clearly, we have

V5(
j 51

r

(
l 51

mj

% Vj ,l
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and from the proof of the ‘‘only if’’ part we know in each subspaceVj ,l there is a basis on which
T acts as a cyclic permutation of ordermj . Put together, these bases of the subspaces form a
of V on whichT acts as a permutation. This proves the ‘‘if’’ part of the proposition.

III. DYNAMICS FROM ’T HOOFT’S THEORY

In this section we focus on the physical aspect of ’t Hooft’s theory, but our analysis dep
on the above-mentioned mathematical results.

In ’t Hooft’s theory, primordial states at the ‘‘Planck scale’’ need not form a linear sp
Generally they can be denoted by a setS5$f i u i PI %. The underlying deterministic evolution is
transformation U (usually depending on time) ofS to itself. If U has no inverse it is called a
dissipative deterministic evolution. Obviously, it can be represented by a matrix with the entrie
or 1 if I is a finite set. AsU is an evolution operator, we write it asU5U(t f ,t i) by convention.
Physically, it represents the evolution in the time interval@ t i ,t f #. Certainly the evolution should
satisfy the so-called semigroup condition

U~ t f ,tm!U~ tm ,t i !5U~ t f ,t i !,
~5!

U~ t,t !51.

If U is singular, it describes deterministic process with dissipation. As a matter of fact, unde
an evolution some states will disappear and some states will evolve into the same state, or
words, some states with a different past may have the same deterministic fate. ’t Hooft think
if two states evolve in such a way that their futures are identical they should represent the
state at the ‘‘atomic scale.’’ In this view, he divides the elements ofS into equivalence classes,f i 1
andf i 2

( i 1 ,i 2PI ) being in the same equivalence class if they are evolved into the same state

finite time interval. Denote byJ5$f̄ j u j PJ% the set of the equivalence classes. Then ’t Ho
postulates that the space of quantum states is spanned by$f̄ j u j PJ% and claims that the reduce
evolution on the space of quantum states is reversible. We can mathematically reformu
Hooft’s theory as follows.5 We assume that the evolution operatorU(t2 ,t1) only depends on the
difference oft2 and t1 , i.e., we can writeU(t2 ,t1)5U(t22t1). This is in the spirit of ’t Hooft’s
original construction. Then the evolution at the ‘‘Planck scale’’ is determined by the ope
U(t,0),U(t). Let V be the vector space spanned by$f i u i PI %. ThenU(t) can be extended to a
deterministic operatoron V. We call V the space of primordial states in spite of the fact th
generally it contains elements which are not states. LetV1 denote the subspace ofV consisting of
the vectors annihilated byU(t) at somet, namely, a vectorv belongs toV1 if and only if there
exists someU(t) such thatU(t)v50. Then it follows thatthe space of quantum states is no
other than the quotient space

Q5V/V15$uf&,f1V1ufPV%

and a nonsingular evolution law of the quantum states naturally follows fromU(t). Let v̄[un&
denote the equivalence class containingv. We notice thatV1 is invariant underU(t). ThusU(t)
induces a natural action on the quotient spaceQ. We denote the induced operator byU(t), then we
have

U~ t !v̄5U~ t !v. ~6!

The following simple result is easy to prove.
Proposition 3:U(t) is nonsingular.
In fact, if U(t) v̄50̄, thenU(t)vPV1 . Thus there exists somet8 such thatU(t8)U(t)v50. It

then follows that

U~ t8!U~ t !v5U~ t81t !v50. ~7!
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By definition this meansvPV1 , i.e., v̄50̄. This proves the nonsingularity ofU(t).
Remark 4:In Refs. 1 and 2, ’t Hooft just claims the nonsingularity of the induced evolu

operator. But it should be pointed out that if the conditionU(t2 ,t1)5U(t22t1) is not satisfied the
induced evolutionU(t2 ,t1) might be singular if we still use ’t Hooft’s principle to classify th
primordial states.

We are now in a position to discuss a consequence of ’t Hooft’s theory. The basis cons
of the equivalence classes is called the primordial basis by ’t Hooft. In our notations,$f̄ j u j PJ% is
the primordial basis andU(t) is a ~dissipative! deterministic operator onV. As we have proved
the nonsingularity ofU(t), it follows from Proposition 1 thatU(t) is a permutation operato
which acts as a permutation on the primordial basis. Then we easily observe that if we r
U(t) to be continuous with respect tot, the time variable should be discrete. For example, ifJ is
a finite set, or in other words, the quantum Hilbert space is finite dimensional, the ind
evolution operatorU(t) is represented as a matrix with the entries 0 or 1 with respect to
primordial basis. Clearly, it could not be continuous if the time variable is not discrete.

IV. SPECTRUM AND HAMILTONIAN

Let us turn to consider restrictions on the energy spectrum of quantum system imposed
underlying determinism. Due to the arguments in the last paragraph, we assume the time v
to be discrete. Without losing generality, let the timet take values inZ1, the set of non-negative
integers. The deterministic evolution and the induced evolution of the quantum system is
completely determined by the operatorU(1). SupposeU(1) is unitary. It is then can be written a
U(1)5e2 iH , whereH is a Hermitian operator describing the Hamiltonian of the quantum sys
Now if the quantum system is finite dimensional it follows from Proposition 2 that the eigenva
of U(1) are of the forme(2 i 2kp/n). Thus we have the following

Proposition 4:The eigenvalues ofH corresponding to the induced evolutionU(1)5e2 iH of
quantum states lie in the set

H 2kp

n
62mpUk,n,mPZ1J .

Remark 5:We have seen that evolutions that can be induced from dissipative determi
evolutions at the ‘‘Planck scale’’ belong to a special class. First, there is a rather strict restr
on the corresponding HamiltonianH. Second, if a quantum system with an underlying determ
istic structure as is described by ’t Hooft is initially in the state represented by an element
primordial basis then the evolution will never cause coherent superposition of quantum sta
these drawbacks are inherent in the theory, to remove them we have to generalize the und
dynamic law at the ‘‘Planck scale.’’

Another conclusion that can be drawn from Proposition 1 is that ’t Hooft’s theory is clo
related to the hidden variable theory. SinceU(t) acts as a permutation on the primordial basis
the space of quantum states, an operator that is diagonal now with respect to this bas
continue to be diagonal in the future. Such an operator could thus be thought to represent a
variable. This suggests that a quantum system with an underlying dissipative deterministic m
nism might permit some kind of hidden variable theory. The corollary to Proposition 2 also s
us that ifU(t) is a dissipative deterministic such that the quotient spaceV/V1 is finite dimensional
U(t) can be made unitary by properly introducing an inner product. ThenU(t) can be regarded a
an evolution operator for a quantum system. But on the other hand, such inner product is no
unique. Since a correct quantum theory requires a Hilbert space with properly defined
product to define probability, this is really a problem if we wish to derive quantum dynamics
a dissipative deterministic evolution, not just to interpret a given quantum system as govern
an underlying deterministic mechanism. So a gap remains to be bridged between the so
Planck scale physics and the atomic scale physics in ’t Hooft’s theory.
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Before passing to discuss quantum symmetry we would like to present a simple qu
system which has some characteristics of a deterministic system as shown previously. We c
the following quantum system: A spinless free particle in the one-dimensional region@0,L# with
the boundary conditionc(0,t)5c(L,t), wherec(x,t) is the wave function. The Hilbert space o
the system is

H5$cPL2@0,L#c~0!5c~L !%.

Clearly,

D5H expS i
2kp

L
xD k50,61,62,̄ J

is a basis ofH. In the case of extreme relativity, the Hamiltonian of the system is
52 i\c(d/dx), where cis the speed of light. DefineU(t)5e2 iHt . We have

U~ t ! expS i
2kp

L
xD5expS 2 i2kp

\c

L
t DexpS i

2kp

L
xD . ~8!

We observe that if we take the time to be discrete, it is then possible to define a time unit su
the one step evolution acts onD in the following way:

U~1! expS i
2kp

L
xD5expS i

2kp

L
xD .

We then see that this system might be regarded as a deterministic system andD might serve as
primordial basis for the system. If we normalize\c/L as one energy unit, then the energy sp
trum of the system is$2kpuk50,61,62,...%. This is consistent with our previous discussion.

Remark 6:It should be pointed out that the above-mentioned simple example is essentia
same as the example of massless neutrinos discussed in Ref. 1.

V. QUANTUM SYMMETRY BY COARSE GRAINING

As shown previously, ’t Hooft’s classification of primordial states implies a scheme for co
graining. Usually, for a large close system a coarse graining process can result in quantum
pation and decoherence in the subsystem.6 But here the converse seems to be the case: Co
graining ~or classification! can lead to a unitary dynamics for the effective system even if
evolution of primordial system is not time reversible. Since ‘‘symmetry dominates dynamics,
rather natural to probe the role of coarse graining in generating symmetry at the ‘‘atomic s

Let a deterministic system be described by an evolution operatorU(t), and let$f̄ j u j PJ% be
the primordial basis for the system. Denote byPJ the permutation group of the setJ. According to
Proposition 1,U(t) is a permutation operator and can be identified with an element ofPJ. By
definition, the group of quantum symmetry consists of those unitary operators on the state
that commute with the evolution operator. If we require that these unitary operators be in
from deterministic operators on the space of primordial states, it then follows from Proposi
that they belong to the centralizer ofU(t) in PJ. If the space of quantum states is finite dime
sional, by the trick of redefining inner product as is used in the proof of the corollary to Pr
sition 1, we can show that there exists an inner product such that bothU(t) and the operators in
its centralizer inPJ are unitary operators. Thus in this case it might be reasonable to take the
of quantum symmetry to be the centralizer ofU(t) in PJ. Anyway, the symmetry group is a
discrete group.

We have seen that if we adhere to the principle that things happening in the space of p
dial states bear the mark of determinism, then logically, things happening in the space of qu
states bear the mark of discreteness. To change the situation we need to loosen the restr
 05 Oct 2001 to 130.207.140.115. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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determinism in the strict sense of this word used by ’t Hooft. Let us conclude this paper w
short discussion of quantum symmetry derived from a not necessarily deterministic opera
the space of primordial states. LetV be the space of primordial states andSPEnd(V) satisfies
SV1,V1 .

Proposition 5:U(t)S2SU(t)50 if and only if there exists somet8 such that

U~ t8!~U~ t !S2SU~ t !!50. ~9!

The proof of this result is immediate. It directly follows from Eq.~9! that (U(t)S
2SU(t))V,V1 ~cf. Sec. III!. In other words, we have

U~ t !S2SU~ t !50. ~10!

This proves the ‘‘if’’ part. The ‘‘only if’’ part can be proved by reversing the deduction.
If the time is discrete and takes values inZ1, then the evolution at the ‘‘Planck scale’’ i

determined byU(1),U. Notice thatUn5U(n) in this case. It follows that Eq.~9! is equivalent
to

Un~US2SU!50 ~11!

for some positive integern. Let us take ’t Hooft’s example in Ref. 1 to illustrate the abov
mentioned idea. We have

U5S 0 1 0 1

1 0 0 0

0 0 1 0

0 0 0 0

D . ~12!

Let e15(1 0 0 0)T, e25(0 1 0 0)T, e35(0 0 1 0)T, e45(0 0 0 1)T. Then

Ū5S 0 1 0

1 0 0

0 0 1
D

with respect to the basis$ei u i 51,2,3%. The general matrixT that commutes withŪ is of the form

T5S a b c

b a c

j j k
D .

SupposeSV1,V1 . Then the general solution of Eq.~11! is

S5S a b c b

b2m f g f

j j k j

m a2 f c2g a2 f

D .

It is clear that for eachT commuting withŪ there existsSsuch thatS̄5T. In fact, ase25e4 , the
aboveS has the representation
 05 Oct 2001 to 130.207.140.115. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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S̄5S a b c

b a c

j j k
D ~13!

with respect to the basis$ei u i 51,2,3%. Mathematically, this is a trivial fact. On the other hand, w
have

US2SU5S 0 0 0 0

a2 f m c2g m

0 0 0 0

2a1 f 2m 2c1g 2m

D .

This simply means that forS̄ to commute withŪ, S does not necessarily commute withU.
In the representation whereŪ is diagonal we have

Ū5S 1 0 0

0 1 0

0 0 21
D .

Thus the matrixT that commutes withŪ takes a block diagonal form. It then follows that th
symmetry group of the system isU(2)3U(1). But if we impose the restriction thatS is a
deterministic operator, as is required by determinism, it then turns out that the set of nonsi
S̄ commuting withŪ is $1,Ū%, the centralizer ofŪ in P3.

To sum up, if we loosen the restriction of determinism it is possible to induce qua
symmetry from transformations on the space of primordial states through a procedure of
graining as shown previously. On the other hand, quantum symmetry at the ‘‘atomic scale’
not necessitate symmetry at the ‘‘Planck scale.’’
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