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Functional integrals in quasimomentum space~normal mode analysis! is used to study
configurational statistics of wormlike chains~WLCs! and properties of WLCs in an external field,
with which various correlation functions are defined and can be expressed in terms of simple
analytical forms. From the correlation functions, some statistical properties of WLCs, such as
gyration radius and scattering functions, have been obtained. The difference between correlation
functions and end to end distance distribution functions are discussed, and by varying a parameter
the WLC exhibits crossover from an ideal Gaussian chain to a rodlike chain. ©1997 American
Institute of Physics.@S0021-9606~97!50905-6#
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I. INTRODUCTION

Since Edwards proposed the continuum model
1960’s1 much progress has been made. For the ideal Ga
ian chain~IGC!, the functional integrals can be solved e
actly, for example, the end to end distance distribut
~EED! function with contour lengthL, G~R;L!, and after
taking an interaction between different monomers, i.e.,
excluded volume, into account, a perturbation expansion
well as the renormalization group method are used to st
the configurational statistics of polymer solution. Since
aim of this paper is focused on the wormlike chain, the s
tistics of the ideal Gaussian chains will not be discussed h
but can be found in many review books and articles.1,2

The wormlike chain~WLC! model was first proposed b
Kratky and Porod~KP!3 and extended to the continuum
model~functional integrals! by Saitô, Takahashi, and Yunok
~STY!,4 and Freed,5 which is described by the statistica
weighting factor,5 p@r (s)#,

p@r ~s!#5A expH 2
3

2l E0
LS ]r ~s!

]s D 2 ds
2

e

2 E
0

LS ]2r ~s!

]s2 D 2 dsJ
5A expF2

3

2l E0
L

u2~s!ds2
1

2
eE

0

L

u̇2~s!dsG ,
~1.1!

where the polymer chain is described by a continuous cu
in three-dimensional spacer (s), wheres measures the con
tour length along the chain, 0<s<L, e is a bending elastic
coefficient,u(s) the differential~tangent! of the curver (s),
i.e., ]r (s)/]s, andA a normalization constant which is equ
to the inverse of the partition function. Although the bendi
elastic term exists which makes the problem complicat
2520 J. Chem. Phys. 106 (6), 8 February 1997 0021-9606/9
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many methods were proposed. Using the constraintuu(s) u51
which means that the polymer chains cannot be stretch
STY derived a series solution for the tangent distributi
function ~Green’s function!, G~U,U8;L,0!, by solving a dif-
ferential equation for the spherical harmonics4 and therefore
the truncated approximation will be adopted in real appli
tions. Releasing the constraintuu(s) u51 which means the
polymer chain can be stretched, Freed, using the metho
Feynman,6 derived fruitful results, for example, the EED an
tangent distribution functions ~Green’s functions!
G~R,0;U,U8;L0! and G~U,U8;L,0! obtained exactly.5 An-
other powerful method is the normal mode analysis7 which is
elaborated in the continuum model.8 This method is just the
functional integrals in momentum space9 which is often used
in the field theory and is a convenient method of study
properties of WLCs. In this paper, this method is furth
extended to study the properties of WLCs.

For the configurational statistics of WLCs, besides t
EED functions another essential quantity is the correlat
function ~or two-body distribution function, however, if th
contour lengths is imaged as time as usual5 C~R1,R2;s1,s2!
is just the correlation function! which is defined for a uni-
form system

C~R1 ,R2 ;s1 ,s2!}^d~r ~s1!2R1!d~r ~s2!2R2!&

}^d~r ~s1!2r ~s2!2R!&}C~R;s!,

~1.2!

whereR5R12R2, s5s12s2 , 0<s1, s2<L and ^•••& means
the statistical average over various configurations of
chain by functional integrals. Here, it should be stressed
the correlation functions are actually more fundamental th
the EED functions for WLCs. As pointed out in Ref. 10, th
EED functions cannot completely reflect the properties of
WLC, since the EED function gives the mean end to e
distance aŝR2&5lL in the long chain limit. In order to cal-
7/106(6)/2520/10/$10.00 © 1997 American Institute of Physics
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2521Zhao, Sun, and Zhang: Statistics of wormlike chains. I
culate the statistical properties of WLCs, such as scatte
function and Gyration radius, we introduce the correlat
function ~1.2! from which various physical quantities can b
obtained. In this paper, various correlation functions inclu
ing position as well as orientation~tangent! correlation are
derived in terms of simple analytical forms and we pro
that the correlation functions are generally not equal to
EED functions for the wormlike chain, and only for the IG
is the correlation function,C~R;s!, just equal to the EED
function,G~R;L5s!. Therefore, in the calculation of variou
physical quantities, the correlation functions should be u
for WLC rather than the EED functions which is often us
in the calculation for IGC. In order to manifest the differen
between correlation functions and EED functions, we co
pare the results obtained from these two function.

In the last two decades, polymer liquid crystals~PLCs!
have been developed very quickly in experiment and the
It is believed many PLCs are composed by the worml
chains and therefore the wormlike chain model has b
used extensively to describe polymer liquid crystals.11–16 In
the hairpin model,12 it is assumed that the WLC is in a mea
field provided by the other chains, then the configurations
WLC can be derived by solving a differential equation
even more the hairpin number can be obtained by comp
simulation.11,13–16On the other hand, the behaviors of PLC
in a strong external field17 as well as the properties of PLC
in a nematic solvent18 are investigated. In this paper, th
properties of the WLC in an external field are studied by
statistical method developed here, and the problems on
phase transition are discussed in the following paper.

The organization of this paper is as follows. In Sec.
the functional integrals for WLCs are carried out in the qu
simomentum space to obtain various correlation functio
Section III deals with WLCs in an external field and, finall
some properties of WLC are studied in Sec. IV. In the f
lowing paper, the self-consistent field theory is use to stu
many WLCs system as well as the phase transition of
polymer liquid crystals.

II. CORRELATION FUNCTIONS

A. Functional integrals in momentum space

Let us consider a polymer chain which is described b
three-dimensional curver (s) with contour lengthL, where
0<s<L. For convenience, the infinite long chain limit
taken then the normal mode coordinate, i.e., the Fou
transformation ofr (s), is obtained as usual8

r ~s!5
1

A2p
E

2`

`

f~k!eiks dk, ~2.1!

wheref(k) satisfies the conditionf(k)5f* (2k) becauser (s)
is a real function. Then the statistical weighting fact
p@f(k)# for an IGC can be written as

pIGC@ f~k!#5A expS 2~3/2l !E
2`

`

k2f2~k!dkD ~2.2!
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and for WLC statistical weighting factor~1.1! is

pWLC@ f~k!#5A expS 2~3/2l !E k2f2~k!dk2~e/2!

3E k4f2~k!dkD . ~2.3!

Here, and in the following,A is a constant which can b
determined by normalization andf2(k) meansf(k)–f* (k).
Then any physical quantities can be obtained by the fu
tional integral in the quasimomentum space

Q5E D@ f~k!#Q@ f~k!#p@ f~k!#, ~2.4!

where*D@f(k)# is functional integral.

B. Correlation functions

We now use the above model to calculate the correla
functions. According to Eq.~2.1!, we obtain

d~~r ~s!2r ~0!!2R!

5~1/2p!23/2E
2`

`

expH iw•F 1

A2p
E

2`

`

f~k!

3~eiks21!dk2RG J d3w ~2.5!

and the tangents of the curve at the contour positions,s,

u~s!5
1

A2p
E

2`

`

ikf~k!eiks dk. ~2.6!

Then, from Eq.~2.4!, the correlation function~1.2! for IGC
can be written as

CIGC~R,0;s,0!5E D@ f~k!#d~~r ~s!2r ~0!!2R!

3pIGC@ f~k!#

5E e2 iw–R d3wE D@ f~k!#pIGC@ f~k!#

3expS i

A2p
w•E

2`

`

f~k!~eiks21!dkD .
~2.7!

Using standard methods,8,9 we obtain
No. 6, 8 February 1997
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2522 Zhao, Sun, and Zhang: Statistics of wormlike chains. I
CIGC~R,0;s,0!5AE e2 iw–R d3w

3expS 2
v2l

3p E
2`

` sin2~ks/2!

k2
dkD

5AE e2 iw–R d3w expS 2v2ls

6 D
5A expS 23R2

2ls D , ~2.8!

wherel is the effective segment length. This result indica
that the correlation function has the same form as the E
function for the IGC, i.e., whether or not the two points,s1
ands2, are the ends of the chain, the correlation function
just the EED function. This conclusion is correct only f
IGC and it is not right for the other correlation functions
well as WLC ~see the following!. Therefore, it is necessar
to introduce the correlation function for the calculation o
physical quantity.

We now consider the correlation function~1.2! for WLC
which is obtained from Eqs.~2.3! and ~2.4!

C~R,0;s,0!5E D@ f~k!#d~~r ~s!2r ~0!!2R!pWLC@ f~k!#

5AE e2 iw–R d3w exp$2~w2l /6!

3@s2~e l /3!1/2~12exp~2sA3/e l !!#%

5A exp~2R2/4a1!, ~2.9!

where

a15~ l /6!~s2~1/a!@12e2sa#!, a5A3/e l , ~2.10!

which is similar to the EED function obtained by STY an
KP ~the models they used are different from the one u
here! and is completely different from the EED function d
rived by Freed~his model is the same as the one used h
and the respective results are exact!. This result exhibits the
difference between the correlation and EED function and
the EED function, pointsr ~0! and r (L) are the ends of the
chain, but here they are two arbitrary points on the very lo
chain. It is also interesting to note that the model will lead
a crossover from the IGC through the WLC, and finally to
Gaussian rodlike chain when the parametere is varied which
will be discussed in the following section.

In principle, any correlation function can be obtain
analytically and in the following we will discuss some im
portant correlation functions. Let us consider an absorp
on a surface, then the polymer chain will have a defin
orientationU0 at r ~s50!, for example, the polymer chai
may be perpendicular to the surface. The correlation betw
r ~0! andr (s) is given by the correlation function,C~R,0, U0;
s,0!, i.e., we now consider the correlation function with t
contour distance,s, r (s)2r ~0!5R and the tangentU0 at s50
J. Chem. Phys., Vol. 106,
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C~R,0,U0 ;s,0!5E D@ f~k!#d~~r ~s!2r ~0!!2R!

3d~u~0!2U0!pWLC@ f~k!#

5AE e2 iw–R d3wE e2 iw8–U0 d3w8

3E D@ f~k!#pWLC@ f~k!#

3expF i 1

A2p
E

2`

`

f~k!

•@w~eiks21!1 ikw8#dkG
5A expF2

R2a222b1R–U01U0
2a1

4~a1a22b1
2! G ,

~2.11!

where

b15~ l /12!~12e2sa!, a25
1

4ae
. ~2.12!

Similarly we consider the tangent correlation function
the chain with the contour distances and the tangentsU0 and
U at thes50 ands, respectively, and the result is

C~U,U0 ;s,0!5E D@ f~k!#d~u~0!2U0!

3d~u~s!2U!pWLC@ f~k!#

5A expF2
U21U0

222e2saU–U0

4a2~12e22sa!
G ~2.13!

which is also different from the EED tangent distributio
derived by Freed. If we consider the situationuUu5uU0u51
~i.e., replaceU2 andU0

2 by its mean values, see Sec. IV! we
have

C~U,U0 ;s,0!5A expS 2
12e2sa cos~u!

2a2~12e22sa! D . ~2.14!

For the correlation function of the chain with the conto
distances, r (s)2r ~0!5R and the tangentU at s we have

C~R,0,U;s,0!5E D@ f~k!#d~~r ~s!2r ~0!!2R!

3d~u~s!2U0!pWLC@ f~k!#

5A expS 2
R2a222b1R–U1U2a1

4~a1a22b1
2! D .

~2.15!

We now consider the correlation function of the cha
with the contour distances, r ~s!2r ~0!5R and the tangents
U0 andU at s50 ands, respectively, and we obtain
No. 6, 8 February 1997
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2523Zhao, Sun, and Zhang: Statistics of wormlike chains. I
C~R,0,U,U0 ;s,0!

5E D@ f~k!#d~~r ~s!2r ~0!!2R!d~u~0!

2U0!d~u~s!2U!pWLC@ f~k!#

5A~U,U0!expS 2
R2~a21b2!22~U1U0!–Rb1

4@a1~a2
22b2

2!22b2
2# D

~2.16!

and

A~U,U0!

5expS 2
~U21U0

2!~a1a22b2
2!12U–U0~b1

22a1b2!

4@a1~a2
22b2

2!22b2
2#~a22b2!

D ,
~2.17!

where

b25a2 exp~2sa!. ~2.18!

Finally, it is easy to obtain the orientation distributio
function of the tangentU at positions

C~U;s!5E D@ f~k!#d~u~s!2U!pWLC@ f~k!#

5A exp~2U2/4a2! ~2.19!

which is independent ofs because of translation invarianc
From the above results we can conclude that e

though for the IGCs the correlation and distribution fun
tions C~R, 0; s, 0! andG~R, 0, s, 0! have the same form
whether or not the pointsr ~0!50 andr (s)5R are the ends of
the chain, for WLCs the correlation functions~2.9!, ~2.13!,
and~2.16! are quite different from the EED functions.5 This
conclusion can be explained as follows. Considering the c
relation between two monomers withr ~0!50 and r ~s8!5R,
for IGC the configurations outside parts withs,0 ands.s8
will not influence the inner part because of the flexibility
the IGC and only give a constant which can be absorbed
the normalization constants. For WLC this is not the ca
i.e., the correlation between the two monomers will be d
ferent when the two monomers are the ends of the chai
not. The reason is that the outside part of the chain~s,0 and
s.s8! will influence the inner part~0,s,s8! because of the
nonflexibility of the WLC. This is why the correlation func
tions are different from the EED functions. However, wh
the elastic coefficiente→0, the difference betweenC~R,0;
L,0! andC~R,0; L,0! will vanish. It is the equivalence be
tween correlation and EED functions that the EED funct
can be used to calculate various statistical quantities
IGCs. For WLCs, the correlation functions should be us
rather than the EED function for the statistical physical qu
tities. In Sec. IV the differences between them will be co
pared and discussed by calculating numerically some c
crete physical quantities.
J. Chem. Phys., Vol. 106,
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III. WLC IN AN EXTERNAL FIELD

In this section we study the properties of WLC in a
external field; such a field may be provided by an elect
magnet field17 or some anisotropic solvents.18 Here, by the
functional integrals various correlation functions can be o
tained exactly for the following external field which is ofte
used everywhere11,13–16and originates from the dipole mo
ment possessed by the monomers interacting with the fiel
the dispersion interaction between molecules19

V5v0P2~cosu~s!!5v0~~3/2!cos2 u~s!21/2!, ~3.1!

wherev0 is the strength of the interaction dependent on
dipole moment,P2 the Legendre function, andu the angle
between the preferred direction determined by the exte
field and the monomer axis at the contour lengths. This
external potential can be expressed in terms of tangent
the chain as

V5v0@
3
2 ~u0•u~s!!22 1

2#, ~3.2!

whereu0 is a unit vector of the preferred direction of th
external field andu(s) the tangent of the chain at positions.

Including this potential, the statistical probability of th
configuration can be written

pext@ f~k!#5ApWLC@ f~k!#

3expF2v0E ~~3/2!~u0–u~s!!221/2!dsG , ~3.3!

whereA is a constant which can be determined by norm
ization. The constant term in the external field can be
sorbed into the normalization constantA, then we have

pext@ f~k!#5ApWLC@ f~k!#3expF2v0E ~3/2!k2f z
2~k!dsG

5A expF2~3/2l !~11v0l !E k2f z
2~k!dk

2~e/2!E k4f z
2~k!dkGexpF2~3/2l !E k2f xy

2 ~k!dk

2~e/2!E k4f xy
2 ~s!dkG5p@ f z~k!#p@ f xy~k!#,

~3.4!

where thez axis is selected as the preferred direction of t
external field. From the above equation it should be no
that when the potential is negative,v0l should be less than 1
otherwise the chain would be broken. It is also clear from
above equation that the following expression:

1

l z
5
1

l
~11v0l ! ~3.5!

has a clear physical meaning, i.e.,l z has a meaning of an
effective monomer length~or persistence length! in the z
direction which will also be discussed in the following se
No. 6, 8 February 1997
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2524 Zhao, Sun, and Zhang: Statistics of wormlike chains. I
tion. Using the method given above, it is easy to obtain
following two points position and tangent correlation fun
tions:

C~R,0;s,0!5E D@ f~k!#d~~r ~s!2r ~0!!2R!pext@ f~k!#

5E D@ f z~k!#d~~r z~s!2r z~0!!2Rz!p@ f z~k!#

3ED@ f xy~k!#d~~r xy~s!

2r xy~0!!2Rxy!p@ f xy~k!#

5A exp~2Rz
2/4a1z!exp~2Rxy

2 /4a1xy! ~3.6!

and

C~U,U0 ;s,0!5E D@ f~k!#d~u~0!2U0!d~u~s!2U!

3pext@ f~k!#

5A expF2
Uz
21U0z

2 22e2sazUzU0z

4a2z~12e22saz!
G

3expF2
Uxy
2 1U0xy

2 22e2saxyUxyU0xy

4a2xy~12e22saxy!
G ,
~3.7!

whereRx(Ry ,Rz) and Ux(Uy ,Uz) are thex(y,z) compo-
nents ofR andU,

Rxy
2 5Rx

21Ry
2, Uxy

2 5Ux
21Uy

2, ~3.8!

a1z5
l z
6

@s2~1/az!~12e2saz!#, ~3.9!

a1xy5
l

6
@s2~1/axy!~12e2saxy!#, ~3.10!

a2z5
1

4aze
, a2xy5

1

4axye
, ~3.11!

az5A3/e l z, axy5A3/e l , ~3.12!

wherel z is given by Eq.~3.5!. Similarly, the orientation dis-
tribution is given by

C~U;s!5E D@ f~k!#d~u~s!2U!p@ f~k!#

5A expF2
Uz
2

4a2z
2

Uxy
2

4a2xy
G ~3.13!

which is independent ofs since the external field preserve
the translational invariance and only breaks the rotatio
invariance.

Here, the exact correlation functions for WLC in th
external field are obtained which will be used in the follo
ing section as well as the next paper. Similarly, the ot
correlation functions can be derived as shown in the ab
section.
J. Chem. Phys., Vol. 106,
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IV. DISCUSSION AND APPLICATIONS

A. The average monomer–monomer distance of the
WLC

From Eq. ~2.9! we obtain the average monomer
monomer distance~MMD ! ~distinguished from the end to
end distance EED! separated by the contour distance,s, for
WLC

^R2&5 l ~s2~1/a!@12e2sa#!, ~4.1!

^R4&5~5/3!l 2~s2~1/a!@12e2sa#!2. ~4.2!

Equation ~4.1! is also obtained from Refs. 8 and 10 an
differentiate from the average EED obtained by Freed5

^R2&5 l ~L2~1/2a!tanh~La!! ~4.3!

which clearly shows the difference between correlation a
EED functions. The difference between Eqs.~4.1! and ~4.3!
comes from the end effect of the chain. The difference is a
noted by Lagowski and Noolandj10 and, in order to patch up
the difference, an additional term describing the end effec
added to the Hamiltonian.

When e→0, i.e., a5A3/e l→` the WLC becomes the
ideal Gaussian chain, i.e., the mean MMD and the m
EED become the same by settings5L

^R2&5 lL . ~4.4!

But when e→`, i.e., a→0 the mean MMD and EED of
WLC give incorrect results and in order to make the mo
valid, an additional condition of the average length of t
chain beingL should be used, i.e., as discussed in detai
Ref. 5, let

E
0

L

ds̃5E
0

L

^~u~s!–u~s!!1/2&ds5L, ~4.5!

whereds̃ is differential arc length. Then we will obtain
constraint on the parameters,l ande, by Eq. ~2.19!

^u2&5E u2G~u;L !duY E G~u;L !du56a25A3l

4e
51

~4.6!

which is equivalent to

l5~4/3!e. ~4.7!

The above result means that the parametersl and e are not
independent of each other and one of them may be sele
as the independent parameter. For example, ife is selected as
the independent parameterl will depend one and will have a
meaning of an effective monomer length~Kuhn length!. An-
other reasonable constraint can be obtained from^uuu&51
which leads tol53p2e/16. A different result is derived by
Freed,5 l5e/3 obtained from the end to end tangent distrib
tion function, and in Ref. 10,l5~4/3!e is derived by taking a
limit on Eq. ~2.9!.

Substituting Eq.~4.7! into Eq. ~4.1! we have

^R2&5 l $L2~ l /2!@12e22L/ l #% ~4.8!
No. 6, 8 February 1997
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2525Zhao, Sun, and Zhang: Statistics of wormlike chains. I
which is the same as the results of the STY and KP mod
if we let l51/D, thereforel has a meaning of persistenc
length ~see the following!. Whene→`, the following result
is obtained:

^R2&5L2, ~4.9!

which is just the results of a rodlike polymer. Then whene
varies from zero to infinity the WLC exhibits the crossov
from the IGC to the rodlike polymer chain.

B. Persistence length of the WLC model

After some calculation we can get the persistence len
for the WLC model

l̄5
*R cosuC~R,0,U0 ;s,0!d3R d3U0

*C~R,0,U0 ;s,0!d3R d3U0
5b1^uU0u&/a2

~4.10!

and substituting Eq.~4.7! into this equation we have th
persistence length for finite contour distances

l̄5~1/a!~12e2sa!, ~4.11!

wherea is given by Eq.~2.10!, which is similar to the result
of the Porod–Kratky model.4 Let s→`, we obtain

l̄51/a5~2/3!e5 l /2 ~4.12!

which can be compared with the STY’s result

l̄51/2D52e. ~4.13!

The reason for the difference is that in our model the ch
can be stretched and the average length of the chain isL.

C. The order parameter

Considering an absorption near a surface and if all
chains are perpendicular to the surface the average orie
tion of the chains will be described by the order parameteS̄
which is defined by

S̄5^S@u~s!#&5
*ds*0

pS~u!C~U,U0 ;s,0!du sin u

*ds*0
pC~U,U0 ;s,0!du sin u

~4.14!

and

S~u!5~3/2!cos2 u21/2, ~4.15!

where u(s) is the angle between the preferred directio
which is taken to be that ofU0, and the segment which i
located atr (s). In order to solve the above equation, t
following approximation is used. We first average the ord
parameter with fixeds,

S̄~s!5
*0

pS~u!C~U,U0 ;s,0!du sin u

*0
pC~U,U0 ;s,0!du sin u

5
*0

p@~3/2!cos2 u21/2#A~s!e2q~s!cos~u!du sin u

*0
pA~s!e2q~s!cos~u!du sin u

,

~4.16!

where
J. Chem. Phys., Vol. 106,
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th

n

e
ta-

,

r

A~s!5expS 2
U21U0

2

4a2~12e22sa!
D , ~4.17!

q~s!5
e2saUU0

2a2~12e22sa!
. ~4.18!

If we set uUu5uU0u51, we have

S̄~s!5~113/q2!2~3/q2!coth~q! ~4.19!

with

q~s!5
1

2a2@e
sa2e2sa#

. ~4.20!

Finally, after averaging overs, we obtain

S̄5~1/L !E
0

L

S̄~s!ds. ~4.21!

The numerical calculation exhibits that the order parame
changes from zero to one whene varies from zero to infinity.

D. Gyration radius

The gyration radius is defined as

RG
2 5~1/2L2!E

0

L

dsE
0

L

ds8^~R~s!2R~s8!!2& ~4.22!

from which it is clear why the correlation function should b
used rather than EED function. Substituting Eq.~4.1! into
Eq. ~4.22! we obtain

RG
2 5~1/L2!E

0

L

dsE
0

s

ds8 l @s2s82~1/a!~12e2~s2s8!a!#

5Ll /62 l /2a1~ l /L2a2!@L2~12e2La!/a# ~4.23!

and using Eq.~4.7! it can be written as

RG
2 5Ll /62 l 2/41~ l 3/4L2!@L2~12e22L/ l !l /2#. ~4.24!

Whena→` Eq. ~4.24! becomes

RG
2 5Ll /6 ~4.25!

which is just the IGC’s gyration radius. Whena→0 using
Eq. ~4.7! we have

RG
2 5a lL 2/245L2/12 ~4.26!

which is just the same as the gyration radius for the rodl
polymer. AlthoughRG

2 is the same as the rodlike polyme
the scattering function has a difference from the rodl
polymer fora→0 which can be seen in the next paragrap
In order to manifest the difference between correlation fu
tion and EED function, the average MMD in Eq.~4.22!,
^(R(s)2R(s8))2&, is replaced by the average EED~4.3! and
the results are shown in the Fig. 1. From Fig. 1 whenl!L
the correlation function and EED function give the sam
results and whenl@L the result of the EED function leads t
RG
2 5Ll /12 which is half of IGC~4.25! and far from Eq.

~4.26!, therefore it cannot lead to the rodlike polymer limi
No. 6, 8 February 1997
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E. Scattering function

The scattering intensityI is given by5

I ~u,U,U0!5AE
0

L

ds C~k,U,U0 ;s! ~4.27!

and its average is given by

I ~u!5AE
0

L

dŝ C~k,U,U0 ;s!&0 ~4.28!

where the average,̂•••&0, means over the orientation,uku
5~4p/l!sin~u/2!, u is the scattering angle andC~k,U,U0;L!
is the Fourier transform of the correlation function

C~R,0,U,U0 ;L !5AE e2 ik–R d3kC~k,U,U0 ;L !.

~4.29!

This leads to

C~k,U,U0 ;L !

5A8 expF2
a2~U

21U0
2!22b2U–U0

4~a2
21b2

2! G
3expF2k2S a12 2b1

2

a21b2
D 1 i

b1k–~U1U0!

a21b2
G . ~4.30!

This results is also different from the one derived by t
EED function.5 Whene is small the difference is very smal
but for very stiff chains the difference is much greater.

If we do not consider the distribution of orientation, u
ing Eq. ~2.9! we have

C~k;L !5exp$2~k2l /6!@L2~e l /3!1/2~12e2LA3/e l !#%.
~4.31!

We now calculate the scattering function for WLC which

FIG. 1. The gyration radius of WLC with MMD~solid line! and EED
~dashed line! versus the effective monomer lengthl . L510 and an arbitrary
unit are used here and in the other figures.
J. Chem. Phys., Vol. 106,
I ~k!5~2N/L2!E
0

L

~L2s!

3exp~2~k2/6!l @s2~12e2sa!/a#!ds. ~4.32!

In order to compare it with the results of the IGC and rodlik
polymer, let us write down the scattering function for IGC

I ~x!5N~2/x2!~x211e2x!, ~4.33!

wherex5k2RG
2 , and for the rodlike polymer

I ~x!5L2~1/6x!@2A3xSi~2A3x!1cos~2A3x!21#,
~4.34!

where

Si~x!5E
0

x

~sin t/t !dt. ~4.35!

If we let e→0 ~a→`! we find that Eq.~4.32! is just Eq.
~4.33!. But if we lete→` ~a→0! and taking into account the
condition ~4.7! we get

I ~x!5NF ~2/L !E
0

L

exp~2k2x2/6!dx

1~6/k2L2!~e2k2L2/621!G ~4.36!

which cannot lead to Eq.~4.34!. This is why it is said that it
is similar to the rodlike polymer fore→` in the above para-
graph even though it can give the gyration radius of th
rodlike polymer. If considering the density distribution, w
can also find the difference between the WLC and the ro
like polymer. So we may call this model as Gaussian rodlik
polymer whene→`. Figure 2 shows the scattering intensi
ties, I (k), for different parameters from which we have see
that whenL510 andl50.01 the scattering intensity of the
WLC is the same as that of the IGC and whenL510 and
l55 the intensity of the WLC is similar to that of the rodlike
polymer for large k. Finally, if the average MMD,

FIG. 2. The scattering functions of WLC and the rodlike polymer~solid
line!, I (x) vsk in the unitRG ~from the bottom dashed line to the top dashe
line!: ~1! for IGC and WLC withL510 and l50.01; ~2! for WLC with
L510 andl51; ~3! for WLC with L510 andl55; ~4! for WLC with L510
and l5100.
No. 6, 8 February 1997
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2527Zhao, Sun, and Zhang: Statistics of wormlike chains. I
^(R(s)2R(s8))2& is replaced by the average EED~4.3!, the
difference between the correlation and EED functions
clearly shown in Fig. 3. The results from the EED functi
are close to that of IGC and, especially, considering the
of RG ~see Fig. 1!, used here the difference between t
correlation and EED functions is therefore remarkable.

F. Properties of the chain in the external field

1. The constraint of the WLC in the external field

As discussed above~Sec. IV A!, the constraint̂u2&51
for the WLC in the external field

^u2&5^uz
2&1^uxy

2 &52a2z14a2xy51 ~4.37!

leads to

11 1
2 A1/~11v0l !5A3e/ l , ~4.38!

which is a crucial condition and means three parameterse, l ,
andv0 are only two independent.

2. Average MMD of the ideal Gaussian chain in the
external field

From Eqs.~3.9!–~3.12! for IGC e→0 ~or l→0! which
meansaz andaxy become infinite, the following results ar
obtained:

a1z5
^Rz

2&
2

5
lL

6~11v0l !
5
l zL

6
, ~4.39!

a1xy5
^Rx

2&
2

5
^Ry

2&
2

5
lL

6
, ~4.40!

therefore, the ratio of the mean MMD~or EED! in parallel
and perpendicular to the direction of the external field
given by

FIG. 3. The scattering functions,I (k), of WLC derived from the correlation
function and the EED function versusk in the unitRG . The results from the
correlation function~dashed line! and parameters are the same as that in F
1 and the solid lines are the results from the EED function withl51 l55
and l5100. The results from the correlation function withl50.01 and from
EED with l50.01 andl51 coincide.
J. Chem. Phys., Vol. 106,
s

it

s

a1z /a1xy5
^Rz

2&

^Rx
2&

5
1

11v0l
. ~4.41!

The above equations mean that for the IGC in the exte
field the correlation functions~therefore the global shape! of
the IGC are nonspherical.

3. Mean MMD of the WLC in the external field

For the WLC the correlation functions will also be pro
late or oblate depending if the potential is positive or ne
tive and the ratio of the major and minor axes is given
Eqs.~3.9! and~3.10!. It is interesting to note that in the limi
casee→` we obtain

a1z5
^Rz

2&
2

5
L2

214A11v0l
, ~4.42!

a1xy5
^Rx

2&
2

5
^Ry

2&
2

5
L2A11v0l

214A11v0l
, ~4.43!

therefore we obtain

^Rz
2&

^Rx
2&

5a1z /a1xy5
1

A11v0l
. ~4.44!

4. The orientation order parameter

It is easy to obtain the tangent correlation function

C~U;s!5A expS 2
cos2 u

4a2z
2
sin2 u

4a2xy
D

5A expS 2cos2 u~0.51A11v0l !

2sin2 u
~0.51A11v0l !

A11v0l
D

5A exp~a cos2 u!, ~4.45!

where the conditionuUu51 is used and

a5~0.51A11v0l !S 1

A11v0l
21D . ~4.46!

Then the order parameter of the WLC in the external field
given by

S̄ext5
* exp~a cos2 u!~1/2!~3 cos2 u21!sin u du

* exp~a cos2 u!sin u du
~4.47!

and numerical calculation showsS̄ext changes continuously
from 1 to 20.5 whenv0l varies from21 to `. Figure 4
shows the orientations of WLC on the external field w
negativev0 for different bending elastic constants.

5. The effective monomer length

Because of the existing external field, the properties
the chain will generally be anisotropic, and the most int

.
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2528 Zhao, Sun, and Zhang: Statistics of wormlike chains. I
esting one is perhaps the effective monomer length. Fro
intuition, when the external field is negative, i.e.,v0 nega-
tive, the chain will likely be bent in thez direction which
will make the effective monomer length anisotropic. As w
know, l is the effective monomer length~more exactly, the
persistence length, see the above! without the external field.
When the external field exists, the effective monomer lengt
will be anisotropic and have two values,l and l z which are
obtained from the following equations:

11 1
2 A1/~11v0l !5A3e/ l ~4.48!

and

l z5
l

11v0l
~4.49!

for the parametersv0 and e. For negativev0 the l changes
from zero to 1/uv0u whene varies from zero to infinity andl z
changes froml to infinity whenv0 varies from zero to nega-
tive infinity. When v0 is positive, a similar conclusion is
easily obtained.

G. Comparison with the STY model

Before closing this paper we compare the results wi
that of the STY model4,5 since the STY model can success
fully describe the wormlike chain in many aspects, whic
can gives us more understanding on the WLC. The diffe
ence between these two models is that the STY model h
the constraintuuu5u]r (s)/]su51. The main results of the
STY model are derived from the following average of th
productu(s)•u~s8!:

^u~s!•u~s8!&5exp~2us2s8u/ l̄ !, ~4.50!

where the persistence length is used,l̄51/2D52e, which
can also be calculated by our method

FIG. 4. The order parameter of WLC in an external field,S, versus the
strength of the external field,uv0u, for different bending elastic coefficients:
solid line for e53, dashed linee51.5, and dash–dotted linee51.
J. Chem. Phys., Vol. 106,
m
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h

r-
as

^u~s!•u~s8!&5E D@ f~k!#u~s!–u~s8!pWLC@ f~k!#

5E u–u8C~u,u8;s,s8!d3u d3u8, ~4.51!

whereC~u,u8;s,s8! is given by Eq.~2.13!. With the approxi-
mation, Eq.~2.14!, i.e., uuu5uu8u51, we can obtain

^u~s!–u~s8!&5cotha2
1

a
, ~4.52!

a5
exp~2us2s8ua!

2a2@12exp~22us2s8ua!#

5
3 exp~2us2s8u/ l̄ !

@12exp~22us2s8u/ l̄ !#
, ~4.53!

where the constraint~4.7! is used for the last equality. Afte
taking limits of us2s8u the following results is obtained:

^u~s!–u~s8!&

.H 12 1
a.exp~22us2s8u/3l̄ !, us2s8u! l̄

a
3.exp~2us2s8u/ l̄ !, us2s8u@ l̄

, ~4.54!

which means that for the two segments far from each ot
these two models are consistent. Although the MMD a
EED of STY coincide withl51/D as shown in Eq.~4.8!, the
fourth moments are different from each other: The result
the STY model

^R4&5
1

2D4 F103 D2L22
52

9
DL1

107

27
24e22DL

22DLe22DL1
1

27
e26DLG ; ~4.55!

the present result

^R4&5 5
3 l

4@~L/ l !22L/ l1 1
42

1
2e

22L/ l1~L/ l !e22L/ l

1 1
4e

24L/ l #. ~4.56!

With l51/D they lead to the same limit,̂R4&5(5/3)
(L/D)25(5/3)(Ll )2, for L@ l . All the above results are no
strange and can easily be understood since the segment
be uncorrelated whenus2s8u and L@ l which, therefore,
leads to the same limits.

However, it should be emphasized that the meanings
the correlation̂u(s)•u~s8!& in these two models are differen
even though they lead to the same limit whenL@ l .
^u(s)–u~s8!& is the end to end correlation in STY model, b
in our model it is the correlation between two arbitrary se
ments which are not ends of the chain. Similarly, the ot
properties can be discussed and we will not go further.

V. SUMMARY

In this paper, the concept of correlation function f
WLCs is proposed. The method of functional integrals
momentum space~normal mode analysis! is used to estab-
No. 6, 8 February 1997
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2529Zhao, Sun, and Zhang: Statistics of wormlike chains. I
lished an exact analytical model for the wormlike chains, a
using this model the analytical expressions for various c
relation functions of WLCs as well as WLCs in an extern
field have been obtained. The difference between the co
lation and EED functions have been discussed and it is fo
that for IGC the correlation functionCIGC~R,0; L,0! and
EED functionGIGC~R,0; L,0! has the same form whether th
points,r ~0!50 andr (L)5R, are the ends of the chain or no
and for WLC they have a different form. From the corre
tion functions some properties of WLC as well as WLC
the external field are studied, for example, the aver
MMD, gyration radius, and the scatter functions of WLC
well as the orientations of WLC in the external field and t
ratio of mean MMDs parallel and perpendicular to the dire
tion of the external field are obtained. Finally, the resu
obtained here are compared with that of the STY mo
which gives us more understanding on the wormlike cha
Furthermore, we expect that the WLC gives a good desc
tion of main chain polymer liquid crystals which will b
discussed in following paper.
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