Statistics of wormlike chains. I. Properties of a single chain
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Functional integrals in quasimomentum spa@®rmal mode analysisis used to study
configurational statistics of wormlike chai/LCs) and properties of WLCs in an external field,

with which various correlation functions are defined and can be expressed in terms of simple
analytical forms. From the correlation functions, some statistical properties of WLCs, such as
gyration radius and scattering functions, have been obtained. The difference between correlation
functions and end to end distance distribution functions are discussed, and by varying a parameter
the WLC exhibits crossover from an ideal Gaussian chain to a rodlike chainl9%7 American
Institute of Physicg.S0021-960807)50905-4

I. INTRODUCTION many methods were proposed. Using the constta{s)|=1
) ) . which means that the polymer chains cannot be stretched,
Since Edwards proposed the continuum model ingTy gerived a series solution for the tangent distribution
;960’51 _much progress he_ls bee_n made. For the ideal Gausﬁ]nction (Green’s functiol, G(U,U";L,0), by solving a dif-
ian chain(IGC), the functional integrals can be solved €x- torantia| equation for the spherical harmofiesd therefore
actly, for example, the end to end distance distributiony,q ncated approximation will be adopted in real applica-
(EED) function with contour lengtfL, G(RiL), and after (j5ns Releasing the constraihi(s)|=1 which means the
taking an mteracﬂqn between different monomers, i.e., th%olymer chain can be stretched, Freed, using the method by
excluded volume, into account, a perturbation expansion aeynmarf derived fruitful results, for example, the EED and
well as the renormalization group method are used to St“di/angent distribution ~ functions (Green's  functions
the configurational statistics of polymer solution. Since theG(R,O;U,U’;LO) and G(U,U’;L,0) obtained exactl§. An-
aim of this paper is focused on the wormlike chain, the stagipar powerful method is the normal mode anaifsibich is
tistics of the ideal Gaussian chains will not be di;cussed her@laborated in the continuum modeThis method is just the
but can be found in many review books and artictés. functional integrals in momentum sp&aehich is often used
The wormlike cha|r(3WLC) model was first proposed by i, the field theory and is a convenient method of studying
Kratky and Porod(KP)” and extended to the continuum poherties of WLCs. In this paper, this method is further
model(functional integralsby Saitq Takahashi, and Yunoki qytended to study the properties of WLCs.

4 . . . . .
(STY),* and Freed, which is described by the statistical For the configurational statistics of WLCs, besides the

weighting factor; p[r(s)], EED functions another essential quantity is the correlation
5 function (or two-body distribution function, however, if the
p[r(s)]=A expl — 3 f" ar(s) ds contour lengtts is imaged as time as us@al(R;,R,:S;,S,)
2l Jo\ ds is just the correlation functignwhich is defined for a uni-
5 2 form system
€ fL(& r(s)) ]
) 2
2Jo} ds C(Ry,R2;81,52)%(8(r(s1)—Ry) 8(1(S2) —R2)
3 (L 1 L. _ _ .
:A exg — — f UZ(S)dS——ef UZ(S)dS , OC<5(|’(S:L) r(SZ) R)>OCC(R!S)|
21 Jo 2°¢), L2
(1.1

whereR=R;—R,, s=s;—5,, 0<s;, s,<L and(:--) means
where the polymer chain is described by a continuous curvéhe statistical average over various configurations of the
in three-dimensional spaads), wheres measures the con- chain by functional integrals. Here, it should be stressed that
tour length along the chain,<9s<L, e is a bending elastic the correlation functions are actually more fundamental than
coefficient,u(s) the differential(tangent of the curver(s),  the EED functions for WLCs. As pointed out in Ref. 10, the
i.e., ar(s)/ds, andA a normalization constant which is equal EED functions cannot completely reflect the properties of the
to the inverse of the partition function. Although the bendingWLC, since the EED function gives the mean end to end
elastic term exists which makes the problem complicateddistance asR?=IL in the long chain limit. In order to cal-

2520 J. Chem. Phys. 106 (6), 8 February 1997 0021-9606/97/106(6)/2520/10/$10.00 © 1997 American Institute of Physics



Zhao, Sun, and Zhang: Statistics of wormlike chains. | 2521

culate the statistical properties of WLCs, such as scatteringnd for WLC statistical weighting factdgd..1) is
function and Gyration radius, we introduce the correlation

function (1.2) from which various physical quantities can be

obtained. In this paper, various correlation functions includ- puwLclf(K)]=A ex;{ _(3/2])f K2f2(K)dk— (€/2)
ing position as well as orientatioftangen} correlation are

derived in terms of simple analytical forms and we prove

that the correlation functions are generally not equal to the f k42( )dk) 2.3
EED functions for the wormlike chain, and only for the IGC

is the correlation functionC(R;s), just equal to the EED
function, G(R;L =s). Therefore, in the calculation of various
physical quantities, the correlation functions should be use
for WLC rather than the EED functions which is often used
in the calculation for IGC. In order to manifest the difference
between correlation functions and EED functions, we com-

pare the results obtained from these two function.

In the last two decades, polymer liquid cryst&4R.C9 Q= J Z[£(K)1QLF(K) IpLf(k)], (2.4
have been developed very quickly in experiment and theory.
It is believed many PLCs are composed by the wormlike
chains and therefore the wormlike chain model has been
used extensively to describe polymer liquid crystarg® in
the hairpin modet? it is assumed that the WLC is in a mean
field provided by the other chains, then the configurations oB. Correlation functions
WLC can be derived by solving a differential equation or
even more the hairpin number can be obtained by comput
simulation!**3-1%0n the other hand, the behaviors of PLCs
in a strong external field as well as the properties of PLCs
in a nematic solvedt are investigated. In this paper, the 8((r(s)—r(0))—R)
properties of the WLC in an external field are studied by a
statistical method developed here, and the problems on the
phase transition are discussed in the following paper. =(1/2m)" 3’Zf ex%

The organization of this paper is as follows. In Sec. Il
the functional integrals for WLCs are carried out in the qua-
simomentum space to obtain various correlation functions. x (eks—1)dk—R
Section Il deals with WLCs in an external field and, finally,
some properties of WLC are studied in Sec. IV. In the fol-
lowing paper, the self-consistent field theory is use to studyand the tangents of the curve at the contour positisps,
many WLCs system as well as the phase transition of the
polymer liquid crystals.

Here, and in the followingA is a constant which can be
etermined by normalization anid(k) meansf(k)-f*(k).
hen any physical quantities can be obtained by the func-

tional integral in the quasimomentum space

where [Z[f(k)] is functional integral.

We now use the above model to calculate the correlation
§linctions. According to Eg(2.1), we obtain

f(k)

=l

]d?’w (2.5

u(s)= — |kf(k e'ks dk. (2.6)

Il. CORRELATION FUNCTIONS

A. Functional integrals in momentum space Then, from Eq.(2.4), the correlation functiori1.2) for IGC

Let us consider a polymer chain which is described by £an Pe written as

three-dimensional curve(s) with contour lengthL, where

0=<s<L. For convenience, the infinite long chain limit is

taken then the normal mode coordinate, i.e., the Fourier Clec(R,O;S,O)=f f(k)]6((r(s)—r(0))—R)
transformation of (s), is obtained as ustfl

X pigclf(k)]
1 °° _
— iks . N
N J  toaehea @9 - [ em aw | AtoIped o]
wheref(k) satisfies the conditiof(k) =f* (—k) because(s) "
is a real function. Then the statistical weighting factor Xexp(—w-f f(k)(e”‘s—l)dk),
p[f(k)] for an IGC can be written as -

2.7
Ped f(K)]=A exp( —(3/2) f wszz(k)dk) 2.2

Using standard methods,we obtain
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C,GC(R,O;S,O):Af e WR g3y C(R,O,UO;S,O)zf I[f(k)]18((r(s)—r(0))—R)
p( w?l (= sirf(ks/2) ) X 8(u(0) = Uo) pwiclf(k)]
Xexp — = dk
37 ) o k
5 :Af e*iW-R d3WJ’ e*iW“UO d3W/

) —w°ls

=Aj e~ WR 8y exp( 5 )
Xf 1K) Ipwicl (k)]

B —3R?
=A exr{ oS ) (2.8

xex;{i \/% f wf(k)
wherel is the effective segment length. This result indicates
that the correlation function has the same form as the EED iks -

function for the IGC, i.e., whether or not the two poinss, [w(e™=1)+ikw ]dk}

ands,, are the ends of the chain, the correlation function is ) )
just the EED function. This conclusion is correct only for A exr{ ~ R%a;—-2b;R-Up+Ugay
IGC and it is not right for the other correlation functions as 4(ala2—bf)

well as WLC (see the following Therefore, it is necessary

to introduce the correlation function for the calculation of a (219
physical quantity. where
We now consider the correlation functi¢h.2) for WLC
which is obtained from Eqg2.3) and(2.4) _ 1
b,=(/12)(1-e7%%), a,=—. (2.12
dae
C(R,0;s,0)= f Lf(k)]16((r(s)—r(0)) —R)pwiclf(K)] Similarly we consider the tangent correlation function of
the chain with the contour distanseand the tangents, and
:AJ e IWR g3y exp[—(WZI/B) U at thes=0 ands, respectively, and the result is
X [s—(el/3)Y(1—exp(—sy3/el )]} C(U,Uo;s,0)=f Lf(k)]6(u(0) —Up)
_ _p2
=A exp(—R/4a), 29 X 8(u(s) = U) puacLf(k)]
where A U2+ U3—2e %*U-U, -
TR OH T T ag(1-e 7 (213

a,;=(1/16)(s— (Ua)[1—e"%¥]), a= 3/, (2.10
which is also different from the EED tangent distribution

which is similar to the EED function obtained by STY and derived by Freed. If we consider the situatid#f = |Uo| =1
KP (the models they used are different from the one usedi.€., replace)? andU§ by its mean values, see Sec.)lwe
her@ and is completely different from the EED function de- have

rived by Freedhis model is the same as the one used here

a_nd the respective results are gj(aifhis result exhi_bits the C(U,Uy:s,00=A ex;{
difference between the correlation and EED function and for

the EED function, points(0) andr(L) are the ends of the
chain, but here they are two arbitrary points on the very lon
chain. It is also interesting to note that the model will lead to
a crossover from the IGC through the WLC, and finally to a

1—-e 5% coq )
2a,(1—e 259) |’

(2.19

For the correlation function of the chain with the contour
istances, r(s) —r(0)=R and the tangent ats we have

Gaussian rodlike chain when the parametées varied which C(R,0,U;s,0)= f 2f(k)]8((r(s)—r(0))—R)
will be discussed in the following section.
In principle, any correlation function can be obtained X 8(u(s)—Ug)pwicl f(k)]

analytically and in the following we will discuss some im-
portant correlation functions. Let us consider an absorption
on a surface, then the polymer chain will have a definite

R2a,—2b,;R-U+U?a,
=Aexp — >
4(aja,—b7)

orientation U, at r(s=0), for example, the polymer chain 2.15
may be perpendicular to the surface. The correlation between
r(0) andr(s) is given by the correlation functio(R,0, Uy; We now consider the correlation function of the chain

s,0), i.e., we now consider the correlation function with the with the contour distancs, r(s)—r(0)=R and the tangents
contour distances, r(s)—r(0)=R and the tangeriyats=0 Uy andU at s=0 ands, respectively, and we obtain
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C(R,0,U,Uq:s,0) Ill. WLC IN AN EXTERNAL FIELD

) In this section we study the properties of WLC in an
:f “H(k)]8((r(s)=r(0))=R)&(u(0) external field; such a field may be provided by an electro-
magnet field’ or some anisotropic solventéHere, by the

—Up) 8(u(s) = U)pwiclf(k)] functional integrals various correlation functions can be ob-
R?(a,+b,)—2(U+ Up)-Rb, tained exactly for th_e foIIowing _external field Whi(_:h is often
—— > ) used everywheré!3~®and originates from the dipole mo-

4lay(a;—b3) — 2b3] ment possessed by the monomers interacting with the field or
(2.16 the dispersion interaction between molectiles

=A(u,u0)exp( -

and V=0,P,(cos 0(s))=vo((3/2)cos 6(s)—1/2), (3.1

A(U,Up) whereu is the strength of the interaction dependent on the
dipole moment,P, the Legendre function, and the angle

(U%+Uf)(aja,—b3) +2U-Ug(b%—asb,) between the preferred direction determined by the external
—exp -~ 4[al(a§—b§)—2b§](a2—b2) ' field and the monomer axis at the contour lengthThis

external potential can be expressed in terms of tangents of
(2.17) the chain as

where V=vo[ (Up-u(s))*~ 3, 32

by=a, exp(—sa). (218 whereug is a unit vector of the preferred direction of the
external field andi(s) the tangent of the chain at positisn

Including this potential, the statistical probability of the
configuration can be written

Finally, it is easy to obtain the orientation distribution
function of the tangent) at positions

CUss) = [ 109 15(u(8)~ Upun (K] Ped 1(K)]=APurc[ (k)]
=A exp— U%4a,) (2.19 Xexp{ _Uoj ((3/2)(ug-u(s))?>—1/2)ds|, 3.3

which is independent of because of translation invariance. whereA is a constant which can be determined by normal-
From the above results we can conclude that evefization. The constant term in the external field can be ab-

though for the IGCs the correlation and distribution fUﬂC-Sorbed into the normalization constaitthen we have

tions C(R, 0; s, 0) and G(R, 0, s, 0) have the same form

whether or not the pointg0)=0 andr(s) =R are the ends of

the chain, for WLCs the correlation functiori.9), (2.13, pexf[f(k)]zApWLC[f(k)]Xex%_UOJ (3/2)k*Z(k)ds

and(2.16 are quite different from the EED functionsThis

conclusion can be explained as follows. Considering the cor- =A exp{ _(3/2)(1+v0|)f szf(k)dk

relation between two monomers witli0)=0 andr(s')=R,

for IGC the configurations outside parts witkc0 ands>s’

will not influence the inner part because of the flexibility of —(e/2)f k4f§(k)dk

the IGC and only give a constant which can be absorbed into

the normalization constants. For WLC this is not the case, 462

i.e., the correlation between the two monomers will be dif- _(EIZ)J K*fyy(s)dk|=pLTo(K) IPLTxy(K)],

ferent when the two monomers are the ends of the chain or (3.9

not. The reason is that the outside part of the cligin0 and '

s>s') will influence the inner parf0<s<s') because of the \where thez axis is selected as the preferred direction of the
nonflexibility of the WLC. This is why the correlation func- external field. From the above equation it should be noted
tions are different from the EED functions. However, whenthat when the potential is negative,l should be less than 1
the elastic coefficient—0, the difference betwee@(R,0;  otherwise the chain would be broken. It is also clear from the
L,O) and C(R,O, L,O) will vanish. It is the equivalence be- above equation that the fo”owing expression:

tween correlation and EED functions that the EED function

can be used to calculate various statistical quantities for 1 1

IGCs. For WLCs, the correlation functions should be used |~ T (1+0vol) (3.9
rather than the EED function for the statistical physical quan-

tities. In Sec. IV the differences between them will be com-has a clear physical meaning, i.&,,has a meaning of an
pared and discussed by calculating numerically some coreffective monomer lengtlior persistence lengthin the z
crete physical quantities. direction which will also be discussed in the following sec-

exp{—(S/Zl)] k2fZ, (k) dk
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tion. Using the method given above, it is easy to obtain thdV. DISCUSSION AND APPLICATIONS
following two points position and tangent correlation func- A. The average monomer—monomer distance of the

tions: WLC
em— | e _ _ From Eqg. (2.9 we obtain the average monomer—
C(RO:s0) f,//[f(k)]a((r(s) r(0) = R)Pex f(K)] monomer distancéMMD) (distinguished from the end to

end distance EEDseparated by the contour distansgfor
=f ALK ]6((ry(s)—r,(0)) —R)p[f,(K)] WLC

(R%=I(s—(La)[1~-e5]), 4.1
X | A fyy(K)]S((ry (S
j [hy(k)1o((ry(S) (RY=(5/3)12(s— (1/a)[1—e 5%])2. 4.2)
—Iy(0)) =Ry p[ fry(K)] Equation (4.1) is also obtained from Refs. 8 and 10 and
—A expl— R§/4alz)exq— R>2<y/4a1xy) (3.6 differentiate from the average EED obtained by Freed
and (R =I(L—(1/2a)tanK L a)) 4.3
which clearly shows the difference between correlation and
C(U,Uo;s,0)=f 2[f(k)]8(u(0)—Ug) S(u(s)—U) EED functions. The difference between E¢4.1) and (4.3
comes from the end effect of the chain. The difference is also
X Pexd F(K) ] noted by Lagowski and Noolaridjand, in order to patch up
21 U2 _ pa-say the difference, an additional term describing the end effect is
A ex;{ _UztUg—2e UZUOZ} added to the Hamiltonian.
—2sa .
4ay,(1—-e =) When e—0, i.e., a=\/3/el = the WLC becomes the

ideal Gaussian chain, i.e., the mean MMD and the mean
EED become the same by settiag L

U >2<y+ U (2)xy_ 2e"*™U ny oxy
X —
o Aagy(1—€ %) |

2\ —

37 (R)=IL. (4.4
where R(R, ,R,) and U,(U,,U,) are thex(y,z) compo- But wh_en €, i.e., a—0 the mean MMD and EED of
nents ofR and U, WL_C give |nc.o.rrect result.s. and in order to make the model

valid, an additional condition of the average length of the
R, =Ri+RS, UZ=UZ+U7, (3.8 chain beingL should be used, i.e., as discussed in detail in
| Ref. 5, let
a3, [s~ (Lay) (1-e >)], (3.9 A
J d§=J {(u(s)-u(s))¥?ds=L, (4.5
0 0
duxy =g [~ (Layy)(1—e7>%)], (310 \hereds is differential arc length. Then we will obtain a
constraint on the parametefsande, by Eq.(2.19
1 1
Q=7 QoxyT o o (3.11 3l
4aze Aayye (u2>=f uzG(u;L)du/ JG(u;L)du=6a2= vt
a,= 3lel,,  ay,=3lel, (3.12 (4.6)

wherel, is given by Eq.(3.5). Similarly, the orientation dis- which is equivalent to

tribution is given by | =(4/3) 4.7)
= €. ’

C(U;S)Zf 2If(k)]6(u(s)—U)p[f(k)] The above result means that the paramelteand e are not
independent of each other and one of them may be selected

Ug U>2<y as the independent parameter. For exampleigfselected as

=Aexp - 4a,, @ 313 he independent parametewill depend one and will have a

L ) i meaning of an effective monomer lengtiuhn length. An-
which is independent of since the external field preserves ju o reasonable constraint can be obtained fgut) =1

the translational invariance and only breaks the rotational1..-h leads tol =372¢/16. A different result is derived by

invariance. Freed® | =¢/3 obtained from the end to end tangent distribu-

Here, the exact correlation functions for WLC in the yio fnction, and in Ref. 10,=(4/3)¢ is derived by taking a
external field are obtained which will be used in the follow- limit on Eq. (2.9).

ing section as well as the next paper. Similarly, the other Substituting Eq(4.7) into Eq. (4.1) we have
correlation functions can be derived as shown in the above ' o
section. (RH=HL-(112[1—e 2]} (4.8
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which is the same as the results of the STY and KP models u2+U3
if we let I=1/D, thereforel has a meaning of persistence  A(s)=exp — m), (4.1
length (see the followin} When e—, the following result 2
is obtained: e %*UU, .18
S)= 57 —Jsa - .
(R?)=1L2, (4.9 %) 2ay(1—e" %)
which is just the results of a rodlike polymer. Then when If we set|U|=|Ug|=1, we have
varies from zero to infinity the WLC exhibits the crossover  — . 2 2
from the IGC to the rodlike polymer chain. S(s)=(1+3/q%) — (3/a7)coth(q) 4.19
with
B. Persistence length of the WLC model
. . ad(S) =5t =sa ——sa7- (4.20
After some calculation we can get the persistence length 2a,[ e —e™ %]
for the WLC model . . .
Finally, after averaging oves, we obtain
— JR cosC(R,0,Up;s,0d°R d3uo_b e o -
= T C(ROUgs0 PR Fu,  PallUolaz S=(1L) | S(s)ds. (4.20)
(4.10 0
and substituting Eq(4.7) into this equation we have the The numerical calculation exhibits that the order parameter
persistence length for finite contour distarsce changes from zero to one whewaries from zero to infinity.
1= (Ua)(1—e"5%), (4.11
wherea is given by Eq.(2.10), which is similar tlo the result Gyration radius
of the Porod—Kratky modélLet s—o, we obtain . o .
_ The gyration radius is defined as
I=1/a=(2/3)e=1/2 (4.12 ) )
which can be compared with the STY’s result RZ=(1/2L2) fo dsf0 ds'{(R(s)—R(s"))?) (4.22
1=1/2D=2e. (4.13

from which it is clear why the correlation function should be
The reason for the difference is that in our model the chairused rather than EED function. Substituting E4.1) into
can be stretched and the average length of the chdin is  Eq. (4.22 we obtain

L s ,
C. The order parameter RZ=(1/L?) Jo dsJOdS' [[s—s'—(la)(1—e (5=8Da)]
Considering an absorption near a surface and if all the ) L
chains are perpendicular to the surface the average orienta- =LI/6—12a+(l/L7a%)[L—(1-e ~%)/a] (4.23

tion of the chains will be described by the order param8ter ang using Eq(4.7) it can be written as
which is defined by

(481 7S()C(U.Uo:5,0)d8 sin 6 RZ=LI/6—12/4+(13/4L>)[L—(1—e 2"HI/2]. (4.24
0 1019,

S=(g8(s)])= [dsf2C(U,Uq:5,0)d0 sin @ When a—x Eq. (4.24 becomes
(4.14 RZ=LI/6 (4.25
and which is just the IGC’s gyration radius. When—0 using
S(6)=(3/2)cos 6—1/2, (415 Edg.(4.7 we have
where 6(s) is the angle between the preferred direction, Ré=aIL2/24= L?/12 (4.26

which is taken to be that df)y, and the segment which is L . . .
located atr(s). In order to solve the above equation, theWhlch is just the same as the gyration radius for the rodlike

2 . .
following approximation is used. We first average the orderthIymerét Al.thOl;gth‘? 'S ;he san;gﬁas the rfo dllkethpolynéel:.k
parameter with fixed, e scattering function has a difference from the rodlike

polymer for a—0 which can be seen in the next paragraph.

— J3S(6)C(U,Uqy;s,0)d6 sin 6 In order to manifest the difference between correlation func-
= 7C(U,Ug 5,036 sin tion and EED function, the average MMD in E(.22,
((R(s)—R(s"))?), is replaced by the average EE®.3) and
31(3/2)cos 6—1/2]A(s)e” 9% d g sin ¢ the results are shown in the Fig. 1. From Fig. 1 whetL
JTA(s)e”49c09dg sin ¢ ' the correlation function and EED function give the same

results and whehsL the result of the EED function leads to
(4.19 RZ=L1/12 which is half of IGC(4.29 and far from Eq.
where (4.26), therefore it cannot lead to the rodlike polymer limit.
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line), 1 (x) vsk in the unitRg (from the bottom dashed line to the top dashed
0 2 4 6 8 10 12 14 16 18 20 line): (1) for IGC and WLC withL=10 andl=0.01: (2) for WLC with
| L =10 andl =1; (3) for WLC with L=10 andl =5; (4) for WLC with L=10
and|=100.
FIG. 1. The gyration radius of WLC with MMDO(solid line and EED
(dashed lingversus the effective monomer lendthL =10 and an arbitrary
unit are used here and in the other figures.

L
|(k)=(2N/L2)f (L—s)
0

E. Scattering function X exp( — (k?/6)I[s—(1—e 3%)/a])ds. (4.32
The scattering intensity is given by In order to compare it with the results of the IGC and rodlike
L polymer, let us write down the scattering function for IGC
|(0,U,Uo)=Afo ds Ck,U,Ug;s) (4.27 1(x)=N(2/x%)(x—1+e %), (4.33
—12R2 ;
and its average is given by wherex=k*Rg, and for the rodlike polymer
L 1(x)=L2(1/6x)[ 21/3xSi(2+/3X) + cog 2/3x) — 1],
I(a):Aj ds(C(k,U,Uy;s)¥g (4.28 (4.39
0
where

where the average;--);, means over the orientatiork|
=(4m/N)sin(0/2), 6 is the scattering angle arf@d(k,U,Uy;L) Si(x)= fx(sint/t)dt. (4.35
is the Fourier transform of the correlation function 0

If we let e—~0 (a—) we find that Eq.(4.32 is just Eq.
(4.33. But if we let e~ (a—0) and taking into account the
(4.29  condition(4.7) we get

C(R,O,U,UO;L)zAf e kR d%kC(k,U,Uqg:L).

This leads to L
[(x)=N (2/L)f exp( — k?x?/6)dx
C(k,U,Ug;L) 0

U2+U32)—2b,U-U N
A exgf — 2 3) 20 +(6/k2L2) (e L6 1)} (4.36
4(as+bs)

oh2 bok-(U+Uy) which cannot lead to Eq4.34). This is why it is said that it
Xex;{ —k?l a;— L i — o (4.30 s similar to the rodlike polymer foe— in the above para-
a,+b, a,+b, graph even though it can give the gyration radius of the

This results is also different from the one derived by therodlike polymer. If considering the density distribution, we
EED function?’ Wheneis small the difference is very small, can also find the difference between the WLC and the rod-

but for very stiff chains the difference is much greater. like polymer. So we may call this model as Gaussian rodlike
If we do not consider the distribution of orientation, us- Polymer whene—co. Figure 2 shows the scattering intensi-
ing Eq. (2.9 we have ties, | (k), for different parameters from which we have seen
L ) o L that whenL=10 andl=0.01 the scattering intensity of the
C(k;L)=exp{— (k°l/6)[L— (el /3)YH(1—e™ )34}1.31) WLC is the same as that of the IGC and whes10 and

| =5 the intensity of the WLC is similar to that of the rodlike
We now calculate the scattering function for WLC which is polymer for large k. Finally, if the average MMD,
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a../a :@ = ! (4 41)
EDYTURY) Lol '
E The above equations mean that for the IGC in the external
- field the correlation function&herefore the global shapef
2 the IGC are nonspherical.
c
(2]
£ 3. Mean MMD of the WLC in the external field
k=3
3 For the WLC the correlation functions will also be pro-
late or oblate depending if the potential is positive or nega-
tive and the ratio of the major and minor axes is given by
Egs.(3.9) and(3.10. It is interesting to note that in the limit
casee—o we obtain
k (Rg)
_— _ . (RD) L?
FIG. 3. The scattering functionbk(k), of WLC derived from the correlation a;,= = , (4.42
function and the EED function versksin the unitRg . The results from the 2 2+4\1+vgl
correlation functiondashed lingand parameters are the same as that in Fig. ) )
1 and the solid lines are the results from the EED function Wil | =5 R R L2JV1+val
andl=100. The results from the correlation function with0.01 and from 1Xy=< X> = < y> = 2o ) (4.43
EED with [ =0.01 andl =1 coincide. 2 2 2+4\1+vl
therefore we obtain
((R(s)—R(s"))?) is replaced by the average EEB.3), the (R?) 1
difference between the correlation and EED functions is _2_<R :alz/alxy:—\/1+—l)|- (4.44
clearly shown in Fig. 3. The results from the EED function X 0
are close to that of IGC and, especially, considering the uniEl The orientati d ;
of Rg (see Fig. 1, used here the difference between the ™ € orientation oraer parameter
correlation and EED functions is therefore remarkable. It is easy to obtain the tangent correlation function
C(Urs = A F{ cog 6 sir? @
F. Properties of the chain in the external field (Uis)=A ex day, 4ayy
1. The constraint of the WLC in the external field — A ex F( —cog 6(0.5+ VIt vg)
As discussed abovéSec. IV A), the constrain{u?)=1
for the WLC in the external field
) ) nz (05+ \/1+U0|)
<u2>:<uz>+<uxy>:2a22+4a2xy: 1 (437) -sl o /1+UO|
leads to
=A expla co 6), (4.45
1 —
1+ 3 L1+ vgl) = 3ell, (4389 \where the conditiofu|=1 is used and
which is a crucial condition and means three parametdrs 1
andv are only two independent. a=(0.5+ 1/1+UO|) S 1) . (4.46
\ 1+U0|
2. Average MMD of the ideal Gaussian chain in the T.hen the order parameter of the WLC in the external field is
external field given by
From Egs.(3.9—(3.12 for IGC e—0 (or |—0) which o _J exna cos 6)(1/2)(3 cos 6—1)sin 6 d@
meansa, and a,, become infinite, the following results are ext J expa cos 6)sin 6 d
obtained: (4.4
R2 and numerical calculation shov&,,; changes continuously
(Ry) IL I,L
A= T irod) 6 (4.39  from 1 to —0.5 whenuv,l varies from—1 to «. Figure 4
0 shows the orientations of WLC on the external field with
(RZ) (R IL negativev, for different bending elastic constants.
=3 T2 T (4.40

therefore, the ratio of the mean MM@r EED) in parallel > The effective monomer length
and perpendicular to the direction of the external field is  Because of the existing external field, the properties of
given by the chain will generally be anisotropic, and the most inter-
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(u(s)u(s)= | AHTu(S) Ul puncl (K]
» =f u-u’'C(u,u’;s,s’)d%u d®u’, (4.5
&
2 whereC(u,u’;s,s’) is given by Eq.(2.13. With the approxi-
5 mation, Eq.(2.14), i.e., Ju|=|u’|=1, we can obtain
g 1
S (u(s)-u(s’)>=cotha—a, (4.52
% exp —|s—s'|a)
0 M i Il L L L Il Il a:
0 2 4 6 8 10 12 14 18 2a,[1—exp(—2|s—s'|a)]
Strength | VO| —
_ 3exg—[s—s'|/)
FIG. 4. The order parameter of WLC in an external figkj,versus the - [1—exp— 2|S—S’|/|—)] ' (4.53
strength of the external fieldy |, for different bending elastic coefficients:
solid line for e=3, dashed linee=1.5, and dash—dotted line=1. where the constrairf.7) is used for the last equality. After

taking limits of |s—s'| the following results is obtained:

: . _ (u(s)-u(s"))
esting one is perhaps the effective monomer length. From ) _ _
intuition, when the external field is negative, i.e, nega- | 1-a=exp(—2[s=s'[/3l), [s—s'[<I s
tive, the chain will likely be bent in the direction which | g=exp—|s=s'|/l), |s—s'|>1 (4.54
will make the effective monomer length anisotropic. As we
know, | is the effective monomer lengtimore exactly, the Which means that for the two segments far from each other
persistence length, see the abpwéthout the external field. these two models are consistent. Although the MMD and

When the external field exists, the effective monomer length&ED of STY coincide with =1/D as shown in Eq(4.8), the
will be anisotropic and have two valudsand!, which are fourth moments are different from each other: The result of

obtained from the following equations: the STY model
1 |10 52 107
1 — MN__— |- p212__— - —-2DL
1+ 3 V1(1+vol)=3ell (4.48 (R% 204{3 D2L?— o DL+ —=—4e
and 1
—2DLe ?Pb4 g DL (4.55
I 27
IZ:1+vol (449 the present result
for the parameters, and . For negativev, the | changes (RY= S I4[(LIN2—LN+i—3e 2"+ (L/)e 2/
from zero to 1o whene varies from zero to infinity an
ol whene y ant + g4, (4.5

changes front to infinity whenuv, varies from zero to nega-
tive infinity. Whenv,, is positive, a similar conclusion is With |=1/D they lead to the same limit{R*)=(5/3)
easily obtained. (L/D)2=(5/3)(LI)?, for L>1. All the above results are not
strange and can easily be understood since the segments will
be uncorrelated whefs—s'| and L>I which, therefore,
leads to the same limits.
However, it should be emphasized that the meanings of
Before closing this paper we compare the results withthe correlatioqu(s) -u(s’)) in these two models are different
that of the STY modé&P° since the STY model can success- even though they lead to the same limit whém|.
fully describe the wormlike chain in many aspects, Which<u(5).u(s')> is the end to end correlation in STY model, but
can gives us more understanding on the WLC. The differin our model it is the correlation between two arbitrary seg-
ence between these two models is that the STY model hasents which are not ends of the chain. Similarly, the other

the constraintju|=|ar(s)/ds|=1. The main results of the properties can be discussed and we will not go further.
STY model are derived from the following average of the

productu(s) -u(s’):

G. Comparison with the STY model

_ V. SUMMARY
u(s)-u(s’)y=exp —|s—=s’|/l), (4.50 ) . .
< ) | | o In this paper, the concept of correlation function for
where the persistence length is uséd,1/2D =2¢, which  WLCs is proposed. The method of functional integrals in

can also be calculated by our method momentum spacénormal mode analysiss used to estab-
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