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Abstract. We study the Markovian process of a multi-mode open system connecting with a non-equilibrium
environment, which consists of several heat baths with different temperatures. As an illustration, we study
the steady state of three linearly coupled harmonic oscillators in long time evolution, two of which contact
with two independent bosonic heat baths with different temperatures respectively. We show that the inter-
mode transitions mediated by the environment is responsible for the long time behavior of the dynamics
evolution, which is usually considered to take effect only in short time dynamics of the system immersed
in a equilibrium heat bath with a single temperature. These inter-mode transitions are essential to the
non-equilibrium flux between subsystems, thus they cannot be neglected.

1 Introduction

When a small system contacts with a simple environment,
i.e., a heat bath in canonical equilibrium with a tempera-
ture T , it would approach its canonical state with the same
temperature T . This dynamics process is called thermal-
ization [1–5]. However, non-equilibrium systems are more
general in nature, and exhibit more rich physics. A typi-
cal example is a composite system connecting with more
than one heat baths with different temperatures. For a
long-term evolution, the open composite system would not
approach its canonical thermal state, but still it would be
stabilized to a certain steady state. We call this process
non-thermal stabilization.

Such composite system coupling with multiple inde-
pendent heat baths appear in many artificial systems, like
the superconducting circuit and quantum dots, and also
natural systems, like the excitons in photon-synthesis sys-
tem [6–8]. In these composite systems, the interaction be-
tween the subsystems is always on, and that may affect
the response of the system to the environment.

A rigorous treatment of the interacting composite
system should be based on the normal modes of the
system. In an open system, both the equilibrium and non-
equilibrium cases as we mentioned above, the energy ex-
change with environment would mediate the transitions
between these normal modes of the total system, which we
call the inter-mode transition. It was usually believed that
this inter-mode transition only takes effect on the dynam-
ics of transient evolution within the time scale determined

a e-mail: lishengwen@yeah.net

by the time-energy uncertainty [1,9–12], and averagely it
has no effect to the steady state behavior after a long time
evolution. This is also known as secular approximation or
rotating-wave approximation (RWA).

However, in this paper, we find that indeed such inter-
mode transitions have long-term effect in non-equilibrium
system even for Markovian process. As an example, we
study the steady state of three linearly coupled harmonic
oscillators (HOs), two of which contact with two indepen-
dent bosonic heat baths with different temperatures re-
spectively. We find that if the inter-mode transition were
ignored, there would be some counter-intuitive results in
the long time steady state. We show that the inter-mode
transitions are essential to the non-equilibrium flux inside
the composite system. As a comparison, we also show that
such effect does not appear in equilibrium environments.
We emphasize that the omission of these inter-mode tran-
sitions is consistent with conventional equilibrium reser-
voirs as studied in previous works [1,9–12].

The paper is arranged as follows. In Section 2, we
setup the model of the coupled system and give a mas-
ter equation. In Section 3, we give the stabilization result
and make some analytical discussion by eliminating the
degree of freedom of the mediating data bus. We show
that the omission of the inter-mode transition is consis-
tent with the equilibrium reservoirs, and give a physical
explanation. In Section 4, we propose a possible imple-
mentation. The calculation is assisted by some properties
of the characteristic description of Wigner function and
Fokker-Planck equation. We leave these tricks in the ap-
pendices. Finally, summary is drawn in Section 5.
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Fig. 1. Demonstration of the coupled oscillators system. Two
remotely located HOs are indirectly coupled by another medi-
ating one. The HOs at the two ends contact with independent
heat baths with different temperatures TL/R.

2 Model setup

To study the long-term dynamics of a composite system
coupled to a complicated environment, we use the coupled
HOs system as an illustration. The system we study here
is illustrated in Figure 1. Two HOs with frequencies ωL,R

contact with two independent heat baths with different
temperatures. In experiments, microscopic devices with
mutual interactions are separated from each other for only
several micrometers, thus it is unclear to discuss their local
temperatures. Here we introduce a third HO as a data
bus to mediate their coupling, which makes it possible
to separate the two HOs for a certain distance and we
can discuss their local temperatures clearly. Effectively,
we suppose the mediating HO does not contact with any
environment.

The three oscillators system can be described by a
quadratic coupled Hamiltonian HS = H0 + V , where

H0 = ωLâ†
LâL + ωRâ†

RâR + ωmb̂†b̂,

V = gL

(
â†

Lb̂ + âLb̂†
)

+ gR

(
â†

Rb̂ + âRb̂†
)

, (1)

and H0 describes the free Hamiltonian with local modes
respectively defined by annihilation operators âL, âR

and b̂; V describes the coupling among the local modes.
We assume the two oscillators locate remotely at differ-

ent places, thus they may suffer from independent baths.
We also assume each bath stays at a canonical thermal
state with a temperature TL/R. The whole system can be
described by the total Hamiltonian H = HS + HB + VSB ,
where

HB =
∑
kL

ωkL ĉ†kL
ĉkL +

∑
kR

ωkR ĉ†kR
ĉkR ,

VSB =
∑

σ=L,R

â†
σΓσ + âσΓ †

σ , (2)

and Γσ =
∑

kσ
gkσ ĉkσ . HB is the free Hamiltonian of the

two boson heat baths, each of which is modeled as a collec-
tion of boson modes, described by the boson annihilation
operators ĉkσ . VSB represents the linear coupling between
the system and the environment.

We need to derive a master equation to study the
dynamics of the open system. Actually for the coupled
HO system, a correct treatment of the master equation
should be based on the normal modes of HS , but not the
local modes âL/R and b̂. Otherwise, it may give rise to
some counter-intuitive results. Thus, we diagonalize the

Hamiltonian HS as:

HS =
(
â†

L, b̂†, â†
R

)⎡
⎣

ωL gL

gL ωm gR

gR ωR

⎤
⎦
⎛
⎜⎝

âL

b̂

âR

⎞
⎟⎠

≡ a†Ωa =
3∑

i=1

εiÂ
†
i Âi, (3)

where a = (âL, b̂, âR)T , and we also denote it as
(â1, â2, â3)T hereafter (with redefined indices 1, 2, 3 for
âL, b̂, âR respectively). A = Ua = (Â1, Â2, Â3)T for Ai’s
being the normal modes. UΩU † = diag {ε1, ε2, ε3} gives
the eigen frequencies of the normal modes. Although the
normal modes are decoupled from each other in the iso-
lated HS , we can see below that the environment could
mediately induce some effective couplings between these
normal modes.

With the above notations, in Appendix A we derive
a master equation to describe the long-term dynamics of
the open system via Born-Markovian approximation [1].
In Schrödinger’s picture, it reads as:

∂tρ = i
[
ρ,

∑
εiÂ

†
i Âi

]

+
∑
ij

Λ−
ij

2

(
2ÂiρÂ†

j −
{
Â†

jÂi, ρ
}

+

)

+
Λ+

ij

2

(
2Â†

iρÂj −
{

ÂjÂ
†
i , ρ

}
+

)
, (4)

where

Λ+
ij =

γL

2
Ui1U

∗
j1 [NL (εi) + NL (εj)]

+
γR

2
Ui3U

∗
j3 [NR (εi) + NR (εj)] ,

Λ−
ji =

γL

2
Ui1U

∗
j1 [NL (εi) + NL (εj) + 2]

+
γR

2
Ui3U

∗
j3 [NR (εi) + NR (εj) + 2] . (5)

Here, γσ(εi) = 2πJσ(εi) characterizes the coupling
strength with each bath, and Jσ(ω) =

∑
kσ

|gkσ |2 δ(ω −
ωkσ) is the coupling distribution. For the usual case,
we can assume that γσ(ω) � γσ does not depend too
much on ω and can be treated as constant. Nσ(ω) =
[exp(ω/kTσ)−1]−1 is the Planck distribution for σ = L, R.

It is observed from the above master equation that the
environment indeed induces an effective coupling between
two normal modes Ai and Aj . Λ±

ij measure the transi-
tions of the normal modes. This environment-mediating
effect can be understood in the following way. The cou-
pled system exchanges energy with environment through
the interaction VSB . Immediately after the normal mode
Ai of the system emits an energy quanta εi to the environ-
ment, another process may happen in succession that the
normal mode Aj absorbs back εj from the environment.
Also, there is another possibility for the reversed process.
Thus, different normal modes Ai’s of HS are coupled with
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the mediation of the environment. In fact, this effect of
environment mediated coupling can be also found for two
modes coupled to a common heat bath [13,14].

The transition terms with i �= j describes the effective
coupling between different normal modes. In the interac-
tion picture, these terms would contribute an oscillating
factor exp [±iδεij t] resulted from the energy difference of
the modes Âi and Âj . This transition effect would be ig-
nored if we apply RWA by dropping these terms. How-
ever, as can be seen in the following, such ignorance would
give rise to counter-intuitive results for non-equilibrium
system.

3 Long-term stabilization dynamics

Comparing with the long time Markovian thermalization
process in a heat bath with a single temperature, the
present environment with two temperatures TL/R can-
not stabilize the whole system into a canonical thermal
state. In this section, we first calculate the steady state
of the open quantum system by straightforwardly solving
the above master equation equation (4). Then we consider
the mediating HO as a quantum data bus in the large de-
tuning limit. The adiabatic elimination of this oscillator
can formally induce a direct coupling between the left and
right HOs. In this case, the analytical results about the
stabilization can be obtained explicitly.

3.1 Steady state in long time limit

We now consider the indirect coupling case with a me-
diating data bus. The master equation without RWA
can be solved with the help of the characteristic func-
tion of Wigner representation, which is defined as (see
Appendix B),

χ(μ) ≡ Tr
[
ρ exp

(
A†μ − μ†A

)]

= Tr
[
ρ exp

(
a†κ − κ†a

)]
. (6)

Here, μ = (μ1, μ2, μ3)T and κ = (κ1, κ2, κ3)T are complex
vectors with respect to the normal and local modes, and
μ = Uκ. The corresponding Wigner function with three
modes is defined as the Fourier transform of χ(κ),

W (α, α∗) =
1

(π2)3

∫
d2κ e−α†κ+κ†αχ(κ).

With this definition, we obtain the equation of χ(μ) as:

∂tχ + zT
∂

∂zT
χ = zDzT χ, (7)

where z = (μ1, μ2, μ3, μ∗
1, μ

∗
2, μ

∗
3), and

T =
[

T− 0
0 T+

]
, D =

[
0 P

PT 0

]
.

T and D are 6 × 6 matrices with 3 × 3 blocks T± and P
defined by:

Pij = −1
4
(
Λ−

ij + Λ+
ji

)
,

T−
ij =

1
2
(
Λ−

ij − Λ+
ji

)− iεiδij ,

T +
ij =

1
2
(
Λ−

ji − Λ+
ij

)
+ iεiδij . (8)

The equation (7) is the Fourier transformation of the
Fokker-Planck equation about the Wigner function [15].
Formally we give the analytical solution for the steady
state in Appendix C. Its expression is given as:

χ(μ) = χ(Uκ) = exp
[
zV −1D′(zV −1)T

]
, (9)

where V diagonalizes the matrix T, i.e., V TV −1 =
diag {d1, . . . ,d6}, and D′

ij = [V DV T ]ij/(di + dj).
All the steady state properties of the composite system

can be obtained from this formal solution equation (9).
Specially, we are interested in the steady state of the HOs
at the two ends. We can obtain χσ(κσ) for each local oscil-
lator just by setting κi = 0 for all i �= σ. Notice that V −1

and D′ in the exponent of equation (9) are block diagonal
and anti-diagonal respectively, thus it can be verified that
χσ(κσ) is always of the following Gaussian form,

χ(κσ, κ∗
σ) = exp

[
−

(
N eff

σ +
1
2

)
|κσ|2

]
, (10)

where N eff
σ is a positive constant. In Appendix B, we show

that if χ(κσ, κ∗
σ) has the Gaussian form like equation (10),

the state of the oscillator is a canonical state, and there
is no squeezing. Since each HO can finally reach a canon-
ical steady state, we can treat it as an equivalent thermal
state and define an effective temperature from its average
occupation N eff

σ = 〈â†
σâσ〉,

T eff
σ = ωσ/ ln

(
1 +

1
N eff

σ

)
. (11)

In Figures 2a and 2b we show the effective temperatures
of the oscillators at the two ends calculated from equa-
tion (9), changing with the detuning Δ = ωL − ωR and the
coupling strengths gL/R. Here we set ω = (ωL+ωR)/2 ≡ 1
as the energy scale and ωm = 2.

When the detuning Δ becomes large or when their
coupling strength gL/R becomes small, the two oscilla-
tors tend to be thermalized with their own heat bath re-
spectively. The effective temperatures get to the closest
point around the resonance regime Δ � 0. This observa-
tion means that they are affected by the reservoir at the
opposite side and heat transfer happens greatly. When
gL = gR, the extremum points locate exactly at ωL = ωR,
while they shift aside when gL �= gR. When the interac-
tion becomes strong, the effective temperatures of the two
oscillators tend to get closer and closer, away from that of
each heat bath.

As comparison, we also show some counter-intuitive
observation resulting from the improper omission of the
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Fig. 2. The effective temperatures T eff
L (lower blue ones) and T eff

R (upper red ones) of the oscillators at the two ends calculated
from the result without (a) and (b) and with (c) RWA. We set ω = (ωL + ωR)/2 = 1 as the unit, and TL = 1, TR = 3,
γL = 0.002, γR = 0.003, ωm = 2. We set gL = gR = g in (a) and (c), and gL = g, gR = 0.8g in (b). We plot four groups of
curves according to g = 0.02, 0.04, 0.06, 0.08, distributed from outside to inside in these figures. At the small regime around
the degeneracy point, RWA cannot give us a good enough result, especially when g is weak. The extremum points are shifted
aside when gL �= gR.

transition terms like 2ÂiρÂ†
j − {Â†

jÂi, ρ} with i �= j

(see Fig. 2c). In the large detuning area, this approxi-
mation shows well consistence with previous result in Fig-
ure 2a. But the effective temperatures always equals at
the degeneracy point even when the coupling strength g
is quite weak, i.e., when the oscillators tend to be decou-
pled from each other. A similar problem was also stud-
ied in reference [5], where they considered two interacting
two-level systems respectively contacting two independent
heat baths with different temperatures, and they obtained
a result similar to ours shown in Figure 2c, which is valid
only when the coupling strength is quite large.

With the above comparison, we look back at the mas-
ter equation carefully, the transition terms like e−iδεij t ×
(2ÂiρÂ†

j − {Â†
jÂi, ρ}+) with i �= j contribute to the en-

ergy exchange of different modes Âi and Âj , which can
be characterized by 〈Â†

i Âj〉. The oscillating factor at the
front describes the phase of this transition. The transi-
tion rate δεij = εi − εj is determined by the detuning and
coupling strength. When Δ and gL,R are quite small, the
omission of these terms seems doubtable.

Intuitively, the only reason why these inter-mode tran-
sition terms cannot be dropped is that they rotate too
slowly. However, remember that we only focus on the
steady behavior t → ∞. In this case, even a quite slowly
rotating term should be averaged to zero. Indeed, in the
following we would see that in equilibrium reservoirs, igno-
rance of such transitions does give the correct result even
when the transition rate δεij is small, and the real reason
lies in the non-equilibrium environment.

3.2 Effective coupling in adiabatic limit

When the detuning of ωm to ωL/R is large, we can elim-
inate the mediating degree of freedom adiabatically to
simplify our analysis. We apply Fröhlich-Nakajima trans-
formation [16–18], and obtain the following simplified
Hamiltonian, which describes a system of two directly cou-
pled oscillators,

HS = ω′
L â†

LâL + ω′
R â†

RâR + g
(
â†

LâR + âLâ†
R

)
, (12)

where

ω′
L,R = ωL,R +

g2
L,R

ωL,R − ωm
,

g =
1
2

(
gLgR

ωL − ωm
+

gLgR

ωR − ωm

)
. (13)

The coupling strengths gL and gR contribute a correction
to the renormalized frequencies ω′

L,R.
For this simplified Hamiltonian, we can write down

the analytical expression of eigen frequencies εi and the
transformation U for the normal modes Â±. Denoting
ω′

L = ω − Δ/2, ω′
R = ω + Δ/2, we have

ε± = ω ± Δ̃g, Δ̃g =
(

Δ2

4
+ g2

) 1
2

,

U =
[

α β
β −α

]
,

2αβ

α2 − β2
=

2g

Δ
. (14)

It follows from equation (14) that the energy differ-
ence δεij = 2Δ̃g depends on the detuning Δ and cou-
pling strength g. When Δ and g are small, the factors
exp [±2iΔ̃gt] of the transition terms between the two nor-
mal modes oscillate quite slowly.

We carry out the similar calculation for this simpli-
fied two oscillators system as previously, which gives an
explicit expression for the steady state of each oscillator,
described by the characteristic function χσ(κσ),

χσ(κσ) = exp
[
−

(
N eff

σ +
1
2

)
|κσ|2

]
,

N eff
σ =

[
AσNL(ε−) + BσNL(ε+)

+ CσNR(ε−) + DσNR(ε+)
]
/Φ. (15)

Here N eff
σ is the occupation number of the effective ther-

mal distribution (σ = L, R) determined by the linear

http://www.epj.org
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combination of NL,R(ε±), and the coefficients are,

Φ = γLγR (γL + γR)2

+ 16Δ̃2
g

(
α2γL + β2γR

) (
β2γL + α2γR

)
,

AL = α2
[
γLγR (γL + γR)2 + 16α2Δ̃2

g

(
β2γL + α2γR

)
γL

]
,

BL = β2
[
γLγR (γL + γR)2 + 16β2Δ̃2

g

(
α2γL + β2γR

)
γL

]
,

CL = 16α2β2Δ̃2
g

(
β2γL + α2γR

)
γR,

DL = 16α2β2Δ̃2
g

(
α2γL + β2γR

)
γR,

and

AR = 16α2β2Δ̃2
g

(
β2γL + α2γR

)
γL,

BR = 16α2β2Δ̃2
g

(
α2γL + β2γR

)
γL,

CR = β2
[
γLγR (γL + γR)2 + 16β2Δ̃2

g

(
α2γL + β2γR

)
γR

]
,

DR = α2
[
γLγR (γL + γR)2 + 16α2Δ̃2

g(β
2γL + α2γR)γR

]
.

From equation (15) we see that each oscillator achieves a
canonical state. Especially, at the degeneracy point ω′

L =
ω′

R, we have α2 = β2 = 1/2, and the difference of the
populations is,

N eff
L − N eff

R

=

[
NL(ε+) − NR(ε+)

]
+

[
NL(ε−) − NR(ε−)

]
2(1 + 4g2/γLγR)

. (16)

The above equation (16) explicitly shows that the effective
temperatures of the two oscillators are not equal at the
degeneracy point when TL �= TR.

In the equilibrium case, we have TL = TR = T and
NL(ε) = NR(ε) ≡ N(ε). The above result equation (15),
which is obtained without RWA, still holds. And we can
explicitly obtain N eff

σ as:

N eff
L = α2N(ε−) + β2N(ε+),

N eff
R = β2N(ε−) + α2N(ε+). (17)

However, a simple calculation by omitting the inter-mode
transitions also gives exactly the same analytical result as
equation (17), even when the transition rate Δ̃g = [Δ2/4+
g2]1/2 is small. Both calculations, with and without RWA,
give the steady state of the two oscillators, i.e.,

ρs =
1
Z exp

[
− 1

kT

(
ε−Â†

−Â− + ε+Â†
+Â+

)]
, (18)

no matter how slowly the transition coefficients rotate.

3.3 Inter-mode transition and flux

Here we give a physical explanation why the omission of
the inter-mode transitions is consistent with equilibrium

system but not allowed for non-equilibrium system. We
still consider the model of three oscillators. If we omit all
the inter-mode transitions in equation (4), we obtain the
following master equation,

∂tρ = i
[
ρ,

∑
εiÂ

†
i Âi

]

+
∑

i

Λ−
ii

2

(
2ÂiρÂ†

i −
{
Â†

i Âi, ρ
}

+

)

+
Λ+

ii

2

(
2Â†

iρÂi −
{
ÂiÂ

†
i , ρ

}
+

)
. (19)

In this equation with RWA, all the normal modes Âi are
decoupled from each other. It can be verified that the
steady state of this equation is:

ρs =
1
Z exp

[
−

∑
i

β̃iÂ
†
i Âi

]
,

β̃i = ln
[
Λ−

ii/Λ+
ii

]
. (20)

Such steady solution has a property that for i �= j, we
have Tr [ρsÂ

†
i Âj ] = 0, which is also consistent with the

fact that there is no inter-mode transition.
Recall that Âi = Uinân, generally we can write down

the transition amplitudes for the local modes as:

〈
â†

mân

〉
=

∑
i

UmiU
∗
ni

〈
Â†

i Âi

〉
+

∑
i�=j

UmiU
∗
nj

〈
Â†

i Âj

〉
.

Since we can always choose a proper phase to guarantee
that all Umi’s are real, if all the inter-mode transitions are
omitted, i.e., 〈Â†

i Âj〉 = 0 for i �= j, immediately we obtain
〈
â†

mân

〉− 〈
â†

nâm

〉
= 0. (21)

Indeed, 〈â†
mân〉 − 〈â†

nâm〉 is proportional to the energy
or particle flux between the local sites. For example, we
consider the particle exchange of the mediating mode b̂
shown in Figure 1. By Heisenberg equation, we have

∂t

〈
b̂†b̂

〉
= igL

(〈
â†

Lb̂
〉
−

〈
âLb̂†

〉)

+ igR

(〈
â†

Rb̂
〉
−

〈
âRb̂†

〉)
. (22)

From this equation, we can define the particle flux from
b̂ to the left/right site as Jσ ≡ igσ(〈â†

σ b̂〉 − 〈âσ b̂†〉), where
σ = L, R. Thus, the omission of the inter-mode transitions
would always give Jσ = 0, which means that there is no
net flux between the local sites.

For equilibrium systems, there is no net flux between
the subsystems, thus the omission of these inter-mode
transitions is consistent, even when the transition rate
is quite small. That is, as we mentioned before, when
we focus on the steady behavior t → ∞, even a quite
slowly rotating term should be averaged to zero. How-
ever, the existence of a steady flux is an essential element
of non-equilibrium systems. Therefore, we conclude that
for the non-equilibrium case, the inter-mode transitions
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Fig. 3. Two remotely located NAMRs are indirectly coupled
via a superconducting TLR. The bias voltage provides a differ-
ence between the NAMR and the TLR, so they can be coupled
by a capacitance. At the same time, the voltage noise provides
each NAMR with independent heat bath which has different
effective temperature.

would contribute to long-term effect even in Markovian
systems. This is different from the previous viewpoints
that the inter-mode transitions only have transient effect
within the time scale determined by the time-energy un-
certainty, which usually applies in conventional thermal-
ization process [1,9–12].

4 Physical implementation

In this section, we discuss a possible implementation
scheme, which is composed of two nano-mechanical os-
cillators (NAMR) connected via a superconducting trans-
mission line (TLR), in order to test the theoretical results
we have got here, as shown in Figure 3.

The electromagnetic field inside the TLR may be
treated as several boson modes whose frequencies are dis-
cretely distributed [19,20]. Only one of the TLR modes,
which is nearly resonant to the NAMRs, can couple with
the NAMRs effectively. For example, the voltage distribu-
tion of the lowest even mode along the TLR is,

V (x) =
√

ωm

cL
cos

2πx

L

(
b̂ + b̂†

)
, (23)

where ωm = 2π/L
√

lc is the frequency of this mode, L is
the length of the TLR, and l, c are the inductance and
capacitance per unit length.

The voltage gets maximum at the two ends, where the
NAMRs are coupled with the TLR via a displacement de-
pendent capacitance [21–25]. The vibration mode of each
NAMR may be also treated as a single boson. To the low-
est order, Cx depends linearly on the movement of the
NAMR, Cx � C0

x(1 + x̂/d0). Applying a voltage bias Vg

to the NAMRs, we have the interaction as

Hint =
1
2
C0

x

(
1 +

x̂

d0

)
(V (x) − Vg)

2
. (24)

Quantizing the coordinate of the NAMR as x̂ = δx0(â +
â†), we obtain an interaction term as Hint = g(â+ â†)(b̂+
b̂†). For typical parameters, C0

x � 0.65 fF, Vg = 4 V,
d0 � 50 nm, δx0 � 5 fm, lc � 4 fF, ωm/2π � 5 GHz, the
coupling strength is estimated as g/2π � 6 MHz [24,26]. In

this regime, it is appropriate to apply J-C approximation
to have Hint = g(âb̂† + â†b̂).

For the mediating TLR, ωm/2π � 5 GHz, Q > 104,
and the lifetime of the photon inside the resonator is
τ > 1 μs [20]. The NAMR with ω/2π > 1 GHz usually has
a lower mechanics quality, Q � 500 [27], and it depends on
the fabrication techniques [28]. Thus the relaxation time
of the NAMR is much shorter than the TLR, and we can
neglect the dissipation of the TLR. The voltage noises ap-
plied to the NAMRs at the two sides, which arise from
resistance and bring in the Joule heat, may provide the
NAMRs with independent heat baths with different effec-
tive temperatures, and this can be controlled and mea-
sured in experiment [29–31].

5 Summary

In summary, we have studied the long-term behavior of
a coupled HO system connecting with a complicated en-
vironment which consists of two independent heat baths
with different temperatures. We derived a master equation
with respect to the normal modes. With the help of the
characteristic description of Wigner function, we obtained
the numerical and analytical results for the steady state
of each local oscillator.

These results show that the inter-mode transitions me-
diated by the environment are essential to non-equilibrium
flux between the interacting subsystems, thus they would
contribute to long-term effect even in Markovian systems.
This is different from the case in conventional thermal-
ization problems, where only one canonical heat bath is
involved. The non-thermal stabilization process is deter-
mined by the competition between the rate of the inter-
mode transition and that of the energy exchange with each
private heat bath.

This work is supported by National Natural Science
Foundation of China under Grants Nos. 11121403,
10935010 and 11074261, National 973-program Grant
No. 2012CB922104, and Postdoctoral Science Foundation of
China No. 2013M530516.

Appendix A: Derivation of master equation

We show the derivation of the master equation equa-
tion (4) here. In the interaction picture of HS + HB, the
interaction with the environment becomes,

VI(t) = V L
I (t) + V R

I (t),

V σ
I (t) = â†

σ(t)Γσ(t) + âσ(t)Γ †
σ(t), (A.1)

where

âσ(t) =
∑

j

U∗
jσÂje

−iεjt,

Γσ(t) =
∑
kσ

gkσ ĉkσe−iωkσ t. (A.2)
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Here Âi = Uij âj are the normal modes of the interacting
oscillators system.

We take Born-Markovian approximation and put these
interaction terms into the following equation [1],

∂tρ = −
∫ ∞

0

dτ TrB [VI(t), [VI(t − τ), ρ(t) ⊗ ρB]]

= −
∫ ∞

0

dτ TrB

[
V L

I (t),
[
V L

I (t − τ), ρ(t) ⊗ ρB

]]

−
∫ ∞

0

dτ TrB

[
V R

I (t),
[
V R

I (t − τ), ρ(t) ⊗ ρB

]]
.

(A.3)

Here we assume that the state of each bath is a canonical
thermal one and does not change with time, i.e., ρB =
ρL

B ⊗ ρR
B , ρσ

B ∝ exp[−Hσ
B/kTσ] and Hσ

B = ωkσ ĉ†kσ
ĉkσ ,

where TL/R is the temperature of the left/right heat bath.
Thus, terms like TrB[V L

I (t)V R
I (t − τ)ρ(t) ⊗ ρB] always

vanish, because they only contain the first moment of each
bath.

The rightside of equation (A.3) contains two integrals
of the same form. Each integral gives four terms, one of
which is calculated below as an example,

∫ ∞

0

dτ TrB

[
â†

σ(t)Γσ(t)ρ(t) ⊗ ρB âσ(t − τ)Γ †
σ(t − τ)

]

=
∫ ∞

0

dτ â†
σ(t)ρ(t)âσ(t − τ)

〈
Γ †

σ(t − τ)Γσ(t)
〉

B
, (A.4)

where

â†
σ(t)ρ(t)âσ(t − τ) =

∑
i,j

UiσU∗
jσ Â†

iρÂj ei(εi−εj)teiεjτ ,

〈
Γ †

σ(t − τ)Γσ(t)
〉

B
=

∑
kσ

|gkσ |2
〈
ĉ†kσ

ĉkσ

〉
th

e−iωkσ τ

=
∫ ∞

0

dω Jσ(ω)Nσ(ω) e−iωτ . (A.5)

Here, Jσ(ω) =
∑

kσ
|gkσ |2 δ(ω−ωkσ) is the coupling spec-

trum, and Nσ(εi) = [exp(εi/kTσ) − 1]−1 is the Planck
distribution with temperature Tσ. The integral equa-
tion (A.4) gives

∑
i,j

UiσU∗
jσ Â†

iρÂj ei(εi−εj)t

× γσ(εj)
2

N(εj) + iP
∫ ∞

0

dω
Jσ(ω)Nσ(ω)

εj − ω
. (A.6)

Here, we denote γσ(εi) = 2πJσ(εi), which characterizes
the coupling strength with each heat bath. The principle
integral contributes to Lamb shift, and we omit this term
in this paper.

The physical meaning of equation (A.4) may be under-
stood in the following way. At time t− τ , the coupled HO
system emits energy to the environment, and then absorbs
back at time t. However, the energy exchange with the en-
vironment during this process is done by the total normal

modes Âi but not the local modes âi. Thus, when the emis-
sion and absorption modes are not the same one, there is
an oscillating factor exp[i(εi − εj)t] left. δεij ≡ εi − εj

characterizes the splitting amplitude resulting from the
coupling. By the mediation of the environment, the differ-
ent normal modes Âi of the system are coupled together.

Other terms of equation (A.3) can be also obtained
as above. Each of the two integrals gives the following
Lindblad-like form with an extra oscillating factor,

∑
ij

1
2
UiσU∗

jσ (γσ(εi) [Nσ(εi) + 1] + γσ(εj) [Nσ(εj) + 1])

×
(

ÂjρÂ†
i −

1
2

{
Â†

i Âj , ρ
}

+

)
eiδεij t

+
∑
ij

1
2
UiσU∗

jσ [γσ(εj)Nσ(εi) + γσ(εj)Nσ(εj)]

×
(

Â†
iρÂj − 1

2
{ÂjÂ

†
i , ρ}+

)
eiδεijt. (A.7)

For simplicity, we assume γσ(εi) � γσ does not depend
too much on ω and can be treated as constant. In sum
of equations (A.3) and (A.7), we get the following mas-
ter equation in Schrödinger’s picture, and the oscillating
factors do not appear,

∂tρ = i
[
ρ,

∑
εiÂ

†
i Âi

]

+
∑
ij

Λ−
ij

2

(
2ÂiρÂ†

j −
{
Â†

jÂi, ρ
}

+

)

+
Λ+

ij

2

(
2Â†

iρÂj −
{
ÂjÂ

†
i , ρ

}
+

)
, (A.8)

where

Λ+
ij =

γL

2
Ui1U

∗
j1 [NL(εi) + NL(εj)]

+
γR

2
Ui3U

∗
j3 [NR(εi) + NR(εj)] ,

Λ−
ji =

γL

2
Ui1U

∗
j1 [NL(εi) + NL(εj) + 2]

+
γR

2
Ui3U

∗
j3 [NR(εi) + NR(εj) + 2] . (A.9)

The terms with i �= j describes the transition between
different normal modes. These terms are often omitted by
RWA.

Appendix B: Characteristic function
of Wigner representation

The Wigner representation often give us great convenience
to study properties of quantum oscillators. It can be de-
fined from a characteristic function [32],

χw (κ, κ∗) = Tr
[
eκâ†−κ∗âρ

]
. (B.1)
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The Wigner function is defined as the Fourier transform
of χw(κ, κ∗),

W (α, α∗) =
1
π2

∫
d2κ e−κα∗+κ∗αχw (κ, κ∗) . (B.2)

For a system that consists of two oscillators, the charac-
teristic function can be defined as:

χ12(κ1, κ2) = Tr12

[
eκ1â†

1−κ∗
1 â1eκ2â†

2−κ∗
2 â2ρ12

]
.

From this definition, immediately we can find that if we
had known χ12(κ1, κ2) for the whole system explicitly, it
would be quite easy to get the description of the subsys-
tems χ1(2), just by setting κ2(1) = 0 in χ12(κ1, κ2), without
having to calculate the reduced density matrix of subsys-
tems ρ1(2). This provides a simple method for us to study
the state of subsystems.

Besides, for the thermal state of a oscillator ρT =
Z−1 exp[− ω

kT â†â], the characteristic function is,

χT (κ, κ∗) = exp
[
−

(
N +

1
2

)
|κ|2

]
. (B.3)

Here N = [exp(ω/kT )− 1]−1 is the Planck distribution.
As seen from the definition, χw(κ, κ∗) and W (α, α∗)

can be mapped into each other through Fourier trans-
formation. It is also well-known that there is one-to-one
correspondence between a physical Wigner function and
a density matrix. Therefore, there is one and only one
density matrix ρ decided by a legal χw(κ, κ∗).

Thus, if we have a characteristic function χ(κ, κ∗)
which has a Gaussian form like equation (B.3), with
N ≥ 0, we can always come into the fact that the cor-
responding density matrix is:

ρ =
1
Z

∞∑
n=0

e−n βeffω|n〉〈n|, (B.4)

where βeff comes from N =
[
exp(βeffω) − 1

]−1. This is a
canonical state for the oscillator with an effective temper-
ature 1/βeff . A more rigorous proof lies below.

Proof: From the definition of χw(κ, κ∗), we have

χw (κ, κ∗) = e
1
2 |κ|2Tr

[
eκâ†

ρe−κ∗â
]

= e
1
2 |κ|2

∫
d2α

π
eκα∗−κ∗α 〈α|ρ|α〉 . (B.5)

If we have a Gaussian formed characteristic function like
equation (B.3), we can correspondingly get 〈α|ρT |α〉 by
reversed transformation of the equation above,

〈α|ρT |α〉 =
∫

d2κ

π
e−κα∗+κ∗α exp

[
−(N + 1) |κ|2

]

=
1

N + 1
exp

[
− |α|2

N + 1

]
. (B.6)

On the other hand, we can also expand 〈α|ρT |α〉 as:

〈α|ρT |α〉 =
∑
m,n

〈α|m〉 〈m |ρT |n〉 〈n|α〉

=
∑
m,n

〈m |ρT |n〉 (α∗)mαn

√
m!n!

e−|α|2 . (B.7)

Comparing with the expansion of equation (B.6), we can
get the matrix elements of ρT ,

〈m |ρT |n〉 =
(1 + 1

N )−n

N + 1
δmn. (B.8)

Denote exp[βeffω] = 1+ 1
N , we can see that ρT is a canon-

ical state.

Appendix C: Steady solution
of Fokker-Planck equation

The standard form of Fokker-Planck equation and its char-
acteristic equation are as follows,

∂P

∂t
+

∑
i

λi
∂

∂yi
(yiP ) =

1
2

∑
ij

σij
∂2P

∂yi∂yj
,

∂f

∂t
−

∑
i

λiξi
∂f

∂ξi
= −1

2
f
∑
ij

σijξiξj , Reλi < 0.

(C.1)

f(ξ, t) is the Fourier transformation of P (y, t),

f(ξ, t) =
∫

dny P (y, t)e−iξ·y.

The equation of f(ξ, t) is a first-order quasi-linear partial
differential one. It can be solved analytically [33], and the
solution is,

f(ξ, t) = Φ
(
ξie

λit, . . .
)
exp

⎡
⎣−1

2

∑
ij

σij
ξiξj

λi + λj

⎤
⎦ . (C.2)

Φ(· · · ) is determined according to the initial condition,
and Φ(t → ∞) = 1.

In our problem, the equation of the characteristic
function is

∂tχ + zT
∂

∂zT
χ = zDzT χ. (C.3)

The only difference with the standard form is that T is
not diagonal here. We first diagonalize it and make it a
standard form. Denoting V TV −1 = diag{d1, . . . ,dn} and
z = ξV , we can transform our equation into the standard
Fokker-Planck form,

∂tχ + ξd
∂

∂ξT
χ = ξV DV T ξT χ. (C.4)

Now we could write down the steady solution as

χ(z) = exp
[
zV −1D′(zV −1)T

]
, (C.5)

where

D′
ij =

[
V DV T

]
ij

di + dj
.
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