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Abstract. We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that
the effective Hamiltonian of the TFIM of this system depends on the system’s rotation velocity. Since
the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the
rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM
can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total
system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is
characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum
system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength δ
between the quantum system S and the TFIM, and to the square root of the number of spins N belonging
the TFIM.

1 Introduction

Quantum sensing is a kind of sensing scheme, which uti-
lizes the quantum effects to enhance the measurement
accuracy. Quantum gyroscope [1] is a kind of quantum
sensor which makes use of quantum sensing schemes for
rotation velocity measurement. For example, atom inter-
ferometer gyroscope (AIG) makes use of the interference
of matter waves, and was first achieved in experiment in
1991 [2]. Another quantum gyroscope is nuclear magnetic
resonance gyroscope (NMRG), which detects the rota-
tion velocity by detecting the precession frequency of the
nuclear magnetic moment in the non-inertial system [3].
In recent years, a K-3He-based NMRG has been exper-
imentally verified that the resolution of such gyroscopes
is between 0.01◦/h and 0.1◦/h [4]. In reference [5], infor-
mation on the NMRG under development by Northrop
Grumman Corporation is given, specifically illustrating
the different structures of NMRGs of different phases.
In order to facilitate the application, the miniaturization
of NMRG is also a matter of great concern. The struc-
ture, performance and parameters of the micro-NMRG are
reported in [6]. Both AIG and NMRG are quantum gyro-
scopes with high accuracy in measurement, and are used
in high precision inertial navigation and military strategic
system.
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For a future quantum sensing scheme with much higher
accuracy, we need to explore the roles which could be pos-
itive or negative of new quantum effects. The key to the
quantum sensing scheme is the measurement accuracy, or
in our case, the resolution for rotation velocity, which is
physically reflected by the response of its dynamics to the
rotation velocity of the system. In this paper, we study
the dynamics of transverse field Ising model (TFIM) and
found the Loschmidt echo (LE) of TFIM is sensitive to
the rotation velocity at the critical point of quantum phase
transition (QPT). In 2006, Quan et al. [7] found that when
a TFIM couples with a quantum system S, and is turned
into critical point of QPT, the quantum decoherence phe-
nomena of system S will be significantly enhanced, which
is characterized by the rapid decay of LE of the dynamics
of TFIM around the critical point. For TFIM in non-
inertial reference frame, its QPT behavior depends on the
rotation velocity Ω of the total system sensitively as the
Ω behaves as an external transverse field.

The QPT of TFIM in rotational reference frame will be
affected directly by the rotation velocity of the system,
therefore it is feasible to achieve the measurement of rota-
tion velocity through recording the QPT of TFIM. With
this consideration, we designed a quantum sensing scheme
to carry out rotation velocity measurements by detect-
ing the QPT of TFIM in non-inertial reference frame.
This paper is arranged as follows. In Section 2, we study
the Hamiltonian of the TFIM in non-inertial system and
thus examine the response of the TFIM’s LE to the rota-
tion velocity Ω of the system. In Section 3, we propose a
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quantum sensing scheme based on TFIM in rotational ref-
erence frame, and give its resolution for rotation velocity
Ω. Conclusion of our results are given in Section 4.

2 Transverse field Ising model in non-inertial
reference frame

In this section we consider a coupled spin system with
an external field in a rotational reference frame. The
Hamiltonian of the TFIM in the stationary system reads

H0 = −J
∑
i

(
σzi σ

z
i+1 + λσxi

)
, (1)

where J and λ characterize the strengths of the inter-
spin interaction and the coupling to the transverse field,
σαi (α ∈ {x, y, z}) are Pauli operators defined in the state
space of the ith particle. Note that, the critical point for
QPT of TFIM is λc = 1 [7,8], below which the TFIM will
generate spontaneous magnetization. As shown in Fig-
ure 2, while a spin chain of TFIM is placed in a rotating
system which rotates with an angle θ (t) relative to the sta-
tionary reference frame, the time-dependent Hamiltonian
of TFIM is

H (t) = −J
∑
i

(
σzi (t)σzi+1 (t) + λσxi (t)

)
, (2)

where σαi (t) are Pauli matrices in the coordinate system
which is relatively stationary with the TFIM. With the
help of rotation matrix D−→n (θ), σαi (t) can be explicitly
expressed by σαi(

σxi (t)
σyi (t)
σzi (t)

)
= D−→n (θ)

(
σxi
σyi
σzi

)
, (3)

where −→n is the direction vector of the rotation axis. When
the system rotates counterclockwise in the x-direction, the
rotation matrix is

Dx (θ) =

(
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
. (4)

In addition, we set θ (0) = 0, so that H (0) = H0.
The Schrodinger’s equation in the rest reference frame

for TFIM with rotation angle θ (t) is i~∂Ψ/ (∂t) = H (θ)Ψ ,
where Ψ is the wave function of TFIM in the rest refer-
ence frame. Obviously, Ψ

′
= R (θ)Ψ represents the wave

function of TFIM in the rotation reference frame, where

R (θ) = exp
(
−i
−→
θ ·
−→
S /~

)
is the rotation operator and

−→
S =

∑
i
−→si is the total spin of the TFIM, while −→si is the

spin of the ith particle. Thus the Schrodinger’s equation
for Ψ

′
is

i~
∂

∂t
Ψ

′
=

(
R (θ)H (t)R† (θ)− i~R (θ)

∂

∂t
R† (θ)

)
Ψ

′
. (5)

Fig. 1. Transverse field Ising model in rotation reference
frame. The whole system is rotating around the axis with

rotation velocity
−→
Ω .

Equation (5) indicates the effective Hamiltonian of the
rotating TFIM in non-inertial reference is

Heff = R (θ)H (t)R† (θ)− i~R (θ)
∂

∂t
R† (θ) . (6)

For the system rotating around x axis, R (θ) is

Rx (θ) = exp

(
−iθ

∑
i

σxi /2

)
. (7)

It follows from equations (2)–(4), (6) and (7) that the
effective Hamiltonian for the rotating TFIM in non-
inertial reference frame is obtained as

Heff = −J
∑
i

[
σzi σ

z
i+1 +

(
λ− ~Ω

2J

)
σxi

]
. (8)

Here Ω = dθ/ (dt) indicates the instantaneous rota-
tion velocity of the total system. It is imagined from
equation (1) that the rotation term in equation (8) can
be regarded as an effective magnetic field interacting with
spins in the x direction. For a single spin in TFIM, if
we ignore the interaction with other spins, the effective
Hamiltonian will be Hi

eff = −J [λ− ~Ω/ (2J)]σxi , which
is the same as that of the nuclear magnetic resonance
(NMR). The physical meaning of this rotation term is
similar to the Coriolis force, which is known as a basic
non-inertial effect in classical mechanics (Fig. 1).

In 2006, Quan et al. [7] pointed out that, when TFIM
couples with a two level quantum system S, the decoher-
ence of S will be effectively enhanced while the TFIM
is at its critical point for QPT. This phenomenon was
proved to be directly related to the Loschmidt echo
(LE) of the dynamical behavior of TFIM and has been
observed experimentally [9,10]. The Hamiltonian they
used to describe the interaction between S and TFIM is

H (λ, δ) = −J
∑
i

(
σzi σ

z
i+1 + λσxi + δ |e〉 〈e|σxi

)
, (9)

where J ,λ,σαi (α ∈ {x, y, z}) are consistent with our pre-
vious explanation, and δ is the coupling strength between
TFIM and quantum system S. If the whole system is
placed in a rotating system, there will be a correction to
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Fig. 2. Loschmidt echo as a function of rotation velocity Ω for
system with N = 2000, δ = 0.01. This figure shows that around

the critical point λ̃ = 1, a tiny change of Ω will cause rapid
change of LE. The blue line in the figure marks L = 0.5, and the
length of which inside the valley of LE represent the half-width
of LE. The half-width of LE demonstrates the resolution of LE
to the change of rotation velocity and will be further discussed
in Section 4.

Hamiltonian in equation (9), which is

H(λ̃, δ) = −J
∑
i

(σzi σ
z
i+1 + λ̃σxi + δ |e〉 〈e|σxi ). (10)

Here,

λ̃ ≡ λ− ~Ω
2J

, (11)

is defined as the total effective magnetic field which is
modified by the rotation velocity Ω of the non-inertial
reference frame. To show the effect of the rotation on the
dynamic of the system, we calculate the LE of TFIM [7] by
taking N = 2000, δ = 0.01, λ = 2, ~ = 1, Ω ∈ [0, 4J ]. The
result we get is demonstrated in Figure 2, which shows
the relationship between LE and the effective magnetic

field λ̃.
It is obvious in Figure 2 that a slight change of rotation

velocity around the critical point for QFT of TFIM λ̃ = 1
results in a significant change in the value of LE, which
indicates that the dynamics of TFIM is sensitive to the
rotation velocity at the critical point of QPT. This sug-
gests that TFIM can serve as a gyroscope in principle to
measure the rotation velocity of a non-inertial system.

3 Quantum sensing scheme for rotation
velocity

Due to the sensitive dependence of the parameters (λ,Ω)
to QPT of TFIM, there comes an idea that the rotation
of a system can be detected through the observation of
TFIM’s QPT. In another word, we propose a quantum
sensing scheme which makes use of the quantum phase
transition effect of TFIM. It can be seen in Figure 2 that
the significant response of LE to the change of rotation
velocity occurs only near the critical point for QPT of
TFIM.

To utilize the QPT effect to detect the rotation veloc-

ity sensitively, we need to keep λ̃ near the critical point

λc = 1. But for any rotation velocity to be measured, λ̃

Fig. 3. Workflow of the quantum sensing scheme. The entire
quantum sensing scheme needs to be achieved by the follow-
ing modules. A pre-measuring gyroscope (PMG), which may
be the Micro-Electro-Mechanical System gyroscope or a fiber
optic gyroscope or other kinds of classical gyroscopes, a mag-
netic filed controller (MFC), a transverse field Ising model
(TFIM) and circuitry to connect the entire system.

may be far away from λc, thus we need to adjust the mag-

netic field λ to ensure that λ̃ fall in the range we are
expecting. For the sensing scheme to be working properly,
we need the magnetic field to be adjusted into the vicinity

area of λ̃, but the problem is we do not know the value of

λ̃ in advance. To solve this problem, we present the follow-
ing measurement scheme, which is illustrated in Figure 3.

First, we use a pre-measuring gyroscope (PMG) to carry
out a pre-measurement and send the result Ω0 to the mag-
netic filed controller (MFC). Then the MFC will adjust
the amplitude of the magnetic filed inside the module of

TFIM to make the effective magnetic field λ̃ in the vicin-

ity of the critical point that λ̃ ≈ λc = 1. In addition, the
sensitivity of the LE of the TFIM near the critical point of
QPT has been experimentally observed [9,10]. This illus-
trates the feasibility of implementing the TFIM module
in experiment. For example, in reference [9], the authors
use a NMR system to simulate the Hamiltonian of TFIM.
In view of the fact that the nitrogen-vacancy (NV) color
center has a long coherence time [11,12], we also hope that
the TFIM module can be realized by using a plurality of
interacting NV color centers. Let σ be the resolution of
PMG, then the rotation velocity to be measured is in the
following range

Ω1 ∈ [Ω0 − σ,Ω0 + σ] . (12)

From equations (11) and (12), we obtain the magnetic
field adjustment range of MFC

1 +
~

2J
(Ω0 − σ) ≤ λ ≤ 1 +

~
2J

(Ω0 + σ) , (13)

which is the key to make λ̃ change in the vicinity of
TFIM’s critical point. When the QPT of TFIM occurs

at λ̃ = λc = 1, the LE will rapidly decay to zero. At the
same time, the amplitude of the magnetic field is denoted
as λ = λ0. Thus the rotation velocity is measured as a
result that

Ω1 =
2J

~
(λ0 − 1) . (14)
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However, if we want to use this quantum sensing scheme
to achieve a meaningful measurement for rotation veloc-
ity(the resolution is improved by TFIM compared with
that of PMG, the distinguish-ability of TFIM’s QPT to
rotation velocity should be higher than that of PMR,
which is to say

4Ω < σ, (15)

where 4Ω is the resolution of TFIM’s QPT to rotation
velocity. For a quantum sensing scheme, its resolution is
an important parameter, which indicates the minimum
rotation velocity it can measure. In the above scheme we
have proposed, the resolution of TFIM’s QPT to rota-
tion velocity is characterized by the half-width of LE of
the dynamics of TFIM. The smaller the LE’s half-width
is, the smaller rotation velocity the system can discern,
and thus the higher resolution the system processes. The
exact expression for LE of the system with Hamiltonian
in equation (9) was given in paper [7]. It can be seen
from equation (10) that, while the entire system is placed
in non-inertial reference frame, the Hamiltonian has the

same form as in equation (9), except λ is replaced by λ̃. By
using the constant variable method, we make the replace-

ment λ→ λ̃ for the solutions given in paper [4]. Thus the

exact expression for L(λ̃,t) is naturally obtained as

L(λ̃,t) =
∏
k>0

[1− sin2(2αλ̃,k) sin2(ελ̃,ke t)], (16)

where

αλ̃,k =
1

2
[θλ̃,k(0)− θλ̃,k(δ)],

and

θλ̃,k(δ) = arctan{− sin(ka)/[cos(ka)− (λ̃+ δ)]},

and the single quasiexciation energy [13]

ελ̃,ke (δ) = 2J

√
1 + (λ̃+ δ)2 − 2(λ̃+ δ) cos(ka).

Here, the Bloch wave vector k takes the discrete values
2nπ/ (Na) (n = 1, 2, . . . , N/2), where a and N are the lat-
tice spacing and particle number of TFIM. We first make
an analytical analysis by considering the partial sum with
a cutoff wave vector Kc, thus

S(λ̃, t) = lnLc = −
Kc∑
k>0

∣∣∣lnFk(λ̃, t)
∣∣∣ , (17)

where Fk(λ̃, t) = 1 − sin2(2αλ̃,k) sin2(ελ̃,ke t), and Kc can

be expressed by a cutoff number Nc as Kc = Ncπ/ (Na).

When Kca� 1 (Nc � N)

S = −δ
2m sin2[2J(1− λ̃)t/~]

(1− λ̃)2(1− λ̃− δ)2
, (18)

where

m ≡ 4π2Nc(Nc + 1)(2Nc + 1)

6N2
. (19)

It follows from equations (17) and (18) that

Lc = exp

{
−δ

2m sin2[2J(1− λ̃)t/~]

(1− λ̃)2(1− λ̃− δ)2

}
. (20)

Around the critical point for QPT, we set ε = 1− λ̃− δ,
as a result, if 2J (ε+ δ) t/~� 1 we have

Lc (ε, t) = e−4
δ2

ε2
mJ2t2/~2

. (21)

To get the time-independent half-width of Lc, we define
the characteristic time t0 ≡ ~/2J , and then we can cal-
culate the half-width of Lc, which is defined as ε0, at
t = t0

1

2
= Lc (ε0, t0) = e−δ

2m/ε20 . (22)

In this case, the half-width of Lc is obtained as

ε0 = δ
√
m/
√

ln 2 ≈ δ
√
m. (23)

For the above analytical calculation, we further assume
that the momentum cutoff Kc is an N -independent
constant in the limit N →∞, i.e., we have

Nc = αN, (24)

where α = Kca/π is also an N -independent constant.
Later we will verify this assumption and determine the
value of α via exact numerical calculation. Using relation
(24), we find that the parameter m defined in equation
(19) is expressed as

m =
4π2αN (αN + 1) (2αN + 1)

6N2
≈ 4

3
π2α3N ≡ ηN. (25)

Thus, equation (25) of the half-width ε0 of Lc becomes

ε0 ≈ δ
√
m =

√
ηδN

1
2 . (26)

Notice that η = 4π2α3/3 is an N -independent parameter.
Equation (26) implies that the half-width ε0 or the

behavior of Lc as a function of λ̃ is determined by δN
1
2 .

This conclusion can be justified by numerical calculation
by taking λ = 2, ~ = 1, Ω∈ [0, 4J ], and the results are
shown in Figure 4, in which we illustrate Lc for the cases

https://epjd.epj.org/
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Fig. 4. Diagrams of Loschmidt echo as a function of rota-
tion velocity Ω in the case where

√
Nδ =

√
2. (a) System with

N = 200 and δ = 0.1. (b) System with N = 500 and δ = 0.063.
(c) System with N = 2000 and δ = 0.032. (d) System with
N = 20 000 and δ = 0.01. These curves of LE have the similar
configuration.

where the parameter δN
1
2 is fixed at

√
2 while N takes

different values at 200, 500, 2000, and 20 000. It is clearly
shown that in these cases the behavior of Lc are quite sim-
ilar. In Figure 5 we show Lc for the cases with fixed value
of N and different values of δ. The calculation shows that
the width of Lc decrease significantly with δ. The numer-
ical results in the two figures clearly confirm the results
given by our analytical analysis, i.e., the behavior of Lc
is determined by the parameter δN

1
2 in the large-N limit.

Furthermore, with the help of equation (26) and the exact
numerical solution of ε0 given by equation (16), we fit the
value of parameter α or η for system with N = 20 000. As
shown in Figure 6 , the fitting gives

√
η = 0.375. According

to equations (11) and (26), the resolution of our sensing
scheme is obtained as

4Ω =
2Jε0
~

= 2
√
ηω0δ

√
N = 0.75ω0δ

√
N, (27)

where ω0 ≡ J/~ is the characteristic coupling frequency
of the spins’ interaction. As a theoretical result, the res-
olution given in equation (27) does not have the upper
bound in principle. However, the experimental achievable
resolution depends on the optimal implementation of sev-
eral parameters that affect the resolution in a particular
experimental system. For ω0 ∼ 1 Hz, δ = 1 × 10−5, N =
2000, 4Ω ≈ 3.4 × 10−4◦/s, which is close to the resolu-
tion of Ring Laser Gyroscope, Interferometric Fiber Optic
Gyroscope, and Resonant Fiber Optic Gyroscope [14]. In
another case, when ω0 ∼ 0.01 Hz, δ = 1× 10−6, N = 100,
the resolution 4Ω ≈ 7.5× 10−8◦/s. This achieves the res-
olution range of the AIG [15]. With the help of equation
(15), the constraint condition (15) becomes

δ
√
N < 1.33

σ

ω0
. (28)

Here, σ is the resolution of the PMG.

Fig. 5. Diagrams of Loschmidt echo as a function of rotation
velocity Ω for system with N = 500, and δ respectively take
0.07, 0.05, 0.03, 0.01 in (a), (b), (c) and (d). These diagrams
show that the valley of the curve become narrower when δ is
decreasing.

Fig. 6. Half-width of Loschmidt echo changes with different
δ. The black points in this figure is LE’s half-width ε0 given
by numerical calculation, and the blue line is the fitting line
of these points. It is obviously there exist a liner relationship
between ε0 and δ, and the proportionality coefficient is given
as
√
η = 0.375.

4 Conclusion

In summary, we have studied the rotation effect of the
reference frame on the QPT of the transverse field Ising
model (TFIM). Since the rotation velocity will apply an
equivalent magnetic field to the original transverse field,
the dynamic evolution of the TFIM is sensitive to the
rotation velocity of the reference frame at the critical
point of TFIM; when we adjust the original transverse
field to the vicinity of the critical point for QPT of TFIM,
the Loschmidt echo will change significantly due to small
changes of rotation velocity. This finding inspire us to
design a quantum sensing scheme for measuring rotation
velocity.

The quantum sensing scheme presented in this paper is
composed of three steps. First, the approximate range of
the rotation velocity is obtained by the pre-measurement.
Then the magnetic field is adjusted based on the result
of pre-measurement to tune the TFIM near the critical
point of QPT. Finally, the rotation velocity of the system

https://epjd.epj.org/
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is obtained by analyzing the feature of LE. Furthermore,
we found the resolution of this quantum sensing scheme is
proportional to δ

√
N , where δ is the coupling strength

between quantum system S and TFIM, and N is the
number of spins belongs to TFIM.
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