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According to 't Hooft[Class. Quantum. Gra6, 3263(1999], quantum gravity

can be postulated as a dissipative deterministic system, where quantum states at the
“atomic scale” can be understood as equivalence classes of primordial states gov-
erned by a dissipative deterministic dynamics law at the “Planck scale.” In this
paper, it is shown that for a quantum system to have an underlying deterministic
dissipative dynamics, the time variable should be discrete if the continuity of its
temporal evolution is required. Besides, the underlying deterministic theory also
imposes restrictions on the energy spectrum of the quantum system. It is also found
that quantum symmetry at the “atomic scale” can be induced from 't Hooft's
coarse graining classification of primordial states at the “Planck scale.”2001
American Institute of Physics[DOI: 10.1063/1.1380250

I. INTRODUCTION

Recently, Gerard't Hooft postulated that there should be a dissipative deterministic theory
underlying quantum gravity at the so-called “Planck scaléIn his theory, the generic quantum
mechanics is no longer the crucial starting point. Rather, a deterministic theory with dissipation of
information at the “Planck scale” is needed to derive quantum mechanics at the “atomic scale.”
It seems that this viewpoint can solve problems concerning locality and causality in the so-called
Planck scale physics such as quantum gravity, which are quite different from those in the usual
quantum field theories in some flat background space—time based on the holographic principle in
quantum gravity theory.

In 't Hooft's opinion, at the “atomic scale” quantum states are equivalence classes of primor-
dial states at the “Planck scale.” In Ref. 4, this point of view was illustrated through a simple
model. According to 't Hooft, if we only care about the temporal evolution of equivalence classes,
the information within each equivalence class could be ignored. Then from a non-time-reversible
evolution, which characterizes a deterministic process with dissipation at the “Planck scale,” we
can obtain a time-reversible evolution of the properly defined equivalence classes of primordial
states. Taking the equivalence classes to be quantum states we are then able to introduce a
reversible evolution law at the “atomic scale.” Apparently, here the central problem is how to
classify the Planck scale states with respect to a deterministic evolution. 't Hooft’s solution to this
problem is as follows. He argues that two Planck scale states are equivalent at the “atomic scale”
if, after some finite time interval, they evolve into the same state. This leads to a natural definition
of equivalence classes: Two states are in the same equivalence class if and only if they evolve into
the same state after some finite time interval. Then, quantum states are identified with these
equivalence classes.

Most recently we made clear the mathematical structure of 't Hooft's theory using quotient
space construction and related concétst the primordial states span a linear space. We find that
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the equivalence classes defined by 't Hooft can be identified with the cosets of the invariant
subspace spanned by those primordial states annihilated by the time-evolution operator. Thus the
Hilbert space of quantum states is just the corresponding quotient space and the time-reversible
evolution at the “atomic scale” can naturally be induced on the quotient space by the dissipative
deterministic evolution operator. Following this line, in this paper, we will make a further analysis

of the mathematical aspect of 't Hooft's theory and then discuss some physical consequences
implied in the theory. We will also probe the spectral structure of finite dimensional quantum
system with an underlying deterministic structure and extend 't Hooft's idea to study quantum
symmetry problem.

II. SOME MATHEMATICAL RESULTS

In this section we present some mathematical results closely related to the 't Hooft equiva-
lence class theory. In the following, J stand for index sets not necessarily finite;Vif is a
subspace o¥,v e V, the element +V in the quotient space/V, is denoted by . All the vector
spaces to be considered are over the complex number field. Physically, one should bear in mind
thatV will be the linear space spanned by so-called primordial states at the “Planck ¢eedethe
following). For convenience, we list the mathematical definitions of some concepts appearing in 't
Hooft's theory as follows.

Definition 1: A linear operatorT e End(V) is called deterministic if there exists a basis
{vi]i 1} of V on whichT acts in the following wayYiel, 3i’ el s.t. Tv;=v;,. Such a basis is
called aT-deterministic basis. If, moreover,is singular(noninvertiblg, then it is called dissipa-
tive deterministic.

Remark 1:In 't Hooft theory, T represents a deterministic time-evolution procgdgsh dissi-
pation at the “Planck scale.”

Definition 2: An injective map from a set to itself is called a permutation of the set. A linear
operatorT e End(V) is called a permutation operator if there exists a basi oh whichT act as
a permutation.

Definition 3: A linear operator on a vector space is called unitarizable if there exists an inner
product on the vector space such that it is unitary relative to it.

Remark 2:Physically, time-reversible evolution is described by a unitary operator, and a
reversible but not unitarizable operator usually does not correspond to any practical evolution in
quantum mechanics.

Definition 4: Let V andW be two vector spaced,e End(V) andSe End(W). If there exists
an isomorphismp betweenV andW such thateT=S¢, T andS are called equivalent.

Having prepared the above-given definitions, we now state one of our central results.

Proposition 1:Let V be a vector spacd, e End(V) is dissipative deterministic and, is a

T-invariant subspace such that the induced operfton the quotient spacé/V; is nonsingular,

thenT is a permutation operator; converselySi& End(V) is a permutation operator, then there
exists a vector spacé’, a dissipative deterministic operatst e End(V'), and anS'-invariant

subspace/; of V' such that the induced operatdte End(V'/V}) is equivalent toS
Proof: Let {v;|i el} be aT-deterministic basis. Then there exists a sullset such that
{vili € J} is a basis ofV/V;. By definition

To,=Toi=v;, (i,i’el). (1)

As T is nonsingular, we clearly see tHBcts as a permutation on the ba@igi < J}. This proves
the first half of the proposition. For the second half,{lefi € |} be a basis o¥ on whichS acts
as a permutation, take an arbitrary element V, and define

V' =spadu;,wliel},
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Vi=V. DefineS' e End(V') such thatS’|,=S andS'w=0. It is then trivial to verify thatS' is
dissipative deterministic anl’ is equivalent toS. The proposition is thus proved.

Remark 3:This proposition, as we will see in the following, tells us that 't Hooft 's underlying
dissipative deterministic dynamic law at the “Planck scale” can only produce very special time-
reversible evolution at the “atomic scale.”

Keep the notations in the above-given proposition. We have the following corollary.

Corollary: If V/V, is finite dimensional, thell is unitarizable.

Proof: According to the proposition, there is a basid3/@¥/; on whichT acts as a permutation.
If dimV/V,<e T is periodic, namely, there exists a positive integesuch thafT"=1. Letp be
its period. Choose an arbitrary inner prodggton V/V; and define a new inner produ¢} as
follows:

(v,w)=

]

(Tio W), Vo,weVIV,. 2)
1

It is then easy to show thdt is unitary relative to the inner produ¢p.

Proposition 1 shows us that an invertible linear operator can be induced from a deterministic
operatorT if and only if it is a permutation operator. The following proposition characterizes the
permutation operator on a finite dimensional space.

Proposition 2:Let V be a finite dimensional vector spaces End(V). T is a permutation
operator if and only if it is diagonalizable and its eigenvalues can be grouped into some classes,
say,An,An,, ,Ap . such thatAnj (j=1,2;--,r) exactly consists of the; n;th roots of unity
with the same multiplicity.

Proof: Let {v;[i=1,2;--,n} be a basis on whicfi acts as a permutation. First, suppdsi
a cyclic permutation of the basis, namely, we have

Tvi=v,,Tvy=v3, ", Ton_ 1=V, TUp=V. 3

ThenT is a periodic operator of periog, and its minimal polynomial ia."—1. ConsequentlyT
is diagonalizable and its eigenvalues are eRkf/n) (k=1,2;--,n), thenth roots of unity. Now
let T act as a general permutation on the basis. We notice that the basis elements can be grouped
into some classes on each of whitlacts as a cyclic permutation. Thus the “only if” part of the
proposition easily follows.

Conversely, supposEis diagonalizable and its eigenvalues can be grouped into some classes
Anl,Anz,--- ,Anr in such a way thaﬁnj (j =1,2,--_- ,I) exactly consists of th@; n;th roots of
unity with multiplicity m; . Then there is a basis|||j=1,2;--,r; k=1,2;--,n;; =1,2;--,m;}
such that

i 2k i
TUk’|:eX | n_] Uk’| . (4)

Define the subspacé; | of V as follows:
Vj,| = Spar{vf-(v||k= 1,2,‘ . ,nj}.

Clearly, we have
m

|
VZE @V]‘J
j=11=1
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and from the proof of the “only if” part we know in each subspagg there is a basis on which
T acts as a cyclic permutation of ordef . Put together, these bases of the subspaces form a basis
of V on whichT acts as a permutation. This proves the “if” part of the proposition.

lIl. DYNAMICS FROM 'T HOOFT'S THEORY

In this section we focus on the physical aspect of 't Hooft's theory, but our analysis depends
on the above-mentioned mathematical results.

In 't Hooft's theory, primordial states at the “Planck scale” need not form a linear space.
Generally they can be denoted by a Xet{;|i € 1}. The underlying deterministic evolution is a
transformation U (usually depending on time) dfto itself. If U has no inverse it is called a
dissipative deterministic evolutio®bviously, it can be represented by a matrix with the entries O
or 1if | is a finite set. AdJ is an evolution operator, we write it &= U(t;,t;) by convention.
Physically, it represents the evolution in the time intefualt;]. Certainly the evolution should
satisfy the so-called semigroup condition

U(ts, tn)U(ty,t) =U(t;, 1),

5
U(t,t)=1.

If U is singular, it describes deterministic process with dissipation. As a matter of fact, under such
an evolution some states will disappear and some states will evolve into the same state, or in other
words, some states with a different past may have the same deterministic fate. 't Hooft thinks that
if two states evolve in such a way that their futures are identical they should represent the same
state at the “atomic scale.” In this view, he divides the elemenfs ofto equivalence classe$i1

and ¢i2(i1,i2 e|l) being in the same equivalence class if they are evolved into the same state after

finite time interval. Denote b)E={¢j|j e J} the set of the equivalence classes. Then 't Hooft
postulates that the space of quantum states is spannéd, hye J} and claims that the reduced
evolution on the space of quantum states is reversible. We can mathematically reformulate 't
Hooft's theory as follows. We assume that the evolution operatbft,,t;) only depends on the
difference oft, andtq, i.e., we can writdJ(t,,t;)=U(t,—t;). This is in the spirit of 't Hooft’s
original construction. Then the evolution at the “Planck scale” is determined by the operator
U(t,002U(t). Let V be the vector space spanned{la|i €1}. ThenU(t) can be extended to a
deterministic operatoion V. We call V the space of primordial states in spite of the fact that
generally it contains elements which are not statesM;alenote the subspace ¥fconsisting of

the vectors annihilated by (t) at somet, namely, a vectorv belongs toV; if and only if there
exists someJ(t) such thatU(t)v=0. Then it follows thatthe space of quantum states is none
other than the quotient space

Q=VIVi={[$)= +Vi| eV}

and a nonsingular evolution law of the quantum states naturally follows B¢th. Let v=|v)
denote the equivalence class containing/Ve notice thai/, is invariant undetJ(t). ThusU(t)
induces a natural action on the quotient sp@c&/e denote the induced operatorbyt), then we
have

Wt)v_=U(t)v. (6)

The following simple result is easy to prove.

Proposition 3:U(t) is nonsingular.

In fact, if U(t)v=0, thenU(t)v e V. Thus there exists somé such thatJ (t')U(t)v =0. It
then follows that

U(t")U(t)v=U(t'+t)v=0. (7)
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By definition this means € V4, i.e.,v=0. This proves the nonsingularity &f(t).

Remark 4:In Refs. 1 and 2, 't Hooft just claims the nonsingularity of the induced evolution
operator. But it should be pointed out that if the conditidft,,t;) =U(t,—t,) is not satisfied the
induced evolutionJ(t,,t;) might be singular if we still use 't Hooft’s principle to classify the
primordial states.

We are now in a position to discuss a consequence of 't Hooft’s theory. The basis consisting
of the equivalence classes is called the primordial basis by 't Hooft. In our nota{i;bmsg Jtis
the primordial basis ant(t) is a (dissipative deterministic operator ok'. As we have proved
the nonsingularity ofU(t), it follows from Proposition 1 thatJ(t) is a permutation operator
which acts as a permutation on the primordial basis. Then we easily observe that if we require
U(t) to be continuous with respect tpthe time variable should be discrete. For exampld,i#

a finite set, or in_other words, the quantum Hilbert space is finite dimensional, the induced
evolution operatoiJ(t) is represented as a matrix with the entries 0 or 1 with respect to the
primordial basis. Clearly, it could not be continuous if the time variable is not discrete.

IV. SPECTRUM AND HAMILTONIAN

Let us turn to consider restrictions on the energy spectrum of quantum system imposed by the
underlying determinism. Due to the arguments in the last paragraph, we assume the time variable
to be discrete. Without losing generality, let the titniake values irz”", the set of non-negative
integers. The deterministic evolution and the induced evolution of the quantum system is then
completely determined by the operatd(1). SupposeJ(1) is unitary. It is then can be written as
U(1)=e ™, whereH is a Hermitian operator describing the Hamiltonian of the quantum system.
Now if the quantum system is finite dimensional it follows from Proposition 2 that the eigenvalues
of U(1) are of the forme(—i 2ks/n). Thus we have the following o

Proposition 4:The eigenvalues afl corresponding to the induced evolutibi{1)=e
quantum states lie in the set

—iH of

(Zkﬂ

—*x2mm
n

k,n,meZ*J.

Remark 5:We have seen that evolutions that can be induced from dissipative deterministic
evolutions at the “Planck scale” belong to a special class. First, there is a rather strict restriction
on the corresponding Hamiltonidth. Second, if a quantum system with an underlying determin-
istic structure as is described by 't Hooft is initially in the state represented by an element of the
primordial basis then the evolution will never cause coherent superposition of quantum states. As
these drawbacks are inherent in the theory, to remove them we have to generalize the underlying
dynamic law at the “Planck scale.”

Another conclusion that can be drawn from Proposition 1 is that 't Hooft's theory is closely
related to the hidden variable theory. Sindét) acts as a permutation on the primordial basis of
the space of quantum states, an operator that is diagonal now with respect to this basis will
continue to be diagonal in the future. Such an operator could thus be thought to represent a hidden
variable. This suggests that a quantum system with an underlying dissipative deterministic mecha-
nism might permit some kind of hidden variable theory. The corollary to Proposition 2 also shows
us that ifU(t) is a dissipative deterministic such that the quotient spddg is finite dimensional
U(t) can be made unitary by properly introducing an inner product. Th@h can be regarded as
an evolution operator for a quantum system. But on the other hand, such inner product is not at all
unique. Since a correct quantum theory requires a Hilbert space with properly defined inner
product to define probability, this is really a problem if we wish to derive quantum dynamics from
a dissipative deterministic evolution, not just to interpret a given quantum system as governed by
an underlying deterministic mechanism. So a gap remains to be bridged between the so-called
Planck scale physics and the atomic scale physics in 't Hooft's theory.
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Before passing to discuss quantum symmetry we would like to present a simple quantum
system which has some characteristics of a deterministic system as shown previously. We consider
the following quantum system: A spinless free particle in the one-dimensional rg@lohwith
the boundary conditiog/(0,t) = ¢(L,t), wherey(x,t) is the wave function. The Hilbert space of
the system is

H={pe L2[0L]¢(0)=(L)}.
Clearly,

2k
A=1:ex ITX k=0,+1,+2,--

is a basis ofH. In the case of extreme relativity, the Hamiltonian of the system is H
=—ifc(d/dx), where cis the speed of light. Defind (t) =e~'H!. We have

- 2k ) hc 2k
U(t) ex ITX =exX —|2k7-th exp i —x

L
We observe that if we take the time to be discrete, it is then possible to define a time unit such that
the one step evolution acts dnin the following way:

- ’{_Zkﬂ' )_ ’{_Zkﬂ' )
U(1) ex ITX =ex ITX'

We then see that this system might be regarded as a deterministic systelmnaigtit serve as
primordial basis for the system. If we normalize/L as one energy unit, then the energy spec-
trum of the system i$2kn|k=0,£1,+2,..}. This is consistent with our previous discussion.

Remark 61t should be pointed out that the above-mentioned simple example is essentially the
same as the example of massless neutrinos discussed in Ref. 1.

. (8

V. QUANTUM SYMMETRY BY COARSE GRAINING

As shown previously, 't Hooft's classification of primordial states implies a scheme for coarse
graining. Usually, for a large close system a coarse graining process can result in quantum dissi-
pation and decoherence in the subsysteBut here the converse seems to be the case: Coarse
graining (or classification can lead to a unitary dynamics for the effective system even if the
evolution of primordial system is not time reversible. Since “symmetry dominates dynamics,” it is
rather natural to probe the role of coarse graining in generating symmetry at the “atomic scale.”

Let a deterministic system be described by an evolution opetatty, and let{¢;|j € J} be
the primordial basis for the system. Denoteythe permutation group of the s@tAccording to
Proposition 1,U(t) is a permutation operator and can be identified with an elemeft’ 0By
definition, the group of quantum symmetry consists of those unitary operators on the state space
that commute with the evolution operator. If we require that these unitary operators be induced
from deterministic operators on the space of primordial states, it then follows from Proposition 1
that they belong to the centralizer df(t) in P’. If the space of quantum states is finite dimen-
sional, by the trick of redefining inner product as is used in the proof of the corollary to Propo-
sition 1, we can show that there exists an inner product such thatlbd)hand the operators in
its centralizer inP” are unitary operators. Thus in this case it might be reasonable to take the group
of quantum symmetry to be the centralizer Wft) in P’. Anyway, the symmetry group is a
discrete group.

We have seen that if we adhere to the principle that things happening in the space of primor-
dial states bear the mark of determinism, then logically, things happening in the space of quantum
states bear the mark of discreteness. To change the situation we need to loosen the restriction of
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determinism in the strict sense of this word used by 't Hooft. Let us conclude this paper with a

short discussion of quantum symmetry derived from a not necessarily deterministic operator on

the space of primordial states. L¥tbe the space of primordial states aBd End(V) satisfies
Proposition 5:U(t)S—SU(t) =0 if and only if there exists somg such that

U(t")(U(t)S—SU(t))=0. 9

The proof of this result is immediate. It directly follows from E) that (U(t)S
—SU(t))vVCV; (cf. Sec. ll). In other words, we have

U(t)S—SU(t)=0. (10
This proves the “if” part. The “only if” part can be proved by reversing the deduction.

If the time is discrete and takes values4i, then the evolution at the “Planck scale” is
determined byJ(1)£U. Notice thatU"=U(n) in this case. It follows that Eq9) is equivalent
to

Uu"(US-SU)=0 (12)

for some positive integen. Let us take 't Hooft's example in Ref. 1 to illustrate the above-
mentioned idea. We have

12

o O - O
o O O -
o B, O O
oS O O Bk

Lete;=(1000), e,=(0100), e=(0010)", e,=(0001)". Then
010
Uu=l1 0 0
0 0 1

with respect to the bas{5i|i =1,2,3. The general matrif that commutes witi is of the form

j j k j
m a—f c—g a—f

It is clear that for eaclr commuting withU there existsSsuch thatS=T. In fact, ase,=¢€,, the
abovesS has the representation
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a b c
S=|b a c (13

ok

with respect to the bas{s?i|i =1,2,3}. Mathematically, this is a trivial fact. On the other hand, we
have
0 0 0 0
a—f m c—g m
0 0 0 0
—a+f -m —-c+g —-m

US—-SuU=

This simply means that fo® to commute withU, Sdoes not necessarily commute with
In the representation whetg is diagonal we have

1 0 O
u=l0 1 0O
0 0 -1

Thus the matrixT that commutes withJ takes a block diagonal form. It then follows that the
symmetry group of the system Id(2)XU(1). But if we impose the restriction tha® is a
deterministic operator, as is required by determinism, it then turns out that the set of nonsingular
S commuting withU is {1,U}, the centralizer otJ in P3.

To sum up, if we loosen the restriction of determinism it is possible to induce quantum
symmetry from transformations on the space of primordial states through a procedure of coarse
graining as shown previously. On the other hand, quantum symmetry at the “atomic scale” does
not necessitate symmetry at the “Planck scale.”
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