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Abstract. We study the quantum transitions of a central spin surrounded by a collective-spin environment.
It is found that the influence of the environmental spins on the absorption spectrum of the central spin can
be explained with the analog of the Franck-Condon (FC) effect in conventional electron-phonon interaction
system. Here, the collective spins of the environment behave as the vibrational mode, which makes the
electron transitioned mainly with the so-called “vertical transitions” in the conventional FC effect. The
“vertical transition” for the central spin in the spin environment manifests as, the certain collective spin
states of the environment is favored, which corresponds to the minimal change in the average of the total
spin angular momentum.

The Franck-Condon (FC) principle, which determines the
relative intensity of the vibration-assisted electron tran-
sition spectrum, is of much significance in molecular
physics [1,2]. In these excitation and de-excitation pro-
cesses, the transition probabilities are proportional to the
square of the overlap integrals between the initial and fi-
nal vibrational states (the FC factors). Compared with
the fast electronic transition, the vibrational motion is ex-
traordinary slow. As a result, during the electronic transi-
tion, vibrational coordinates nearly keep stationary. This
corresponds to a “vertical transition” picture on the effec-
tive vibrational potential energy surface, and is called FC
effect. The FC principle was originally proposed by Franck
to study the mechanism of photon-induced chemical reac-
tions [3] and later expanded to the semi-classical formu-
lation by Condon [1]. And then Lax applied this principle
to solid-state physics [4]. However, all the previous works
focused on electron-phonon coupling system [5–9].

In this paper, we will study the FC effect induced
by spin-spin interaction for a model of a central spin in
collective-spin environment, like a central spin in quan-
tum dot (QD) [10–14] or in nitrogen-vacancy (NV) cen-
ter [15–22]. In these systems, the unavoidable hyperfine
interaction between the central spin and the collective en-
vironmental spins is the chief culprit of decoherence of the
interested central spin. Thus, it is important to investigate
the effect of the spin-spin FC principle on the dynamics
of the central spin. On the other hand, in an ideal envi-
ronment with specific inter-spin coupling (such as Ising
type), the central spin can be used as a probe to ex-
plore the supersensitivity of a quantum critical multi-spin
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system [23–25]. This theoretical prediction has been tested
in several experiments [26–28] and its robustness has been
numerically shown as the longitudinal field (equivalent to
the tranverse hyperfine coupling in our model) does not
effect on the decoherence behaviour around the critical
point [27,29].

We consider the model of a central spin immersed in an
environment of nuclear spins. In general, the central spin
can be a nuclear spin or an electron spin. The central spin
is initially polarized by the crystal field in the z direction.
The collective environmental spins behave as the vibra-
tional mode in conventional electron-phonon interaction
model of FC effect. And the longitudinal hyperfine cou-
pling between the central spin and its spin environment
is analogous to the diagonal electron-phonon coupling, re-
sulting in the effective Hamiltonian of the environment
spin being central-spin-dependent. Due to this hyperfine
coupling, when the central spin is excited by the exter-
nal field, the spin bath will be excited simultaneously and
this co-excitation generates the collective-spin-based FC
effect. And the FC factors, which were originally the over-
lap integrals between the initial and final displaced vibra-
tional Fock states, are defined as the overlaps of the ro-
tated collective spin states in our system. An earlier paper
investigated the spin FC effect, but it was only devoted
to demonstrating the Stokes shift in a spin-spin interac-
tion system [30]. In contrast to that work [30], we study
detailedly and systematically the collective-spin-based FC
effect and reveal its underlying physical mechanism.

We find that there exists the similar FC effect in our
spin-spin interacting system. In zero temperature case,
the original Lorentz absorption spectrum of a naked spin
is shifted and split into few small peaks by the weak
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hyperfine coupling, just as same as the vibronic transi-
tion spectrum [31]. The distribution of the relative tran-
sition intensity is determined by the FC factors. And the
most probable transitions, which have largest FC factors,
are ruled by the “vertical transition” mechanism. On the
other hand, if the collective-spin environment is at finite
temperature, the peaks of the absorption spectrum of the
central spin are depressed and broadened significantly. Es-
pecially, when the hyperfine coupling is strong enough,
the excitation of the central spin is suppressed intensively.
This behavior is called FC blockade [32,33].

In the next section, we present our central spin model
and its implementation in N-V center in detail. In Sec-
tion 2, we discuss the low excitation limit of our cen-
tral spin model and interpret the conventional FC effect
schematically. The collective-spin-based FC effect in our
central spin system are addressed in Section 3. In Sec-
tion 4, we study the collective-spin-based FC effect with
vertical transition in schematic perspective. Finally, the
summery of our main results is given in Section 5. Some
details about the rotated Dicke state are displayed in
Appendix.

1 Model setup: central spin in environment

In the central spin system (e.g., QDs or NV center sys-
tems), the coupling to the environmental nuclear spins
destroys the coherence of the central spin (electronic spin
or large nuclear spin) primarily [34]. While we find that
these hyperfine couplings can arouse another interesting
effect – the collective-spin-based FC effect.

We consider a general model of a central spin immersed
in an N -spin environment, with the Hamiltonian described
by (� = 1)

H = Hs (Sz) + A

N∑

j=1

Sz · I(j)
z + ωnu

N∑

j=1

I(j)
x + ωelSx, (1)

where Sα and I
(j)
α (α = x, y, z) are the angular momen-

tum operators of the central spin and the jth nuclear spin,
respectively. By virtue of the existence of the crystal field,
the central spin is ususally polarized in a particular direc-
tion (z direction). As a result, Hs (Sz) generally depends
on Sz, e.g., for NV center system, Hs (Sz) = DS2

z . When
a transverse external field along the x-axis is applied, the
central and environmental spins get additional Zeeman
splittings ωel and ωnu, respectively. As we know, the last
term in equation (1), ωelSx will induce transitions between
the ground and excited states of the central spin. Because
of the existence of the spin environment, these transitions
will be modulated by the longitudinal hyperfine coupling
A(> 0). For simplicity, the hyperfine coupling between the
central spin and the environment-spin ensemble has been
assumed to be homogeneous.

It is convenient to define the collective polarization
operators for the nuclear spin ensemble as

Jα =
∑

j

I(j)
α . (2)

Fig. 1. (Color online) Schematic of central spin model. The
central spin (the top blue one) is polarized in the z direc-
tion. The flipping of the central spin induced by the polarized
field Bp is modulated by the longitudinal hyperfine coupling
between the central spin and its nuclear-spin environment.

It is ready to find that these collective operators satisfy
the following commutation relations:

[Jα, Jβ] = iεαβγJγ , [J2, Jα] = 0, (3)

with εαβγ the totally antisymmetric Levi-Civita tensor.
As a result, the collective environmental spins have collec-
tive eigenstates (i.e., Dicke state [35,36]) and the dynamic
symmetry is described by the algebra SO (3).

Now let us focus on the model of a central electronic
spin implemented in the negatively charged NV center in
diamond (Fig. 1). The electronic ground state of the cen-
ter, which we concern, is a spin triplet (S = 1) and there
is zero-field splitting (ZFS) D = 2.87 GHz between states
|s = 0〉 and |s = ±1〉 (|s〉 is the eigenstate of Sz). It should
be noted that the |s = ±1〉 levels are degenerate. In the
high purity dimond, since the nitrogen concentration is
negligible, we just consider the effect of 13C nuclear spins
(spin-1/2) to the dynamics of the central spin. We rewrite
our model Hamiltonian as H = H0 + H1, with

H0 = DS2
z + ωnuJx + ASzJz, (4)

and
H1 = ωelSx + Ω (Sx cosωt + Sy sin ωt) .

The applied static magnetic field is weak Bex = 12 Gauss
and the corresponding Zeeman splittings of the electronic
and nuclear spins are ωel = geμBBex ≈ 211.35 MHz
and ωnu = gnμnBex ≈ 0.15 MHz, respectively [18]. We
have taken the isotropic Landé g-factor of the electron
and nuclear as ge ≈ 2.0 and gn = 1.4, respectively.
μB(μn) is the Bohr (nuclear) magneton and μn ≈ 10−3μB .
The hyperfine coupling constant A is of the order of
(kHz–MHz). And in order to probe the absorption spec-
trum of the central spin, an external circularly polarized
magnetic field Bp = (Bp cosωt, Bp sin ωt, 0) is added with
Ω = geμeBp = D/20. Since ωel, Ω � D, we take these
terms as perturbations. The longitudinal hyperfine cou-
pling has a much larger influence on the dynamics of the
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Fig. 2. (Color online) Schematic of the conventional vertical
transition.

central spin than the transverse one. And the strength
of the transverse hyperfine coupling is much smaller than
the driving field Ω. Thus we neglected the corresponding
terms in the Hamiltonian (4).

Now we consider the specific case, where the fre-
quency ω of the circularly polarized field is nearly resonant
with the ZFS of the central electronic spin, i.e., ω ≈ D.
Under the rotating wave approximation, the H1 part re-
duces to

H1 ≈ Ω√
2

[|1〉 〈0| e−iωt + |0〉 〈1| eiωt
]
, (5)

where we have used the condition ωel, Ω � D as well as
ω ≈ D.

2 Low excitation approximation

To see why the above system enjoys the FC effect, we
first consider the semi-classical interpretation for the con-
ventional FC principle in an electron-phonon interacting
system: in the approximation of the linearization of the vi-
bronic coupling, the phonons will get electron-dependent
displaced effective potentials (see Fig. 2). The electronic
transition is so fast that the geometry structure of the
vibrational freedom of degrees remain unchanged during
this process, i.e., vertical transition takes place most possi-
bly. This conventional FC phenomenon could be described
by a simple model of a two-level system coupling to a sin-
gle vibrational mode, with the Hamiltonian,

H =
ε

2
σz + ωpb

†b + gσz(b† + b), (6)

where σz is the Pauli operator, ε is the energy difference
between the ground and excited states of the eletron, b†(b)
is the bosonic creation (annihilation) operator of the vi-
bration mode with frequency ωp, and g is the elctron-
phonon coupling constant.

Next we will show that our central electronic spin
model can be reduced into the above model in low ex-
citation limit. In the subspace spanned by the states

{|N/2, m〉} (m = 0, 1, 2 . . . , N), where |N/2, m〉 is the
eigenstate of {J2, Jx}, one can use the Holstein-Primakoff
(HP) transformation

J̃+ ≡ Jz − iJy = b†
√

N − b†b, (7)

J̃− ≡ Jz + iJy =
√

N − b†bb, (8)

Jx = b†b − N

2
, (9)

with defining the bosonic creation and annihilation oper-
ators b† and b. In the low excitation limit 〈b†b〉 � N , HP
transformation (9) can be given, expanded to the lowest
order, as

J̃+ ≈
√

Nb†, J̃− ≈
√

Nb, Jx = b†b − N

2
. (10)

Then we obtain the Hamiltonian H̃ = H̃0 + H̃1 of a
electron-phonon-like interaction model with

H̃0 = DS2
z + ωnub†b +

1
2

√
NASz

(
b† + b

) − N

2
ωnu, (11)

and the perturbation part H̃1 = H1 describing the transi-
tion between the electronic spin states |s = 0〉 and |s = 1〉.
The H̃0 part can be diagonalized by the displaced Fock
state |ξs, m; s〉 = exp

(
ξsb

† − ξ∗s b
) |m〉⊗|s〉 [37,38], where s

denotes the eigenstate of Sz, |m〉 (m = 0, 1, . . . , N) is
the mth Fock state of b†b, and the electron-dependent dis-
placement

ξs = −ξ∗s = −
√

N
sA

2ωnu
. (12)

The FC factor of the transition from |ξ0, m; 0〉 to |ξ1, n; 1〉
is defined as the overlap integral between the two relative
displaced Fock states

〈ξ1, n | ξ0, m〉 = e−|ξ|2/2

√
m!
n!

Ln−m
m

(
|ξ|2

)
(ξ)n−m

, (13)

with ξ = ξ0 − ξ1 and Ln−m
m (x) being the generalized

Laguerre polynomial.
We can formally define dimensionless canonical coor-

dinates of the vibrational mode as x ≡ (
b† + b

)
/
√

2 and
p ≡ i

(
b† − b

)
/
√

2, with [p, x] = −i. The effective po-
tentials of the nuclear spins are different correponding to
different eigenstates (|s〉) of the central spin:

Us (x) =
1
2
ωnux2 +

√
N

2
sAx − N

2
ωnu. (14)

As we know, if the electron spin and the nuclear spins
are both in the ground state |ξ0, 0; 0〉 initially, when the
electron spin is exited by H̃1 to its higher level |1〉, the
nuclear spins could be co-excited to all possible eigen-
states |ξ1, n; 1〉 of U1 (x). But the transition, which has the
largest FC factor, is most favored. From equation (13),
we find that the most favored final state |nmf〉 is deter-
mined by

nmf =
[
1
2

(δx)2
]

. (15)
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Here δx =
√

2ξ and [. . .] means the rounding operation.
As shown in Figure 2, the most favored transition coin-
cides with the vertical transition: the sole transition (red
solid arrow) or two adjacent transitions (blue dashed ar-
rows). As a consequence, when the system is initially in the
ground state, vertical transition takes place most possibly.

Thus, in the present spin-spin interaction system, there
exists conventional FC effect in low excitation limit.

3 Colletive-spin-based Franck-Condon effect

In the previous section, we have shown that our central
spin model is approximately equivalent to an electron-
phonon interaction model in low excitation limit. In this
section, we investigate the influence of the nuclear spin
ensemble on the transition spectrum of the central spin
beyond this limit and find collective-spin-based FC effect
exists in this central spin system.

The Hamiltonian H0 is diagonalized in its direct prod-
uct Hilbert space as: H

(s)
0 ⊗ |s〉 〈s|. Here H

(s)
0 is the ef-

fective Hamiltonian of the nuclear-spin environment with
the central spin at state |s〉 and given by

H
(s)
0 ≡ sAJz + ωnuJx + s2D. (16)

As shown in Appendix, the eigenstate of H
(s)
0 is the ro-

tated Dicke state |θs, m〉 = exp (−iθsJy) |m〉, where |m〉 is
the eigenstate of Jz with eigenvalue (m − N/2) and the
mixing angle is determined by

sin θs =
ωnu

ω̃nu(s)
, cos θs =

sA

ω̃nu(s)
, (17)

with
ω̃nu(s) =

√
ω2

nu + (sA)2. (18)

As a result, we obtain the total eigenstate of H0 as

|θs, m; s〉 = |θs, m〉 ⊗ |s〉 (19)

and the corresponding eigenvalue

Es,m = s2D +
(

m − N

2

)
ω̃nu (s) (20)

with s = 0,±1 and m = 0, 1, 2, . . . , N .

3.1 Franck-Condon factor

As we know, the conventional FC effect describes the phe-
nomenon that, in the electron-phonon interacting system,
the electronic transition is modulated by the vibronic cou-
pling. The transition probability is proportional to the
square of the FC factor, which is specifically defined as
the overlap integral between the two vibrational states
involved in the transition. Here we can also obtain the
counterpart of such factor in spin-spin coupling system as
the overlap of two rotated Dicke states:

fm→n ≡ 〈θ1, n | θ0, m〉 = dN/2
n,m (θ) , (21)

0.4 0.8 1.2 1.6 2
0

0.2

0.4

0.6

0.8

1

A/ωnu

|f0→n|

n=0

n=1

n=2

n=3

Fig. 3. (Color online) The amplitude of the Franck-Condon
factor vs. the hyperfine coupling A for transition from |θ0, 0; 0〉
to |θ1, n; 1〉.

with the rotation-angle difference θ0 − θ1 ≡ θ ∈ (0, π/2)
and the element of the Wigner’s (small) d-matrix

dN/2
n,m = [m!(N − m)!n! (N − n)!]

1
2

×
∑

k

(−)k (
cos θ

2

)N+m−n−2k (− sin θ
2

)n−m+2k

(N − n − k)! (m − k)! (k + n − m)!k!
.

(22)

For the special transition from |θ0, 0; 0〉 to |θ1, n; 1〉, the FC
factor reduces to a simple form

f0→n =

√
N !

(N − n)!n!

(
cos

θ

2

)N−n (
− sin

θ

2

)n

. (23)

As depicted in Figure 3, for a specific final state |θ1, n; 1〉,
the amplitude of the FC factor f0→n has its sole maxi-
mum and the corresponding hyperfine coupling strength
to the maximum, Amax

n , increases gradually with n. But
the maximum of |f0→n| decreases with n and the FC factor
is drastically suppressed in the case of strong coupling A.
It is worth noting that, for a given coupling strength A,
there exists a sole or two adjacent most favored collective-
spin states |θ1, n〉, which have largest FC factors. This is
one of the essences lying at the core of the FC principle,
since it will correspond to a very intuitive physical pic-
ture – vertical transition.

Different from f0→n, the monotonicity of fm→n

(m 
= 0) is much complicated, sine there are multiple local
maximums for a given A. We numerically calculate the FC
factors of the all the possible transitions for coupling con-
stant A = 0.2ωnu or A = 2ωnu, as shown in Figure 4. It is
found that neighboring transitions (|m − n| is small) have
larger FC factors when the hyperfine coupling is weak, but
these transitions are depressed in strong coupling case.
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Fig. 4. (Color online) Franck-Condon factor for transition
from |θ0, m; 0〉 to |θ1, n; 1〉 with different hyperfine couplings.
(a) A = 0.2ωnu. (b) A = 0.2ωnu and m = 25. (c) A = 2ωnu.
(d) A = 2ωnu and m = 25.

3.2 Transition probability and absorption spectrum

Starting from an initial state |θ0, m; 0〉, the probability of
the system in the state |θ1, n; 1〉 at time t is given by

P1,n;0,m (t) =
Ω2

2
F

(
ω1n,0m − ω

2
, t

)
|fm→n|2 , (24)

where we have defined ωs′n,sm = Es′,n − Es,m and the
function F (ω, t) =

(
sin2 ωt

)
/ω2. With the Fermi’s golden

rule, the transition rate of the central spin from |θ0, m; 0〉
to |θ1, n; 1〉 is obtained as

km→n (ω) = lim
t→∞

P1,n;0,m (t)
t

. (25)

Now we first consider the zero temperature case. The sys-
tem is initially in the ground state |θ0, 0; 0〉. It is found that
the transition rates vary with the different final states. As
shown in Figure 5a, for the weak coupling A = 0.2ωnu,
there exist a favored transition, i.e., the one from the
ground state to |θ1, 0; 1〉. From equations (24) and (25),
we know that the transition rate is not only determined
by the Fermi’s golden rule, but also modified by the FC
factor f0→n.

By summing up the transition rates over all the final
states, we obtain the absorption spectrum as

Is(ω) =
∑

n

k0→n (ω) . (26)

It should be noted that when the time t → ∞, we have
this limit

lim
t→∞

F (ω, t)
t

= 2πδ(ω). (27)

Then the spectrum becames to many width-less lines. Ac-
tually, the observed absorption lines from experiments
must have finite width resulting from the interaction of
the radiation field on the central spin or any other inter-
actions. However, the line-width correction is neglected,
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Fig. 5. (Color online) (a) Transition rates k0→n for system
from the state |θ0, 0; 0〉 to different final states |θ1, n; 0〉 vs. Δ
(Δ = ω − D), where the hyperfine coupling A = 0.2ωnu and
the number of the nuclear spins N = 50. (b) The absorption
spectra of the central spin with different hyperfine couplings.

since the positions and the relative heights are mostly con-
cerned and the linewidths of all the absorption lines are
the same in our case. And we take a finite time ωnut = 10
in equation (25) in our numerical calculations in Figures 5
and 6. As we know, the absorption spectrum of a naked
electronic spin (A = 0) given by the Fermi’s golden rule
is of the Lorentz form peaked at Δ ≡ ω−D = 0 (the thin
black line in Fig. 5b). The Lorentz spectrum is shifted and
split into small peaks, as a result of the coupling between
the electron spin and its nuclear-spin environment. When
the coupling is weak A = 0.2ωnu, the spectrum is just split
into few peaks neighboring the original one. However, in
strong coupling case, the absorption spectrum is composed
by many small discrete peaks centered at Δ = 0. Hence,
the excitation of the central spin introduced by a polar-
ization field is inhibited by the strong hyperfine coupling.
And this phenomenon of transition suppression was called
Franck-Condon blockade.

In the case of finite ambient temperature, the collective
nuclear spins are usually in the thermal equilibrium state

ρnu =
1
Z

N∑

m=0

exp
(
−mωnu

kBT

)
|θ0, m〉 〈θ0, m| , (28)

where Z =
∑N

m=0 exp (−mωnu/kBT ) is the partition func-
tion, kB is the Boltzmann constant, and T is the temper-
ature of the environment. Since the energy splitting of the
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Fig. 6. (Color online) Spectrum of the central spin at room
temperature with different hyperfine couplings A.

nuclear spins due to the weak external static field is small
(i.e., ωnu � kBT ), all the Dicke state |θ0, m〉 are nearly
equally occupied in the case of high temperature.

The absorption spectrum of the central spin at room
temperature T = 300 K is shown in Figure 6. For small A,
only the neighboring transitions, which possess large FC
factors, contribute significantly to the spectrum. Incorpo-
rated the Fermi’s golden rule (i.e., the energy-conservation
requirement ω1n,0m − ω = 0), the absorption peaks are
close to the resonant point Δ = 0. Nevertheless, when
the hyperfine coupling is large, the relative intensity of all
the possible transition are almost the same. Consequently,
the excitation of the central spin is drastically suppressed
due to the Franck-Condon blockade.

4 Schematic perspective views
for Franck-Condon effect

To reveal the physical essence of the FC effect in central
spin system with vertical transitions, we will present a
schematic perspective view for the collective-spin-based
FC effect in comparison with the conventional picture of
the electron-photon FC phenomenon.

As noted in the preceding section, when the system is
at zero temperature, the transition probability is modu-
lated by the FC factor f0→n (Eq. (24)). The most favored
transition must have the largest FC factor. And for a given
hyperfine coupling strength A, there is only one maximum
or two adjacent maxima (|f0→n| = |f0→n+1|). Hence, we
require the most possible transition (|θ0, 0; 0〉 to |θ1, n; 1〉)
to satisfy

|f0→n| − |f0→n+1| � 0, (29)
|f0→n| − |f0→n−1| � 0. (30)

From equation (23), we obtain the most favored final Dicke
state |nmf〉 by

nmf � N + 1
2

(1 − cos θ) � nmf + 1. (31)

〈Jx〉
〈Jx

′ 〉

〈Jy〉
〈JZ〉

Fig. 7. (Color online) Time-evolution of the nuclear spins,
which was assumed to be initialized on the state |θ0, 0; 0〉, with
small hyperfine coupling A = 0.2ωnu.

Here θ is dependent on the coupling constant A and 0 �
nmf � (N + 1) /2. Thus the most favored transition is
determined by hyperfine coupling A and number of the
nuclear spins N .

In the space spanned by {〈Jx〉 , 〈Jy〉 , 〈Jz〉}, the eigen-
states of H

(0)
0 (Eq. (16)) are designated by the discrete

dark gray dots on the 〈Jx〉 axis in Figure 7. The ini-
tial state of the collective nuclear spins (|θ0, 0〉) is de-
noted by the bottommost red circle, with coordinate
{〈Jx〉 = −N/2, 〈Jy〉 = 0, 〈Jz〉 = 0}. Let us consider the
transition of the central spin from |s = 0〉 to |s = 1〉 in-
duced by the polarization field. The corresponding effec-
tive Hamiltonian of the nuclear spins after this transition
changes into

H
(1)
0 = AJz + ωnuJx + D. (32)

After making a rotation around y-axis with angle (−θ),
we obtain

H
′(1)
0 = ω̃nuJ ′

x + D. (33)

Its eigenstates distribute on the 〈J ′
x〉 axis as shown in

Figure 7.
From equation (31), the average of J ′

x for the most
favored state is given by

〈θ1, nmf ; 1 | J ′
x | θ1, nmf ; 1〉 ≈ − (N + 1) cos θ/2. (34)

It is nearly the same as the projection of the initial value
of 〈Jx〉 on the J ′

x axis −N cos θ/2. In other words, during
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the excitation of the central spin, the collective environ-
mental spins like to jump vertically from the initial state
|θ0, 0; 0〉 to the final state |θ1, nmf ; 1〉, as depicted by the
red arrow with a solid line in Figure 7. Usually, there is no
such a eigenstates of the system corresponds to this ver-
tical transition. As a consequence, the two adjacent tran-
sitions (characterized by the two blue arrows with dashed
lines in Fig. 7) beside the vertical projection point are
most likely to occur.

In the other hand, we investigate the dynamic evolu-
tion of the collective spins. In the Heisenberg picture, the
operators satisfy the Heisenberg equations

∂J ′
x

∂t
= 0, (35)

∂J ′
y

∂t
= −ω̃nuJ

′
z, (36)

∂J ′
z

∂t
= ω̃nuJ

′
y. (37)

Since the transition of the central spin is very fast com-
pared with the motion of the nuclear spins. During the
excitation of the electronic spin from |0〉 to |1〉, the av-
erage of the nuclear-spin operators can be assumed to
be the same before and after the transition, i.e., the ge-
ometry configuration of the nuclear spins keep invariant.
This is the essence of vertical transition. Then we ob-
tain corresponding initial mean values for the new angu-
lar operators 〈J ′

x (0)〉 = − (N cos θ) /2,
〈
J ′

y (0)
〉

= 0, and
〈J ′

z (0)〉 = − (N sin θ) /2. With these initial conditions, we
obtain the solution of the former differential equations as

〈J ′
x (t)〉 = −N

2
cos θ, (38)

〈
J ′

y (t)
〉

=
N

2
sin θ sin ω̃nut, (39)

〈J ′
z (t)〉 = −N

2
sin θ cos ω̃nut. (40)

As shown in Figure 7, the trajectory of the state of col-
lective nuclear spins is a circle (the red one) which crosses
the initial point in the plane and is perpendicular to the
〈J ′

x〉-axis. This intuitive understanding of vertical transi-
tion lead to the same result as equation (34). This confirms
our former conjecture that the most favor final nuclear-
spin state after the transition is ruled by the vertical
transition.

5 Conclusion

We studied the influence of the environmental spins on ab-
sorption spectrum of the central spin. It is found that there
exists similar FC effect in the central spin model as that in
conventional electron-phonon model. In the zero tempera-
ture case, the original Lorentz absorption spectrum of the
bare central spin is shifted and split into few small peaks.
And the most probable transitions, which make the largest
contribution to the absorption spectrum, are governed by

the “vertical transition” mechanism. If the system is at fi-
nite temperature, the peak of the absorption spectrum is
markedly depressed and broadened. Especially, when the
hyperfine coupling is strong enough, the excitation of the
central spin is intensively suppressed, which leads to the
spin F-C blockade.

We thank Da Zhi Xu and Cheng-Yun Cai for helpful discus-
sion. This work is supported by National Natural Science Foun-
dation of China under Grant Nos. 11121403, 10935010 and
11074261.

Appendix: Rotated Dicke state

We define the collective spin operators as

J± =
∑

j

I
(j)
± , Jα =

∑

j

I(j)
α , for α = x, y, z, (A.1)

where I
(j)
± = I

(j)
x ± iI

(j)
y . It is easy to find that the defined

operators satisfy

[Ji, Jj ] = iεijkJk, [J2, Ji] = 0, (A.2)

and

[Jz, J±] = ±J±, [J+, J−] = 2Jz, [J2, J±] = 0, (A.3)

where εijk is the totally antisymmetric Levi-Civita tensor,
with εxyz = +1. With the help of these operators, the
collective spins may be characterized by the simultaneous
eigenstates |J, M〉 of J2 and Jz with [35,36]

J =
N

2
,

M = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1,

N

2
.

It is proofed that all of these states |J, M〉 (Dicke states)
are symmetric under permutations of the nucleus and all
the symmetric states are in the subspace which is spanned
by the states with maximal angular momentum J = N/2.
Now we order the totally symmetric eigenstates as

∣∣∣∣
N

2
,
N

2

〉
= |1, 1, . . . , 1〉

∣∣∣∣
N

2
,
N

2
− 1

〉
= J− |1, 1, . . . , 1〉 = Sn |0, 1, . . . , 1〉

∣∣∣∣
N

2
,
N

2
− 2

〉
= J2

− |1, 1, . . . , 1〉 = Sn |0, 0, 1, . . . , 1〉
. . .∣∣∣∣

N

2
,−N

2

〉
= JN

− |1, 1, . . . , 1〉 = |0, 0, . . . , 0〉 ,

where Sn is the symmetrization operator and |N/2,−N/2〉
the ground state of the atomic ensemble.
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Since all the operations are proceeding in the subspace
of J = N/2, we abbreviate the eigenfunction of the oper-
ators {J2, Jz} as

|m〉 ≡
∣∣∣∣
N

2
,−N

2
+ m

〉
, m = 0, 1, 2, . . . , N (A.4)

which satisfy

J+ |m〉 =
√

(N − m) (m + 1) |m + 1〉 , (A.5)

J− |m〉 =
√

m (N − m + 1) |m + 1〉 , (A.6)

Jz |m〉 =
(
−N

2
+ m

)
|m〉 . (A.7)

It should be noted that we re-marked the eigenstate of the
total angular momentum, with the excitation number m
of the nuclear spins.

The rotating operator corresponding to a rotation
about the y-axis reads as

Ry(θ) = exp[−iθJy]. (A.8)

Since J2 commutes with the rotation operators (i.e.
[J2, Jy] = 0) and hence the subspace of J = N/2 is an
invariant subspace of Ry. After a unitary transformation
via equation (A.8), we get the rotated operators

J ′2 = Ry (θ) J2R†
y (θ) = J2, (A.9)

J ′
z = Ry (θ) JzR

†
y (θ) = cos θJz + sin θJx, (A.10)

and the rotated eigenstate

|θ, m〉 = Ry (θ) |m〉 =
∑

l

d
N/2
l,m |l〉 , (A.11)

with the element of the Wigner’s (small) d-matrix

d
N/2
l,m (θ) = [m!(N − m)!l! (N − l)!]

1
2

×
∑

k

(−)k (
cos θ

2

)N+m−l−2k (− sin θ
2

)l−m+2k

(N − l − k)! (m − k)! (k + l − m)!k!
,

(A.12)

where k = 0, 1, 2, . . . and keep all the factorials non-
negative.
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