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A general self-consistent fielCH for the mixture of polymer and low molecular weightMW )
molecules has been derived by variation principle. Considering a Maier—Saupe type of interaction,
the analytical expressions of the SCF for polymer liquid crysalsCs and the mixture of PLCs

and LMW liquid crystals are obtained, from which the phase behaviors of PLCs as well as the
mixture are studied. The theoretical results are in agreement with experimental results by adjusting
a parameter. ©1997 American Institute of Physids$s0021-96067)51005-]

I. INTRODUCTION To describe the phase transition from isotropic to nem-
) , ) , atic phases by SCF, two theories are often used. The famous
. In a previous articlé,an analytical §0Iutlon of t_he worm- Onsager’s theory is based on the excluded volume of non-
like chain(WLC) modef has been derived for a single chain spherical molecules which leads to an anisotropic interaction

or dilute solution by functional integrals in momentum Space, 4 has a clear physical meaning and concrete forms for

which is equn_/alent to the normal mode a”‘f’"ys's-. In this pa'cylinder and elliptical molecules. This theory has been ap-
per, we consider a many-WLC system to investigate phase

behaviors of polymer liquid crystaldPLC9 as well as its plied to the rodiike polymérand WLC? The S.CF i this
. . . - form cannot be exactly solved and by assuming a concrete
mixture with low molecular weightLMW) liquid crystals

. . . . form for distribution function or numerically, SCF can be
Ezla(ri)sisvtvét:t f'i\g?c;:rscsls l:ﬁ:c()'xlls) type interaction by self obtained® The other one is the Maier—SaufidS) theory®

The statistics for a many-chain system, even for a singlézn which, based on.the secpnd order p.erturb'ation of que}ntum
polymer chain with interactions, is not an easy task. Wheﬁ_heory, a concrete interaction called dispersion energy is de-

the interactiony (r(s) —r(s')), exists the problem becomes a rived. The virtue of.the MS theor.y is thz_it Fhis model can be
complex many-body problem which is generally dealt with solved exactly and is successful in predicting a number prop-

by various approximations, for example, the self-consistengties of the nematic phase as well as of nematic—isotropic
field (SCP approach, the perturbation theory, the differentialPNase tra_nsmoﬁ. Therefore, in this paper the MS type in-
equation methods, and so on. The perturbation theory is thH§raction is used. .

most basic method by which a perturbational expansion for Polymer liquid crystals have been given more and more
the end to end distributiofEED) function, G(ROLO), is eas- attenticzm In past two decades and much progress has been
ily obtained and by a renormalization method many propermade-“ It is believed many PLCs are composed by the
ties of the polymer chains, for example, scaling properties‘,’VOfm“ke chains and t_herefore the wormhke chain modgl hgs
are derived. However, in order to study the phase transition0€en used extensively to describe polymer liquid
of liquid crystals, the most powerful method is perhaps thecrystals?®**~**Another interesting field concerning PLCs is
SCF method. The SCF theory was used in quantum theor€ mixture of PLCs and LMW LCs which has been paid
long ago which is called Hartree—Fock theband since the Much attention in recent yeafs®since the some PLCs are
mean-field theory was extended to the continuum model ifknown to be soluble in appropriately chosen nematic
polymer physics by Edwards in 196FsReiss and Freed solventst® In contrast to LMW LC, the theory for PLCs is
have discussed this approach in detil#\lthough the SCF  incomplete and the primary reasons are that most PLCs are
for polymer statistics was derived almost 30 years ago, onlgomposed of stiff(wormlike) main chain and side chain

in recent years has it been used to study the phase transitip@lymers which is mathematically difficult to deal with.
of PLCs® The SCF derived by Freed depends on the ends oince for LMW LC the famous MS theory is confirmed to be
the polymer chain through the three point Green’s functiorsuccessful in describing the phase transition from isotropic to
so that the symmetry of translation and rotation is lost andematic states, the aim of this paper is to extend the MS
therefore, the SCF becomes very complicated in its applicatheory to PLCs as well as the mixture of PLCs and LMW
tions. In order to make the SCF theory suitable for PLCs, the-.Cs to study the behaviors and properties for phase transi-
infinite long chain limit is used to recover the translationtion of PLCs and the mixture.

invariance® In Sec. Il by the variational principle the SCF is derived
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for a general interaction for PLCs and the mixture. Consid- 1

ering a concrete MS type interaction, the SCF is used to  pw.c[ri(s)]=A ex;{z ( fu (s))ds

study the properties of PLCs in Sec. Il and of the mixture in =1

Sec. IV. Finally, the theoretical results are compared with

experiments in Sec. V and a summary is given in Sec. VI. o) THE )ds” (2.5

Il. THE SCF THEORY . . L
for WLC, whereA is a normalized constant which is equal to

A. The model the inverse of the partition function or can be determined by

In this section we will derive the SCF for a general in- Normalization. Since foe—0, py c=Picc. We only need to
teraction, i.e., we consider an interaction depending on th€onsider the case qfo=py,c in the following.
position, r;(s;), and the tangentorientation, u;(s;), of the
monomer denoted by of ith WLC and the positior;;, and
the orientationa;, of the jth LMW molecule for a mixed B perivation of the SCF from variational principle

system composed &, polymer chains antl, low molecu- , - - .
lar weight molecules, which can be written as Since for the WLC the probabilitistatistical weight fac-

tor) of a configuration is given by Ed2.3), the free energy
of the mixture can be written as

with F=E-TS
N; N,
Hilri(s).rj.a]= E dsf dsj Va(ri(s), ui(s); =) 1L Aritonll dr; day plri(s).r;.a)(Ho+H)
Np
rj(Sj),Uj(Sj))+ % 2 Vz(ri 8 ,rJ ,aj) f H */[r (S)]H dr da'J p[r (s)’rJ ’al]
1]
1M N XIn p[ri(s),rj.a], (2.6
ts ZI 2 ds; Vior(s),ui(s);
r.a), (2.2 where Z[r(s)] denotes the functional integration and for

convenienceB=1/kgT is set to be one which will be recov-
ered when needed. Following Reiss’ ifeag introduce the

where the first term is the interaction energy for inter- and . o . ; :
) : ; mean-field approximation, which will be determined by the
intrapolymer chains, the second term is for the LMW mol-

self-consistent method,

ecules, and the third term is the interaction between the poly-

mer chains and LMW molecules. The free Hamiltonibg,

should be selected as an exactly soluble model and here the

limit of very long chain is also taken. Then the statistical Pmead ri(S).r;,&]

weight factor can be written as Ny

—pWLc[r<s]exp[ 2 ds va(ri(s),u(s))
pri(s).rj,a]=A exp(—Hp)exg —H))

Na
=polri(s)]exp(—H,[ri(s),r;,g]). (2.9 — > uo(r; ,ai)}
i1
Two simple models foH, may be considered, i.e., the ideal B
Gaussian chaingIGC) and the wormlike chains, then _H p[ri(s)]1;[ p(r;.3). 2.7
Pdlri(s)] is

N1 In the following, the subscript mean ipmeadri(s)).rj.a]
Picclri(s)]=A ex Z f uZ(s)ds, (2.4 will be omitted and the same notatiqfr;(s).r; & is used
- for simplicity which should not be confused with the one in
Eq. (2.3). Substituting it into the free energy and considering
for the IGC model or the identities of the molecules, we have
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N Ny(N;=1) [ 1
F= b [ otr(o1 [ dsy ds, Vatr(sy spirsausmiro1+ o [ T (@Ln( lalr(s)1ds)

XV1(r1(s1),Us(S1);r2(S2),Ux(S2)) + dry dry dag day Vo(ry,aq;r;,a)p(ry,a)p(ra,ap)

N2(Np—1)
|
Ny

N
+— 2 f ds; Z[r(s)]dr, day p(rl,al)p[r(s)]vlz(rl,al;r(sl),u(sl))+le @[r(s)]p[r(s)](ln plr(s)]+A;

3 _
o7 uz(sl)dsl+§ f u?(s,)ds; +sz dry day p(ry,ap)(In p(ry,a)+X\y), (2.9

where Lagrange multipliera,; andX,, are introduced for the normalizationsfr (s) ] andp(r,,a;). By variation about ; we
obtain

1
5F=N1f @[r(s)wp[f(s)][ > f ds; ds, Vi(r(sy),u(sy);r(sz),u(sz)) +(N;—1)

Xf I ra(s)]plra(s)]ds; ds, Vi(r(sy),u(sy1);ra(sz),ux(s;))

N
+72 J ds, dr, da P(rl:al)Vlz(rl,alir(51)1u(51))_J ds; v1(r(sy),u(s))+ Ny (2.9
Substituting
5p[r(s)]=—p[r(s)]f ds; 501("(51)-U(31)):_p[r(t)]f ds d du Svy(r,u)8(r—r(s))s(u—u(s)) (2.10

into the above equation we obtain
5F=—N1f dr du ds 5v1(r,u)f dry dug ds; Z[r(t)]p[r(t)]o(r—r(s))d(u—u(s))d(ri—r(s;))s(u;—u(sy))
1
X153 J dry dup ds; Vi(rg,Ug;ra,Up) 8(ra—r(sz)) S(uz—u(sy)) +(Ny—1)
XJ dry duy ds, ZLro(t) Ip[ra(t)Vi(ry,ug;ra,Uz) 8(ro—ry(Sz)) 8(Uy—Uy(sz))
N2 ! I ! i i ! I

+7 f dry dag p(ry,a)Vaary,ag;ry,up) —va(ry,Up) + Ay . (2.1

From the definitions of the correlation function

f Ar(1)]8(r—r(s))d(u—u(s))8(ry—r(s1)) 8(ug—u(sy)) 8(rp—r(sz)) (U — U(sz)) pLr(t) ]

=C(r,rq,rz;u,u,Uz;8,81,52), (2.12
f@[r(t)]é(r—r(S))é(u—U(S))ﬁ(rl—r(sl))ﬁ(ul—U(Sl))p[r(t)]=C(r,rl;u,ul;S.sl), (2.13
f@[r(t)]é(r—r(S))rS(u—U(sl))p[r(t)]=C(r;u;s), (2.14
we have
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5F=—N1J dr duds dr; du; ds; 5v1(r,U): J dry dup ds; Vi(rg,Ug;rp,Up)C(r,rg,r2;U,Up,U558,81,S)
+(N1—1)f dry duy ds, V(rq,Uq;r,,Uy)C(r,rq;U,Ug;S,51)C(ro;Us;S,) — (v4(r1,Uq) + A1) C(r,r{;u,Uy;S,S)

N2 ! ! ! ! ! ’
t5 f dry day p(r1,al)Vlz(rl,al;rl,ul)C(r,rl;u,ul;s,sl)]- (2.15
Finally, we obtain the SCF for polymer chains
N2 ’ ! ! ! ! !
Ul(r11U1)=>\'+N1j dry du, ds, Vi(rq,Ug;rp,Up)C(rp;Up;s,) + > f dry day p(ry,a;)Visry,ag;ry,us)

C(r,ry,rp;u,u;,Uz;8,8;1,S;)
C(r,r{;u,us;s,89)

+f dr, du, ds, Vq(rq,Uq;r5,Up) —C(ry;uy;sy) |- (2.19

The last term can be omitted becaudg it is very small  proved in Ref. &) V, has no contribution to the SCF. Simi-
as compared with the second term in the first line iflar consideration for interactiong, and V,,, the SCF be-
N.>1 and (2) the terms in square is partly cancelled comes

each other, for example, if an approximation

C(r,ry,r2;u,uz,Uz38,51,S2) =C(r,r1;U,U3;8,59)C(r25Uz;S,) is vl(u)=N1f du’ ds’ Vy(u,u’)C(u’;s")

taken the last term will vanish. Similarly considering a varia-

tion onv, it is easy to obtain the SCF for LMW molecules N,
+ > f da p(a)Vix(au), (2.20

vz(r,a)=)\”+(N2—1)J dr’ da’ p(r',a")Vy(r,a;r’,a’)
N Uz(a):(Nz_l)f da’ p(a')Vy(a,a’)
+72 J dr’ du’ ds C(r’;u’,s)V (r,a;r’,u").

N4 J
+ — | duds C(u;s)Via,u), 2.2
217 5 U9Vl a,U) (229
where\’ and\” which will be determined by normalization
C. The SCF for a uniform system are omitted here an¥;(u,u’) are given by

Generally, the interaction should depend on the position 1
and the orientation of the monomers of PLCs which can be ~ Vi(u,u’)=¢q f Vi(ri—ra,ug,up)dr,
separated into two parts: one depends only on the position
and the other depends on both position and orientation 1
:ﬁ f Vl(r,ul,UZ)dr, (222
V1(ri(s1),U1(S1);r2(S2),Ux(S2))

1
Vy(a,a')= a f V,(r,a,a’)dr,

=Va(ri(s1);r2(82)) + Vpp(r1(s1),Us(S1):r2(S2),Ua(S3)) -
(2.18 Vlz(a,u)=éjVlz(r,a,uz)dr. (2.23

For systems possessing translational invariance we have the
following points: (1) the interaction will depend on the dif- D. Derivation of free energy with the SCF
ference of the positionry(s;)—r(sy); (2) the distribution  gpproximation

C(r;u;s) will be independent of position o .
Substituting the SCF into Eq2.8), the free energy of

the mixture with SCF approximation can be written as

C(r;u;S)=éC(u;s), (2.19

F=Fo— & f dry dug ds; vg(ry,up)C(ry;Ug;8y)
where ) is the volume of the system. Thereforé, will 2
contribute a constant term to the potential which can be ab- N,
sorbed into the normalization constant and ovijywill con- % f dr, da; vy(rqi,a0)p(re,aq), (2.29
tribute to the mean field. A special case is tha¥ ifis taken
as the excluded volumey, =wyd(ri(s)—ry(sy); it is  where
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wherev, is the strength of the interaction afiithe volume
Fo= —sz exp(—vo(ry,a;))dry dag of the system. Now we prove that the SCF for this interac-
tion is
—le @[r(S)]em[ —f (vl(f(sl)yu(sl)) v1(W)=01p,5(3/2)(Ug-u)2—1/2], (3.4)

where p, is the monomer density of polymer solution
(229  N,L/Q, L is the length of the chainy, is the preferred di-

rection, andS is the order parameter which is defined below
In the derivation the approximation discussed below Ed[Eq.(3.9)]. Substituting the above interacti¢d.d) into SCF

(2.16 is used. For a uniform system or an interaction only(2.20 and setting/,,=0, then from the result in the previous
depending of the orientations of the monomers and LMWpapet we have

molecules the free energy becomes

3 ) €.,
+§u (sl)+§u (s1) |dsy|.

. — 3, ' . "N\2
F:FO—%fdu 4 2 (L)C(:S) v1(u) led u' ds' (v1/Q)((3/2)(u(s)-u(s'))>—1/2)

()2 (uy)?

day, 4dayy

(3.9

N, XA sin( —
— 5 | dava(a)p(a), (2.26
and if we consider the approximatiofu|=|u’|=1, as dis-

where : . )
cussed in the previous papewe obtain

Fo=—N - du—N; |
° Zf SXp(—va(W)du 1J Ar(s)] 1(u)=fd02d¢zvlpl sin 6,((3/2)cog 0, 1/2)

cog 0, sir? 6,
XA exp — —
4a,, 4&12Xy

Xex;{—f (vl(u(sl))+%u2(sl)+§Uz(sl)>dsl :
(2.27)

=v,p1((3/2)cog 6,—1/2)
I1l. MAIER-SAUPE THEORY FOR POLYMER LIQUID
CRYSTALS X f Sin(0,)d0, deby((312)c0L 0,— 112)
A. SCF for PLCs

cog 0, sir? 6
In this section we will apply the results in the above XA ex;{ —7 2 7 2
section and the previous artitleo the PLCs and show how A2, A2xy
the Maier—Saupe theory could be extended to PLCs. Gener- zvlp1§(3/2)co§ 0,—1/12) (3.6
ally, two interactions are often used: one is Onsagertype
V,(u,u')=2L2D|sin 0| (3.2) with a,, anda,,, given in the previous paper
and the second one is Maier—Saupe tjpe 1l 1/l 3
282:=7 3o @20=7 V3g 3.7
Vi(u,u”")=VyP,(cosh), (3.2

where P, is the Legendre function. The virtue of the first 1
type is that the interaction can directly be related with the |,
shape of the molecules from which nonspherical molecules
can lead to the nematic phase, but it seems that it is difficulvhereS is the orientation order parameter
to solve the SCF exactly by an analytical expression, there-

fore a form of the distribution of the orientation must be SZZqTAf d#, sin 6,((3/2)cos 6,—1/2)
assumed. The second type can be derived from perturbation

1 —
=T (1+vip,S), 39

I,

theory of quantum theory and can be solved exactly with an cog 6, sir? 6,
analytical expression. Actually, any anisotropic interaction XeXP( T 4a.,. 2a (3.9
can be expanded in terms of Legendre functions and if the 2 2y
system is invariant under space reflection the interaction wilknd A is determined by the following equation:
have the form given by Ed3.2) by neglecting higher order ,
Legendre functions. Al f 46 sin 0 exp( _cos g, sir? 6
. . . . = 2 2

Since MS type interaction can be solve exactly, in fol- 4ay,  dayy

lowing the MS type interaction is used, i.e., the interaction (3.10

! H _
between two monomers atands’ should be written as This is a self-consistent equation for order paramedeand

Vl(ui(si),uj(sj)):(U]_/Q)[(3/2)(Ui(si)'Uj(Sj))z_l/Z], the above equations are just the generalization of MS SCF
(3.3 for PLCs.
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FIG. 1. The order parametgof PLCs versus the strength of the interaction — ) )
(by cooling, Vo= p4|v,|, for differente: solid line for =3, dashed line for FIG. 2. The order paramet&of PLCs versus the strength of the interaction

e=3/2 and dot-dashed line far=1 and arbitrary unit is used here and the Yo by dropping(solid line) and rising(dashed lingtemperature for different
other figures. e as in the Fig. 1.

B. Solution of the SCF equation for PLCs variable, ev,p; and now we_will prove Eq(3.11). For an
infinitesimal order paramete§, and from Eq.(3.9) the fol-
1. Numerical calculation lowing result is easily obtained:

Although we have obtained the concrete expression of _ [(3 cod 6—3)C(6)sin 6 d6 2 —
SCF, the order parameter must be obtained by solving nu- S= TC(H)sin 6 do =715 €v1p1S.
merically a system of transcendental equatidBs7) to (3.13
(3.10. After solving these equations the WLCs exhibit a — ,
phase transition from isotropic phase to nematic phase. Fig]f—n order thatS has a nonzero solution, E(3.11) must be
ure 1 shows the numeral solutions of E¢®.7)—~(3.10 for _ulf|lled. From the apoye equa_tlon the phase diagram is eas-
the negative interaction and different bending elastic coeffilly drawn and here it is not discussed further. It should be
cients from which we obtain the following conclusior@) noticed that:(_l) When e—0, the phgse transition could take
The figure shows clearly a first order phase transitions fron!ace only with a very large; which means for IGC the
isotropic phase to nematic phag@) the phase transitions phase transition cannot take place and this conclusion is dif-

always take place at the condition fgrent from the results in Ref.@_ in whigh thle phase trgn-
sition can occur for IGCs. A similar relation is also obtained
_ 15 (310 by Gupta and Edwar88 whose results igv,p;~5.92.(2)
U1P1T= T ' Although the WLCs can exhibit a discotic-like pha&<0)

in an external field(see the previous pagewhen vy>0),
from Eq. (3.1 the discotic-like phase cannot occur since

same(about 0.2¢ for the different bending elastic coeffi- Eg. (3.1D cannot have a solution for a positive interaction

cients and(4) Fig. 2 shows supercooled and superheateé}l>o' The reason can also be seen from &), i.e., for

ey ; -~ positive interactiony >0, we may find that the SCF will be
phenomena by rising and dropping temperature, reSpeCtlvel%'egative ifS<0, then the negative SCF leads3p-0 and the

SCF will be positive ifS>0 then the positive SCF leads to
S<0. If the numerical calculation is carried out one will find
the order parameter will alternate between positive and nega-
If we assume near the critical temperatfo®ncentra- tive values. Therefore, a positive interaction cannot result in
tion) of phase transition the order parameter takes an infinia discotic-like phase. In Ref.(8 it is shown that the

which is explained in the followindisee Eq.(3.13]; (3) at
the phase transition points the order paramegfi@e the

2. The condition of phase transition

tesimal value, the following equation is easily derived: discotic-like phase possesses a higher free energy than that
co) — of the isotropic and nematic phases, which means the
C(U;s)=C(6) . S ) S .
discotic-like phase is unstable and is in agreement with our
=A exf] — (a,— ayy) e cos 6] results.

= A exp(— ev1p;,S cog 6)

=A(1-ev 1p1§C052 0), (3.12 3. Expression of the free energy for PLCs

where the conditiofju|=1 is also used. The above equation Substituting the SCE3.6) into Eq.(2.26) the free energy
shows why the phase transitions are only dependent on the easily derived

J. Chem. Phys., Vol. 106, No. 6, 8 February 1997
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N, L
F=Fq— - v1p1S | du((3/2)cog(8,)—1/2)C(u;s)

=Fo—3Qv,p7S, (3.14

whereF is given by Eq.(2.27) in the above section.

IV. MS THEORY FOR THE MIXTURE OF PLCs AND
LMW LCs

A. SCF for the mixture of PLCs and LMW LCs

In this section we consider the mixture composed of
PLCs and LMW LCs and study the properties and behaviors
of the WLCs in nematic solvents. Since interact{@®) is a
very general form as discussed below E82) and in Sec.

Il C, the interactions of LMW molecules and between LMW

and PLC molecules are also taken as MS type

3 1 3 1
Va(a )= 22 |5 (a-3)*- 5| = 22 |~ cog 6,- 3],
(4.1)
3 1
Vlz(aiyuj(sj))=%2[§(a-uj(sj))z— E}
3 1
2%2 5 o Bi;(sj)—i} 4.2

S,=27A, f d6, sin 6,((3/2)co 6,—1/2)

X ex — (0202, + 2 120151) (320 0,—1/2)],
(4.8

a,, and a,,, are the same as E¢3.7), andl,, the con-
strained condition and the normalization constaktgndA,
are given by

| _ _
=14+ (v1p1S1+ (12 v 120,51, (4.9

I,

140.5/V1+(01p1S1+ (120 1p,S,)| =\3ell,  (4.10

A1y fde - [{ cos 6, sir? 6,
=2 sin 6, exp — - ,
1 2 2 4322 4a2xy
(4.11
A2’1=277f de, sin 6, exp(—v(6y)). (4.12

This is a set of self-consistent equations for order parameters,
S;, and the above equations are just the generalization of MS
SCF to mixture of PLCs and LMW LCs.

B. The conditions of phase transition of the mixture

The SCFs of the mixture are complicated and in order to
inspect some properties we first derive the conditions of the

and the interaction for PLC$/,, is given in the previous phase transition. For small order parameters we can expand

section. Substituting these interactions into the SCF

vl(u)lef du’ ds' V4(u,u’)C(u’;s")
N
+?2 f da p(a)Vis(au), 4.3

vz(a)=(N2—1)f da’ p(a’)Vy(a,a’)

+% f du ds C(u;s)Vix(a,u), (4.9

we obtain the final forms of SCF of the mixture

v1(W)=01(0)= (019151 + 2120,5,) ((3/2) cOS 0—1/2>(,4 .

v2(2)=5(0') = (02,5, + 2012p1S1) ((3/2)cog a'—l/(zi,e)

whereg1 andg are the orientation order parameters of PLC

and LMW LC

S,=2mA, f d6, sin 6,((3/2)cod 6,—1/2)

F{ cos 0, sir? 6,
Xexp — -

da,, 4ayyy |’

(4.7

the SCF in terms of the parameters. For distribution func-
tions we have

C(u,8)=C()
~A[1- 01918+ (1/2)v150,S,)] cof 6]
~A[1— (01015, + (1120 120,S,) € co 6],

4.13

P(2)=p(6)~A[1— (02025, +(1/Dv120:S)

X(3/2)cog 6], (4.14

and substituting them into Eq&t.7) and(4.8) we obtain the
conditions of the phase transition

2 _ _
51:_E(01P131+(1/2)U12P252)6a (4.19

_ 3 —

S2= = 15 (v2p2S5 T (12Dv1501Sy). (4.19

From these equation we obtain the following conclusions:
(1) For the case of the WLCs in nematic solvents, i.e.,

the temperature of the phase transiti@®T) of LMW LCs

is far below that of PLCs, when the temperature near TPT of

LMW LCs, we may se,;=0 then the condition of the phase

transition for LMW LCs is

15

V2p2= T 3 (4.17)
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which is different from that of PLC$§3.11). 1¢
(2) If TPT of LMW LCs is far above that of PLCs, the 0s b
condition is just Eq(3.11). 0s b
(3) If vyp; andoyp, satisfy o o7k
5 g
vipr 3 g 06
== 4.1 g i
Vopy 2 (4.18 § 05 3
s 04 [
the WLCs and LMW molecules will have the same TPT. g 03 b
Actually, this relation does not need to be satisfied exactly 0z b
because the interaction between WLCs and LMW molecules, 0'1 g
V5, will make the TPTs of PLCs and LMW LCs coincident. N
(4) In condition (1) the order parameter of WLCs is °0 1
given by Eq.(4.13 Temperature T
= V1P (419  FIG-3 The order parameteBsof the mixture, the dashed line for LMW LC

and solid line for PLC, versus temperature for different interactians|:
from the top solid line downy ;,=—1.5,—-0.5,—-0.2, —0.05, and 0 and the
from which we find a negative interaction between theorder parameter of LMW LC is changed little for differemf,. The other
WLCs and LMW molecules will induce WLCs oriented in Parameters are=1,v,=-1.8,0,=-5 andc=0.5.

the direction of LMW molecules. When _2Buv pq€ (i.e.,
TPT of PLC is far above that of LMW LE S; will linearly
depend on the density of the LMW molecules, the interactio
strengthp ,, (i.e., inverse proportion to temperatyrandsS,.
But for a positive interactiony,,>0, the situation is very
complicated as discussed in the above sedisae the dis-
cussion below Eq(3.13)].

1715+ 2v1p1€

interaction,V,,, the orientation of WLCs is like the case of
r’{he chain in an external field as discussed in the previous
paper* Figure 3 shows the case that the TPTs of PLC and
LMW LC are far from each other whex;,=0 and if the
TPTs of PLC and LMW LC are near each other the result is
quite different. For the later case, even a weak interaction
C. The solution of the SCF for the mixture will make TPTs of PLC and LMW LC coincident with each
é)ther and a strong interaction will lower their TPT evidently.

Now let us consider the phase behaviors of the mixtur ) , X
Figure 4 shows the phase behaviors of the mixture for

by solving the SCFs given above. Here, we also consider th . . . ) ;
y d g '%e different density fractioo and interactiony,,, between

case of the WLCs in nematic solvents, i.e., the TPT of LMW he chai d th lecul . h h
LCs is below that of PLCs. Therefore, we only study how thet e chains and the LMW molecules. Figur@yshows the

LMW LCs influence the phase behaviors of WLCs and forPhase behaviors of the mixture for a weak interaction

the case of the TPT of PLCs is below that of LMW LCs a Y12~ 0-5 from which we find that for low density of LMW
similar conclusion is easily obtained molecules,c>0.87, the phase transition of PLC will first

In order to investigate the properties of the mixture, thetak_e place Fhen it inQUces orientation for LMW molecules,
density fraction of the mixture is introduced while ‘for h'.g.h density of LMV.V moleculesc<0.87, the.
phase transition of LMW LC will first take place, then ori-
p=p1+tp2, p1=Cp, p=(1—C)p (4.20 entation of PLC is induced by the LMW molecules. Figures
a)-4(d) show the dependence of phase behaviors of the
ixture on the different interactioM,,. From these figures
we can find that for weak interaction¥,,<<0.5, the order
V1—01Ts Uy T, Vip—UT, (4.2  parameter of PLC induced by LMW LC is linearly depen-
— dent on temperature as shown by KE4.19 and the phase
where the effective temperature is given®y 1/kgT and in  transition of PLC becomes second or higher order. While for
the fO”OWing we will drop the tilde on thel. It is also the strong interaction\/12>1’ the LMW LC will approxi-
assumed that the effective monomer lenytand bending  mately induce a first order phase transition and for stronger
elastic coefficient do not depend on the temperature. interaction,V,,>2.5, the PLC behaves like the behaviors in
Figure 3 shows the final numerical solution of Egs.the external fieldsee Fig. 4d) and the previous papér
(4.7—(4.12 for the fractionc=0.5. If there is no interaction
between the polymer chains and the LMW molecules, i.e.
V,,=0, the above equations become two independent equ%‘lscgul\gglo‘gll\lso'\l WITH EXPERIMENTS AND
tions which is just the case discussed in the above section.
With increasing interaction between the WLCs and LMW Preliminary results of comparison with experimental
molecules,V,,, the TPT and the order paramet&, of  data and some conclusive remarks are given in this section
LMW LC are almost not changed and the TPT of PLC isand further detailed results will be given elsewhere. As we
changed obviously. The most significant change for PLCs iknow, Onsager and Maier—Saupe theories are successful in
that the phase transition of PLC becomes second or highaxplaining experimental results of the LMW LC. Based on
order from the first order phase transition. For the stronghis fact Khokhlov and Semenov first extended Onsager

. . 4
and the temperature dependence is recovered by mtroducupé
the effective temperature, i.e., by replacements
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FIG. 4. The order parametgof the mixture, the dashed line for LMW LC and solid line for PLC, versus temperature for different density fracti@ns
From right to left,c=0.9, 1., 0.87, 0.85, 0.8, 0.7 and 0(6)—(d) From right to left,c=1., 0.9, 0.8, 0.7, and 0.6. The other parametersear®, v,=—0.9,
v,=—5, andv,=0.5, 1.0, 1.5, and 2.5 fdi@) to (d).

theory to PLC® and exactly self-consistent solving Onsagerpapet), i.e.,e=1.5, if the persistence length,is used as the
equation is given by Chef? In principle, no adjusted pa- unit, the only parameter, interaction strength, can be used as
rameter is needed in the original Onsager theory, howevegn adjusted parameter.

the persistence length is difficult to determine experimentally ~ Although MS theory are available for both thermotropic
and, therefore, is often used as an adjusted paratiéter and lyotropic PLCs, here, as an application, we only com-
since the persistence length also depends on tempetaturepare it with the experimental results of lyotropic PLC which
However, usual Onsager theory from virial expansion is notan also be compared with Onsager theldrif. Although
enough to explain experiments and therefore the extension iacreasing concentration is equivalent to increasing tempera-
higher solute densities based on the second order virial exture in effect, the interaction strength is quite different for
pansion is establishéd:*® The same situation is also encoun- thermotropic and lyotropic LCs, i.e., it may be considered as
tered herdsee the following In contrast to Onsager theory, a constant for thermotropic LC since the concentration will
in MS theory there are two parameters to be determined: thehange little but it is not the case for lyotropic LC. A
elastic coefficient and the interaction strengthp,. Sincee  straightforward comparison with Onsager theory we will find
can be determined by the relatibr (2/3)e (see the previous the dependence of the interaction strength on the concentra-
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1 It seems all these theorié®nsager and MS theorypredict
lower critical order parameter than that of experiments.
09 + - Therefore, the free energy should be calculated for a com-
" plete theory and comparison with experiments and, espe-
0s b cially, for the mixture of PLCs with LMW LCs, and this
5 work will be finished in the next step.
§ 07 L Finally, from the point of view of the molecular interac-
S tion, which is generally described by a type of short range
5 osl repulsive and long range attractive interaction, since Onsager
5 and MS theories represent two special cases for repulsive
0s | and attractive interaction, respectively, it seems that a better
' theory should be a combination of these two theories.
04 : * '
0.1 0.2 0.3 0.4 0-5 VL SUMMARY
(a) Volume Fraction ¢
In this paper a very general SCF was derived by varia-
1 tion principle. By considering the MS type interactions we
extend MS theory to the polymer liquid crystals as well as
09 | the mixture of PLCs and LMW LCs. By virtue of MS type
» interaction an analytical expressions of the SCF are obtained,
_ 08 from which the properties and phase behaviors of PLC and
£ the mixture have been studied. Finally, the theoretical results
g 07 are compared with the experiments.
4 Moreover, the following conclusions are obtained for
5 06 |- PLC: (1) Interactions depending only on the position of the
6 monomers have no contribution to the phase transition and a
05 special case is also obtained for the excluded volume inter-
action in Refs. &) and &c). (2) A first order phase transi-
04 . . s . tions from isotropic phase to nematic phase is shown clearly
0 0.1 0.2 0.3 04 05 which is consistent with the results obtained by the other
(b) Volume Fraction ¢ authoré and the experimenfé‘". (3) The phase transitions al-

ways take place approximately at the condition
FIG. 5. Comparison with experimental data from Ref(al6a) and Ref.  €v1p;=—15/2.(4) At the critical points of the phase transi-
16(b) (b) for order parameters versus concentratiofihe experimental data  tion of the order paramete&(in more exact meaning*) is
:;:1lleztigobgoThleGot‘:g,tlgildrislﬂsfmm tglgesﬁ?c? I[ilr)lg_dsoi(v)n?g]".j e i@ the sameabout 0.26 and independent of the bending elastic
coefficients and concentratiofb) Supercooled and super-
heated phenomena can be found at T@J For the IGC the
tion, ¢, is very complicated® v, a+bc+--- and if we sim-  phase transition will not occur which is consistent with Ref.
ply let v,occ the results are agreement with the experiments8(b). (7) Discotic-like phase cannot take place.
Figure 5 shows the comparison between the theoretical and Furthermore, for the mixture of PLCs and LMW LCs we
experimental results with the interaction strength as the adhave:(1) similar to PLCs, the condition of phase transition
justed parameter for different experimettsn whichvp;is  for LMW LCs is v ,p,= —15/3 which is different from that of
set to bev,p;=voc? with the concentratiorc. From the  PLCs(3.11), (2) if v1p; andv,p, satisfyv 1p,/v,p,=3/2, the
figures we find the theoretical results are quite in agreemer®/LCs and LMW molecules will have the same TP(B)
with the experiments. when TPT of LMW LCs is far below that of PLCs, the LMW
In order to obtain the critical temperatui@ncentration  LCs will induce orientation for WLCs and the orientation
and order parameter, free energy should be calculated sinceder parameter of WLCs will be linearly dependent on the
the state of the system is determined by minimizing freedensity of the LMW molecules and the interaction strength,
energy. In more exact meaning, the condition determined by, and inversely proportional to temperature addl after
Eqg. (3.1) is an approximation of the critical temperature solving the SCF equations, the dependence of phase behav-
(concentrationsince it is generally a local minimum of free iors of the mixture on the density fraction and the interaction,
energy[denoted often byl™* (c*) and S* in the literaturé v, is clearly shown in the Figs. 3 and 4.
and, however, from Landau—Gennes theory the critical tem- As we know, the phase transition should take place at
perature is very close to it. Gupta and Edwards obtained ththe minimum of the free energy, therefore as a complete
ratio of the critical_concentration to the local minimum astheory the free energy should be discussed and since the
c/c*=1.014 34 and5=0.25 (S*=0.186 with Onsager type calculation is complicated it is left to the future. However,
interaction. From these results, it is estimated the criticafrom the discussions and results in the Refs. 8 and 10 the
order parameter should be ab@&#0.3-0.4 sinces*=0.26.  orientation can really make the free energy minimum and
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