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Abstract. We study the single photon transfer in a hybrid system where the normal modes of two coupled
resonator arrays interact with two transition arms of a Λ-type atom localised in the intersectional resonator.
It is found that, due to the Fano-Feshbach effect based on the dark state of the Λ-type atom, the photon
transfer in one array can be well controlled by the bound state of the photon in the other array. This
conceptual setup could be implemented in some practical cavity QED system to realise a quantum switch
for single photon.

1 Introduction

In quantum information physics and technology, photons
play an important role since they can robustly transfer
information over a long distance as a flying qubit in free
space. High-fidelity transfer of an independently prepared
quantum state from photons onto an atomic ensemble has
been experimentally feasible [1]. Most recently, the study
of confined photons in low dimension structures, such as
the coupled resonator array (CRA), is attracting more and
more attention [2–7]. The nonlinear dispersion relation
of CRA systems can result in single photon quasi-bound
states [6,8,9], which can be applied to realise information
storage and coherent control of single photon transmission
in a hybrid system. Some special atomic media enhance
the nonlinearity of the resonator hence are capable of
demonstrating the photon blockade phenomenon [10–12].

Moreover, a one-dimension wave guide constructed by
a CRA with an atom embedded in can realize controllable
photon transport. The two-level atom within the wave
guide acts as a perfect mirror for the light field at res-
onance [9]. To realise a better tunable mirror, people use
the three-level atom instead of the two-level one, thus the
electromagnetically induced transparency (EIT) mecha-
nism can be utilised to control the behaviour of the probe
photon by a classical control light beam [8,13]. However,
we prefer a full quantum network without introducing
any classical element. This consideration motivates us to
discuss the Fano-Feshbach resonate in the CRA system,
which is an analog of the Fano resonance in the ionisation
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process of the atomic system [14] or the Feshbach resonate
used in the cold atom system for controlling the inter-
action strength [15,16]. In our consideration, if a photon
bound state is formed in one transfer channel, the trans-
mission feature of the photon in another channel is greatly
influenced [17].

In this paper, we study the coherent transport of a
single photon in two crossed CRAs with a Λ-type atom
embedded in the intersectional resonator. We use the dis-
crete coordinates method [6] to calculate the transmission
and reflection coefficients of the incident photon. We find
that the photon incidenting in one array is perfectly re-
flected when it resonates with single photon bound states
in the other array, namely, we use the Feshbach resonance
mechanism to control the transmission of single photons
in this two-channel CRA system. Under the two-photon
resonate condition, we find that when the incident photon
is perfectly transmitted or reflected, its wave function has
the maximum overlap with the dark or bright states in
the intersectional resonator. This implies the EIT mecha-
nism [18,19] intrinsically exists in our system.

This paper is organised as follows: in Section 2, we
present the model Hamiltonian for a single photon scat-
tered by a Λ-type atom in two crossed CRA systems. In
Section 3, we study the single photon scattering process,
and the transmission coefficient is obtained by discrete
coordinate scattering equations. In Section 4, three non-
trivial cases where the photon is totally reflected or trans-
mitted are well studied. In Section 5, we show the role
of the dark state mechanism in the controlling of photon
transmission. The conclusion and physical realisation is
given in Section 6.
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Fig. 1. (Color online) Schematic configuration for single pho-
tons transitions in cross CRAs. (a) Two cross CRAs in which
a Λ-type atom is located inside the intersectional resonator.
(b) In the intersectional resonator there are two orthogonal
resonator modes with different frequencies which interact with
two transitions of the atom respectively. We define the hori-
zontal arrays as chain A, the vertical arrays as chain B.

2 Model setup

We consider two crossed CRAs with a Λ-type atom sys-
tem. The horizontal(vertical) CRA is named as the chain
A (B) with resonators’ eigen modes ωa(ωb). The system
is schematically illustrated in Figure 1.

The tight-binding Hamiltonian of the crossed CRAs
reads

HC = ωa

∑

m

a†
mam + ωb

∑

n

b†nbn

− ξa

∑

m

(
a†

mam+1 + a†
m+1am

)

− ξb

∑

n

(
b†nbn+1 + b†n+1bn

)
, (1)

where am (bn) is the photon annihilation operator of
chain A (B), m and n are all integers indicating the po-
sitions of the resonators corresponding to the chain A
and the chain B. ξa and ξb are the hopping energies be-
tween two nearest-neighbour resonators of the two chains,
respectively.

The intersectional resonator which is labelled by 0
is supposed to be able to support two CRA modes.
The Λ-type atom with a ground state |g〉, a metastable
state |f〉 and an excited state |e〉 is placed in the in-
tersectional resonator. We choose the resonators’ mode
such that ωa only couples to the transition between |g〉
and |e〉 while the mode ωb only couples to the transition

between |f〉 and |e〉, where Ja and Jb are the coupling
strengths respectively. Under the rotating wave approx-
imation, the atom-photon interaction is modelled as a
Jaynes-Cummings Hamiltonian,

HI = εe |e〉 〈e| + εf |f〉 〈f | + Ja (a0 |e〉 〈g| + H.c)

+ Jb (b0 |e〉 〈f | + H.c) . (2)

We choose the energy of the ground state as zero, εe and εf

are the energies of the excited state and the metastable
state respectively. Thereafter, we set � = 1.

3 Single photons scattering

To explore the single photon scattering behaviour in
this model, we consider a single photon incident into
the vertical resonator array chain B from the resonator
at −∞. The total excitation number N = |e〉〈e| +∑

m a†
mam +

∑
n b†nbn is conserved. The eigen state of the

total Hamiltonian H = HC + HI can be expressed as:

|E〉 =
∑

m

ug (m) |m, g〉+
∑

n

uf (n) |n, f〉+ ue |φ, e〉 , (3)

within the single excitation subspace. Where |m, g〉 ≡
|m〉 ⊗ |g〉 (|n, f〉 ≡ |n〉 ⊗ |f〉) is the state with one pho-
ton in the mth (nth) resonator of the chain A (B) while
the atom in the ground (metastable) state, |φ, e〉 is the
state with no photons in the CRAs and the atom in the
excited state. ug (m), uf (n), and ue are the probability
amplitudes for the corresponding states. According to the
stationary Schrödinger equation H |E〉 = E |E〉, we elimi-
nate ue and obtain the equations for ug (m) and uf (n) as:

[E − ωa + Va (m)] ug (m) + V (m)uf (0)
= −ξa [ug (m + 1) + ug (m − 1)] , (4)

[E − ωb − εf + Vb (n)] uf (n) + V (n)ug (0)
= −ξb [uf (n + 1) + uf (n − 1)] . (5)

Here, we define the effective potentials as

Va(b) (i) ≡
J2

a(b)

E − εe
δi,0, (6)

V (i) ≡ JaJb

E − εe
δi,0. (7)

The strengths of the δ-type potentials Va(b) and V are
related to the hopping strength Ja(b), the excitation en-
ergy εe of the atom, and especially the energy E of the
incident photon itself. We assume and the probability am-
plitudes ug (m) in chain A and uf (n) in chain B have the
plane-wave solutions,

ug (m) =
{

Aeikm m < 0,

Ae−ikm m > 0,
(8)
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and

uf (n) =

{
eik′n + re−ik′n n < 0,

seik′n n > 0,
(9)

where A is the normalisation constant, r and s are reflec-
tion and transmission coefficients of the photon in chain B.
k and k′ are the wave vectors of the two chains.

If we substitute equations (8) and (9) into the scatter-
ing equations equations (4) and (5), when m, n �= 0, we
obtain the dispersion relations for two chains as:

E = ωa − 2ξa cos k, (10)

E = ωb + εf − 2ξb cos k′. (11)

In the intersectional resonator, the continuous condition
uf (0+) = uf (0−) leads to

1 + r = s. (12)

We solve the scattering equations (4) and (5) for the in-
tersectional resonator with the help of equations (10)–(12)
and obtain the transmission amplitude s as

s =
iκ (E)

iκ (E) + J2
aJ2

b

J2
a(E−εe)+(E−εe)2ζ(E)

− J2
b

(E−εe)

(13)

with κ (E) is defined as

κ (E) ≡
√

4ξ2
b − (E − ωb − εf)2 (14)

and

ζ (E) =

⎧
⎪⎪⎨

⎪⎪⎩

√
f (E), E ∈ [ωb + εf − 2ξb, ωa − 2ξa]

i
√

f (E), E ∈ [ωa − 2ξa, ωa + 2ξa]

−√−f (E), E ∈ [ωa + 2ξa, ωb + εf + 2ξb]
(15)

where we introduce the notation f (E) = 4ξ2
a− (E − ωa)

2.

4 Fano-Feshbach resonate effect

In the above section we have obtained the single photon
transmission amplitude in chain B. From equations (10)
and (11), the energy spectra for single photons in chain A
and chain B have band structures. Due to the interac-
tion with the Λ-type atom, there are also two isolated
bound state levels outside the band. In chain A, if the
wave vector k has a negative imaginary part the photon
wave function will decay with the distance from the inter-
section resonator. We call this state a single photon bound
state. The complex wave vector k with negative imaginary
part corresponds to the photon bound states. The single
photon bound state in one-dimension CRA is discussed in
the Appendix.

In Figure 2, we plot the photon transmission rate
T = |s|2, reflection rate R = |r|2 and |s|2 + |r|2 as a
function of photon energy E, from which we find the per-
fect transmission and reflection occur at certain resonant
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Fig. 2. (Color online) The photon transmission rate T = |s|2
(blue and solid line), reflection rate R = |r|2 (green and dashed
line) and T + R (red and dotted dashed line) against the in-
cident energy E. Parameters of the system are set as follows:
ξa = 0.15, ξb = 0.25, Ja = 0.15, Jb = 0.2, ωb = 0.9, εe = 0.95,
εf = 0.15. All parameters are in units of ωa.

points. Firstly, the transmission generally vanishes at the
energy band boundaries of chain B with k = 0, π. It fol-
lows from equation (13) that these energies are zeros of s.
Secondly, the photon is totally reflected when the incident
energy equals to the energy band boundaries of chain A
which correspond to k′ = 0, π. Thirdly, the energies of
single photon bound states in chain A can be obtained by
solving the transcendental equation

E = εe ± J2
a/

√
(E − ωa)2 − 4ξ2

a (16)

which gives E = 0.68 and E = 1.3 by choosing parame-
ters as εe = 0.95, ωa = 1, Ja = 0.15, and ξa = 0.15. When
the photon incidents with the energy accidentally resonat-
ing with the bound state energies, the perfect reflection
takes place. This is just the Fano-Feshbach resonate phe-
nomenon. In addition, when energy of the photon is in
the range ωa − 2ξa < E < ωa + 2ξa, the summation of the
photon transmission rate and reflection rate is less than 1
as shown in Figure 2 since the incident photon in chain B
can be scattered into chain A. In Figure 3, we plot the
energy spectrum sketch map of our system and display
three kinds of nontrivial cases for R = 1 and T = 1.

Considering the improvement of experimental tech-
niques in solid state systems, our model can be realised
in several physical systems of superconducting qubits in-
teracting with microwave stripline resonators [20], quan-
tum dot with photonic crystal defects [21], as well as a
nature atom with monolithic microresonator [22]. Espe-
cially it is reported that in a single quantum dot and
semiconductor microcavity system, the coupling strength
is about 70 μeV [23] and the coupling strength between
cavities can achieve 0.8 THz [24]. These parameters are
suitable for our consideration in the above discussion.

http://www.epj.org
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(a) (b) (c)
Fig. 3. (Color online) Schematic illustration of single photon energy spectra in chain A and chain B. Three kinds of nontrivial
cases: (a) the photon incident energy resonates with continuous energy spectrum boundaries of chain A. (b) The photon incident
energy resonates with single photon bound state energy in Chain A. (c) The photon incident energy resonates with continuous
energy spectrum boundaries of chain B.

5 Dark state mechanism

In the intersectional resonator, the Λ-type atom couples to
two field modes of the two CRAs, so that we can realise
the EIT effect by tuning one of the field modes. In the
present section we will explore the coherent control for
the single photon transfer in our system.

The effective Hamiltonian in the interaction picture is
obtained as

H ′
I = eiH′

0tHIe
−iH′

0t − H ′
0

= −Δ1 |e〉 〈e| − (Δ1 − Δ2) |f〉 〈f |
+ [(Ja |e〉 〈g|a + Jb |e〉 〈f | b) + h.c.]. (17)

We omit the subscript 0 of the photon annihilation and
creation operators in the intersectional resonator. Here we
choose

H ′
0 = εf |f〉 〈f | + εe |e〉 〈e| + ωaa†a + ωbb

†b

+ Δ1 (|e〉 〈e| + |f〉 〈f |) − Δ2 |f〉 〈f | (18)

with Δ1 = εe − ωa and Δ2 = εe − εf − ωb are detunings.
Under the two-photon resonant condition Δ1 = Δ2 =

Δ, the interaction Hamiltonian is

H ′
I = −Δ |e〉 〈e|+ [(Ja |e〉 〈g|a + Jb |e〉 〈f | b) + h.c.]. (19)

The eigenvalues of the above Hamiltonian are

E± = −Δ ± J ′

2
, (20)

E0 = 0. (21)

With the corresponding eigenstates:

|B±〉 =
1
χ

[(J ′ ∓ Δ) |φ, e〉 ± 2 (Ja |0, g〉 + Jb |0, f〉)]

|D〉 =
1
J

(Ja |0, f〉 − Jb |0, g〉), (22)

where J =
√

J2
a + J2

b , J ′ =
√

4 (J2
a + J2

b ) + Δ2, and χ =√
(J ′ − Δ)2 + 4J2.

The state |D〉 with vanishing eigen-energy is called
dark state because it does not evolve with time and
does not transmit to the excited state. The other two
states |B±〉 are called bright states.

We rewrite the total Hamiltonian H in the basis of
the state |B±〉, |D〉, |m, g〉, |n, f〉 to include the free
Hamiltonian

Hfree =
(

4J2 − Δ2

2J ′ + ωa + ωe

)
|B+〉 〈B+|

+
(

ωa + ωe − 1
2

)
|B−〉 〈B−| + ωa |D〉 〈D|

+ (ωb + εf )

⎛

⎝
∑

m �=0

a†
mam +

∑

n�=0

b†nbn

⎞

⎠ (23)

and the coupling terms among these states

Hcoup =
2ΔJ

J ′ (|B+〉 〈B−| + h.c.)

+ {[(|1, f〉 + |−1, f〉 − |1, g〉 − |−1, g〉)

× χ (J ′ − Δ)
J ′ (Jaξa 〈B+| + Jbξb 〈B−|)

+
1
J

[Jbξa (|1, g〉 + |−1, g〉) 〈D|
− Jaξb (|1, f〉 + |−1, f〉) 〈D|] + h.c.}
− ξa

∑

m

(
a†

mam+1 + h.c.
)

− ξb

∑

n

(
b†nbn+1 + h.c.

)
. (24)

In the intersectional resonator, the couplings between the
single excitation states are displayed in Figure 4a. Dia-
grams illustrating the coherent interactions mediated by
the dark state and two bright states are also shown in
Figure 4b.

In order to study the effect of the dark state and bright
state channels in single photon transmissions, we adjust

http://www.epj.org
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Fig. 4. (Color online) (a) Level coupling scheme under the
original presentation. (b) Level coupling scheme under the dark
state presentation.

the system parameters to satisfy the two photon resonate
condition ωa = ωb + εf . It can be seen from equation (23)
that the expectation value of the Hamiltonian for the dark
state is ωa, which is equal to that of other single excitation
states outside the resonators. It means that photon trans-
mission through the dark state channel is easier than the
other two bright channels. To explore the different roles
of the dark state channel and two bright state channels
for the photon transmission, we calculate the overlap be-
tween the single photon energy eigenstate and these three
states, which are expressed as

〈E|D〉 =
1
J

[
Jau∗

f (0) − Jbu
∗
g (0)

]
, (25)

〈E|B+〉 =
1
χ

[
2Jau∗

g (0) + 2Jbu
∗
f (0) + (J ′ − Δ) u∗

e

]
, (26)

〈E|B−〉 = −1
η

[
2Jau∗

g (0) + 2Jbu
∗
f (0) − (Δ + J ′)u∗

e

]
,

(27)

with
η =

√
(Δ + J ′)2 + 4J2. (28)

Here ug (0) and uf (0) are defined in equations (8) and (9).
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Fig. 5. (Color online) Norm of the overlap between the scat-
ter state |E〉 and the dark state |D〉. The dashed (red) line
represents the transmission rate of the incident photon.
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Fig. 6. (Color online) Norm of the overlap between the scatter
state |E〉 and the bright state |B+〉. The dashed (red) line
represents the transmission rate of the incident photon.

In Figure 5, we plot the norm of the overlap between
the scattering state and the dark state in the intersectional
resonator. It is found that |〈E|D〉|2 has a similar shape
to the transmission rate. If the photon incident energy
resonates with boundaries of the continuous energy band
of chain A, the photon is totally transmitted. At these
two energies, |〈E|D〉|2 reaches its maximum value, namely
if the system is mainly populated in the dark state, the
incident photon is neither absorbed nor reflected by the
atom in the intersectional resonator. In this case we can
reconstruct EIT effect in our system.

In Figures 6 and 7, we plot the norm of the overlap
between the single excitation eigenstate and two bright
states in the intersectional resonator respectively. If the
incident energy is resonate with single photon bound state
energies in chain A, |〈E|B+〉|2 and |〈E|B−〉|2 reach their
maximum values, where the incident photon is totally re-
flected. Therefore, we conclude that the bright state chan-
nels open when the Fano-Feshbach resonate effect happens
in our system.

http://www.epj.org
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Fig. 7. (Color online) Norm of the overlap between the scatter
state |E〉 and the bright state |B−〉. The dashed (red) line
represents the transmission rate of the incident photon.

6 Conclusions and remarks

In this paper we have studied the single photon coherent
transfer in the cross resonator arrays with a Λ-type atom
which is localised in the intersectional resonator. The co-
herent control of photon transfer can be realised via the
dark state mechanism with a fully quantum mechanism
where no classical field induces the EIT. It is shown that
perfect reflection and transmission can be realised when
the photon incident energy resonates with continuous en-
ergy spectrum boundaries in the two chains. There also
exist Fano-Feshbach resonance effects between the two res-
onator arrays. The dark state mechanism in our system is
also explored by considering the condition to form EIT.
In this system we can coherently control single photon
transmission by using these properties.

This work was supported by National Natural Science Founda-
tion of China under Grant Nos. 11121403, 10935010, 11074261
and 11175044.

Appendix: Single photon bound state
in the chain A

In this appendix we derive the single photon bound state
energy in chain A. Here we consider a two-level atom put
into a central resonator of a coupled resonator array. The
atom has ground state |g〉 and excited state |e〉. We take
the central resonator as the origin. The atom interacts
with the resonator field mode under the rotating wave
approximation. The Hamiltonian of the system reads,

H = Hc + HI , (A.1)

Hc = ωa

∑

j

a†
jaj − ξa

∑

j

(
a†

jaj+1 + h.c.
)

, (A.2)

HI = ε |e〉 〈e| + Ja (a0 |e〉 〈g| + h.c.) , (A.3)

where a†
j and aj are the creation and annihilation op-

erators of the photon mode in the jth resonator with

frequency ωa. ξa is the hopping energy between nearest-
neighbour resonators of the field mode. We assume the
energy of the atomic ground state is zero, and ε is the
energy corresponding to the excited state. Ja is the cou-
pling strength between the 0th resonator field mode and
the atom.

The stationary eigenstate of single excitation can be
expressed as

|E〉 =
∑

j

ug (j) |1j, g〉 + ue |φ, e〉 . (A.4)

Herein the state |1j, g〉 corresponds to one photon in the
jth resonator and the atom in its ground state, |φ, e〉 cor-
responds to no photon in the resonator arrays and the
atom in its excited state.

The eigen equation H |E〉 = E |E〉 results in the dis-
crete stationary eigen equations

(E − ωa)ug (j) = −ξa [ug (j + 1) + ug (j − 1)]

+
J2

aug (0)
E − ε

δj,0. (A.5)

The wave function of the bound state can be written as

ug (j) =

{
Aeikj , j < 0

Ae−ikj , j > 0.
(A.6)

Here A is the normalised constant and k is a complex
number with negative imaginary part.

At j = 0, we can obtain the dispersion relation as

E = ωa − 2ξa cos k. (A.7)

At j �= 0,

E = ωa − 2ξae−ik +
J2

a

E − ε
. (A.8)

Then we can obtain the equation of the bound state en-
ergy E as

E = ε ± J2
a√

(E − ωa)2 − 4ξ2
a

. (A.9)
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