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Abstract. We study a dynamic process of disentanglement by considering the time evolution of bound
entanglement for a quantum open system, two qutrits coupling to a common environment. Here, the initial
quantum correlations of the two qutrits are characterized by the bound entanglement. Both bosonic and
spin environments are considered. We found that the bound entanglement displays collapses and revivals,
and it can be stable against small temperature and time change. The thermal fluctuation effects on bound
entanglement are also considered.

PACS. 03.67.Mn Entanglement production, characterization, and manipulation – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion – 03.65.Yz Decoherence; open systems; quan-
tum statistical methods – 32.80.-t Photon interactions with atoms

1 Introduction

Entanglement [1], as an essential feature of quantum me-
chanics, helps us to distinguish the classical and quantum
nature of matter world. It has become a key ingredient in
quantum information processing, such as quantum com-
puting, quantum teleportation and quantum cryptogra-
phy [2–4]. On the other hand, generally a realistic sys-
tem is surrounded by an environment. Thus the effects of
the quantum decoherence such as quantum dephasing on
quantum entanglement should be considered for quantum
open systems. It is reasonable that when we study quan-
tum effects induced by entanglement, the two-particle sys-
tem should hold phase relations between the components
of the entangled states. Thus perceivably, due to the inter-
actions with environment, we can expect that the dephas-
ing of two-particle system can demonstrate some exotic
properties.

Recently, Yu and Eberly [5] showed that two entangled
qubits became completely disentangled in a finite time un-
der the influence of pure vacuum noise. Surprisingly, they
found that the behaviors of local decoherence is different
from the spontaneous disentanglement. The decoherence
effects take an infinite time evolution under the influence
of vacuum noise while the entanglement displays a “sud-
den death” in a finite time. In their investigations and
other studies on disentanglement in open quantum sys-
tems [6,7], only qubit systems are considered. Here, the
disentanglement process is characterized by time evolution
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of the concurrence [8]. It is well-known that concurrence
cannot be calculated analytically in higher dimensions.

For the systems with spins larger than 1/2, one can
use the positive partial transpose (PPT) criterion [9] to
study disentanglement. For the mixed states of two spin
halves and (1/2, 1) mixed spins, the PPT method can
fully characterize entanglement. However, in the case of
two qutrits and even larger spins, one only know that if a
state does not have PPT, the state must be entangled. In
other words, one may use the method to witness entangle-
ment. Actually, in the case of higher dimension, there are
two qualitatively different types of entanglement [10], free
entanglement (FE) which corresponds to the states with-
out a PPT, and bound entanglement (BE) corresponding
to the entangled states, however, with a PPT. The BE
is an intrinsic property and cannot be distilled to a sin-
glet form, thus it cannot be used alone for quantum com-
munication. Nevertheless, the BE can be activated and
then contribute to quantum communication [11]. A formal
entanglement-energy analogy [12] implies that the bound
entanglement is like the energy of a system confined in a
shallow potential well. If we add a small amount of ex-
tra energy, behaving as a perturbation, to the system, its
energy can be deliberated. The existence of bound entan-
gled states reveals a transparent form of irreversibility in
entanglement processing [13].

In this paper, we consider an open composite system, a
two-qutrit system commonly coupled to an environment,
and study a type of dynamical process of disentangle-
ment, where the two qutrits are initially prepared in a
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bound entangled state. We would like to reveal that differ-
ent environment gives different dynamics of entanglement.
Firstly, a bosonic heat bath is considered. We remark that
this modeling of environment is universal [14,15] in the
sense that any environment weakly coupled to a system
can be approximated by a collection of harmonic oscilla-
tors. Secondly, we consider a spin environment consisting
of spin halves which can be considered as a fermionic en-
vironment. We let two types of bound entangled states
being initial state of the two qutrits in order to find the
different properties of bound entangled state during the
quantum dephasing. And initially the environments are
assumed to be at thermal equilibrium states, which helps
us to find effects of the thermal fluctuation on dynamics
of quantum entanglement.

This paper is organized as follows. In Section 2, we
consider the bosonic environment and give the analytical
results of FE and BE. we numerically study the BE to
illustrate the details of the dynamics of entanglement. In
Section 3, the two qutrits are coupled to a spin environ-
ment. Also the analytical and numerical results are given
to show the effects of coupling strength, temperature and
energy spectrum structure on the dynamical behaviors of
entanglement. The conclusion is given in Section 4.

2 Bound entanglement in a bosonic
environment

We start with a well-known model of the pure dephas-
ing [15,16], where two qutrits interact with the environ-
ment, which is modeled as a heat bath with many har-
monic oscillators of frequency ωj . The model Hamiltonian
reads

H =
L∑

j

Hj =
L∑

j

[
�ωjb

†
jbj + g(b†j + bj)(S1z + S2z)

]
,

(1)
where b†j and bj are creation and annihilation operators,
respectively, S1z and S2z are z components of two spin-1
operators, and g denotes the coupling strength between
the spins and the heat bath.

In order to study the dynamical process of entangle-
ment in our system, it is convenient for us to study the
time evolution in the interaction picture. Here,

H0 =
∑

j

�ωjb
†
jbj (2)

is the free Hamiltonian, and the interaction Hamiltonian

HI =
∑

j

g(b†j + bj)(S1z + S2z). (3)

Then, through the Wei-Norman method [17], the time evo-
lution operator in the interaction picture is factorized as,

U (t) =
∏

j

eiΦj(t)S
2
z D [zj(t)Sz ] , (4)

where Sz = S1z + S2z,

Φj(t) =
g2

�2ω2
j

(ωjt − sinωjt) , (5)

zj(t) =
g

�ωj

(
1 − eiωjt

)
(6)

and D(zjSz) = exp
[(

zjb
†
j − z∗j bj

)
SZ

]
is the displace-

ment operator.
Before discussing the dynamical process of entangle-

ment, we introduce two quantities to quantitatively study
entanglement. One is the negativity [18], which can be
used to study FE. For a state ρ, negativity is defined in
terms of the trace norm of the partial transposed matrix

N (ρ) =
‖ρT1‖ − 1

2
, (7)

where T1 denotes the partial transpose with respect to the
first subsystem. If N > 0, then the two-spin state is free
entangled. As an entanglement measure, the negativity is
operational and easy to compute, and it has been used to
study entanglement behavior in large spin systems [19–22].

In order to characterize BE, one can use the so-called
realignment criterion (cross-norm criterion) which proved
to be very efficient [23]. The operation of realignment on
the density matrix is just as (ρR)ij,kl = ρik,jl. A separable
state ρ always satisfies ||ρR|| ≤ 1. Thus, a quantity for the
BE can be defined as

R(ρ) = max
{
0, ||ρR|| − 1

}
. (8)

We call this the entanglement witness-like quantity for
BE. When the negativity vanishes the positive value of
R can quantify the nontrivial BE. However, since the re-
alignment criterion is a necessary criterion for separability.
Here it should be noted that, in this paper we only con-
sider the special kind BE which can be detected by R. The
realignment criterion is simple and computable, and it has
shown powerful ability to identify most bound entangled
state discussed in the literature. Thus, the quantity R
can give us some useful information about the properties
of bound entangled states. Furthermore, as a byproduct of
the criterion, one can estimate the degree of entanglement
of the quantum states by use of the quantity R [23].

2.1 Horodecki’s bound entangled state

In the following discussions, we consider the dynamical
evolution process of the two-spin 1 system, derived by
the Hamiltonian (1) with the initial state being in the
Horodecki’s bound entangled state [11].

2.1.1 Analytical results

The bound entangled state reads [11]:

ρa(0) =
2
7
P+ +

a

7
�+ +

5 − a

7
�−, (9)

2 ≤ a ≤ 5,



Z. Sun et al.: Decoherence in time evolution of bound entanglement 523

where

P+ = |Ψ+〉〈Ψ+|, (10)

|Ψ+〉 =
1√
3
(|00〉 + |11〉+ |22〉),

�+ =
1
3
(|01〉〈01| + |12〉〈12|+ |20〉〈20|),

�− =
1
3
(|10〉〈10| + |21〉〈21|+ |02〉〈02|) (11)

where |m1m2〉 , (m1, m2 = 0, 1, 2) are the eigenvectors of
Sz = S1z + S2z, with the corresponding eigenvalues m1 +
m2 − 2, respectively.

In reference [10], Horodecki demonstrated that

ρa is

⎧
⎪⎨

⎪⎩

separable for 2 ≤ a ≤ 3,

bound entangled for 3 < a ≤ 4,

free entangled for 4 < a ≤ 5.

(12)

And the density matrix for the initial state of the total
system is a simple direct product

ρtot (0) = ρa ⊗ ρE , (13)

where ρE is the density matrix of environment.
Driven by the time evolution operator (4), the system

will evolve from the bound entangled state ρa into the
state described by

ρ1,2 (t) = TrE

[
U (t) ρtot (0)U † (t)

]

=
2
21
[
(|00〉 〈00|+ |11〉 〈11|+ |22〉 〈22|)

+ (F1 (t) |00〉 〈11| + H.c.)
+ (F2 (t) |22〉 〈11| + H.c.)

+ (F3 (t) |00〉 〈22| + H.c)
]

+
a

7
�+ +

5 − a

7
�− (14)

where

F1 (t) = TrE

[
ρEU †

1 (t)U0 (t)
]

F2 (t) = TrE

[
ρEU †

1 (t)U2 (t)
]

F3 (t) = TrE

[
ρEU †

2 (t)U0 (t)
]

(15)

are decoherence factors [15]. The unitary operators U0 (t),
U1 (t), and U2 (t) are derived from equation (4) just by
replacing operator Sz = S1z + S2z with numbers −2, 0
and 2, respectively.

From the reduced density matrix (14), the realigned
matrix becomes

(ρ12(t))R =
1
21

(
A3×3 ⊕ B

(1)
2×2 ⊕ B

(2)
2×2 ⊕ B

(3)
2×2

)
,

A3×3 =

⎛

⎝
2 a 5 − a

5 − a 2 a
a 5 − a 2

⎞

⎠ ,

B
(k)
2×2 =

(
2Fk 0
0 2F ∗

k

)
(k = 1, 2, 3). (16)

Then, the witness-like quantity R is obtained as

R(ρ1,2) = max
{||ρR

1,2 (t) || − 1, 0
}

=
2
21

max
{√

3a2 − 15a + 19

+2 (|F1| + |F2| + |F3|) − 7, 0
}
. (17)

As mentioned above, the positive witness-like quantity can
quantify the nontrivial BE only when the negativity van-
ishes. Thus, we need to calculate the time evolution of
negativity.

We first make the partial transpose of ρ12 with respect
to the second system and obtain

(ρ12(t))T2 =
1
21

(
C3×3 ⊕ D

(1)
2×2 ⊕ D

(2)
2×2 ⊕ D

(3)
2×2

)
,

C3×3 =

⎛

⎜⎝

2 0 0

0 2 0

0 0 2

⎞

⎟⎠ ,

D
(k)
2×2 =

(
a 2Fk

2F ∗
k 5 − a

)
(k = 1, 2, 3). (18)

Then, from the above equation, we immediately obtain
the negativity

N (ρ1,2) =
1
42

3∑

k=1

max
{

0,

√
(2a − 5)2 + 16 |Fk|2 − 5

}
.

(19)
Thus, we have obtained analytical expressions of quantity
R and negativity N in terms of the three decoherence
factors. It is natural to see that if the decoherence factors
are zero, namely, the completely decoherence occurs, from
equations (17) and (19), we have R = N = 0. From equa-
tion (19), we can also see that in the region 3 < a ≤ 4,
negativity always gives zero at any time since |Fk| ≤ 1.

From the above discussions, once we know the deco-
herence factors, the two quantities R and N for detecting
entanglement can be determined. So, we are left to ob-
tain these decoherence factors. It is well-known that high
temperature may enhance the decoherence, thus it is rea-
sonable to choose a thermal equilibrium state as the initial
state of the heat bath, which is described by the density
matrix

ρE =
∏

j

ρEj =
∏

j

e−β�ωjb†jbj

Tr
[
e−β�ωjb†jbj

]

=
∏

j

(
1 − e−β�ωj

)
e−β�ωjb†jbj , (20)

where β = 1/kBT , kB is the Boltzmann’s constant, and
we choose kB = 1 for simplicity in the following.
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For the bosonic environment we calculate the deco-
herence factors in the coherent-state representation. The
P -representation for the thermal state is given by

ρE (0) =
∏

j

ρEj =
∏

j

∫
ρj (α) |α〉 〈α| d2α, (21)

ρj (α) =
1

π 〈nj〉 exp

(
− |α|2
〈nj〉

)
, (22)

where 〈nj〉 =
(
eβ�ωj − 1

)−1 is the thermal excitation
number of harmonic oscillators. From equation (15) and
using the P -representation, one obtains the modulus of
the decoherence factors [24]

|F1 (t) | = |F2 (t)| =
∏

j

|TrEj [ρEj D (2zj)]ei4Φj |

=
∏

j

e−2|zj |2(2〈nj〉+1)

= exp

⎡

⎣
∑

j

−8g2

�2ω2
j

(2 〈nj〉 + 1) sin2

(
ωjt

2

)⎤

⎦ ,

(23)

|F3 (t) | =
∏

j

Trj (ρBjD (−4zj)) = |F1 (t) |4. (24)

As expected, the above three factors are smaller than or
equal to unity. Now, we study the decoherence of BE, and
choose parameter a = 4 in the bound entangled state in
the following discussions. This choice of parameter max-
imize the quantity R. Then, equation (17) simplifies to

R(ρ1,2) =
2
21

max
{

0, 2
(
2 |F1| + |F1|4

)
+
√

7 − 7
}

.

(25)
Then, we find that the dynamic properties of BE is
thus directly related to the one single decoherence factors
|F1(t)|. By numerical calculation, one obtains the thresh-
old point of

|F1| ≈ 0.839829, (26)

before which the quantity R is larger than zero, and which
shows a sign of BE. From equation (23), we note that the
decoherence factors can be considered as quasi-periodic
functions and the periodic properties lie on the distribu-
tion of the frequencies.

In the following we will choose some special spectrum
distributions of the environment in order to study the dy-
namical behavior of the decoherence factor analytically. In
some cases we will find that the decoherence factors decay
as a Gaussian or a exponential form with time, and con-
sequently we know the dynamical behaviors of the quan-
tity R.

(i) Let us choose the frequency ωj in the region [0, ω] ,
where ω is an arbitrary value larger than zero. In the fol-
lowing part, we will do some approximate analysis in order
to obtain a compact function of the decoherence factor,

which will present the decay behavior of the factor clearly.
Since the frequency starts from zero, it can be achieved
for us to choose a sufficiently small cutoff frequency ωjc

to make sure that at a finite time, the decoherence factor
(� = 1)

|F1 (t) | ≤ exp
jc∑

j

[
−8g2

ω2
j

sin2

(
ωjt

2

)
(2 〈nj〉 + 1)

]

≈ exp

⎡

⎣−2g2

jc∑

j

(2 〈nj〉 + 1) t2

⎤

⎦ = e−γt2 , (27)

where

γ = 2g2

jc∑

j

(2 〈nj〉 + 1) . (28)

It can be seen that the decoherence factor displays a Gaus-
sian decay with time. Moreover one may observe that the
decay parameter γ increases at high temperature since
〈nj〉 is a monotonically increasing function of tempera-
ture T , and enlarging the strength g can also increase γ.

On the other hand, this Gaussian decay of the factors
is a generic behavior for short times, and which is inde-
pendent of the energy distribution of the environment.
Hornberger has given a discussion about the short time
case [25].

Substituting equation (27) to (25) leads to

R(ρ1,2) =
2
21

max
{
0, 2

(
2e−γt2 + e−4γt2

)
+
√

7 − 7
}

,

(29)
and it will decay to zero in a fixed time t0, which can be
determined from equation (26)

t0 = 0.4176/
√

γ. (30)

When the evolution time is larger than the threshold value
t0, the BE which is detected by R suddenly vanishes.

(ii) If we choose some continuous spectrum, the sum
in the decoherence factors (we assume � = 1) becomes

ln |F1 (t) | = −
∑

j

[
8g2

j

ω2
j

sin2

(
ωjt

2

)]
, (31)

where gj = g
√

(2 〈nj〉 + 1). Assume a spectrum distribu-
tion ρ (ωj) , the above equation becomes

ln |F1 (t) | = −
∫ ∞

0

8ρ (ωj) g2
j

ω2
j

sin2 ωjt

2
dωj . (32)

For some concrete spectrum distributions, interesting
circumstances may arise. For instance, when ρ (ωj) =
γ/(2πg2

j ) the integral converges to a negative number
proportional to time t, precisely, |F1 (t) | = exp(−γt),
|F3 (t) | = exp(−4γt). Thus, in this case, the reasonable
assumption on the energy distribution brings us a expo-
nential decay of decoherence factor with time. Thus R will
decay and tend to zero in this case.
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(iii) Now we will choose another more general dis-
tribution ρ (ω). Assume that all the coefficients gj are
equal: gj = G. If the frequencies lie within an inter-
val [ω1, ω2] and the distribution is homogeneous, we have
ρ (ωk) = L/ (ω2 − ω1), thus [26]

ln |F1 (t) | = −
∑

j

[
8g2

j

ω2
j

sin2 ωjt

2

]

= −
∫ ω2

2

ω1
2

sin2 (ωkt)
2G2ρ (ωk)

ω2
k

dωk

=
−2G2L

ω2 − ω1

∫ ω2
2

ω1
2

sin2 ωkt

ω2
k

dωk

≤ −2G2L

ω2 − ω1

4
ω2

2

∫ ω2
2

ω1
2

sin2 (ωkt) dωk

=
−2G2L

ω2
2

[
1 − 2 cos

(
ω2+ω1

2 t
)
sin
(

ω2−ω1
2 t

)

(ω2 − ω1) t

]
.

(33)

By substituting the above equation into equation (25), we
see that when the environment has sufficiently large size
L, the decoherence factor and the quantity R will decay
with time rapidly.

2.1.2 Numerical results

From the analytical results, we find that the quantity R
can decay with time to zero in some cases, which means
the BE detected by R will vanish in a finite time in these
cases. Next, in this section we resort to numerical calcu-
lation.

Firstly we should start from the decoherence factor in
equation (23). Now taking into account a finite interval
of frequencies one should consider two time scales: the
first one is tp = 2π/ω̄, where ω̄ is the mean frequency
of the interval, and this time scale will roughly give the
period of the oscillation of the sum in the exponent. The
second time scale is given as tr = 2π/∆ω, where ∆ω is
the width of the frequency interval. And all the terms in
the exponent tend to completely randomize at the time tr,
which means that all oscillations are strongly suppressed
around the time tr. Therefore, revivals of the decoherence
factors can be expected whenever tr/tp > 1. On the other
hand, the revivals will be suppressed whenever tr/tp < 1.
Easily, one can find that when the frequency interval starts
from zero, the condition tr/tp < 1 can be satisfied.

In Figure 1, we choose a random distribution of the en-
vironment energy ωj over a finite region [0, ω], and show
the dynamical behaviors of the quantity R. A Gaussian
decay is exhibited, and which is consistent with the analyt-
ical discussion. In this case, the BE (detected by R) occurs
complete disentanglement in finite time. Secondly, we can
see that increasing the coupling g can accelerate the decay
speed of the R just as expected in the analytical discus-
sion. From the physical point of view, we can interpret
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R

g=0.2
g−0.5
g=1

Fig. 1. (Color online) R versus time with different coupling
parameter g. The frequencies of heat bath are chosen randomly
in a low region ωj ∈ [0, 5]. The size of bath L = 200 and the
system is at a finite temperature T = 1.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2
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0.6
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0.9

1

t

|F
1|

Fig. 2. The modulus of the decoherence factor |F1(t)| versus
time with g = 2. The frequencies of heat bath are chosen ran-
domly in a region ωj ∈ [50, 55]. The size of the bath is L = 200
and the system is at the temperature T = 1. The horizontal line
in the figure corresponds to the threshold value |F1| = 0.8398.

why coupling to the environment will destroy the entan-
glement: the interaction between the qutrit system and the
environment drives the total system to be entangled, and
entanglement has an exclusive quality [27], which means
that the entanglement between the qutrits and the envi-
ronment will destroy the entanglement between the two
qutrits, thus stronger coupling is more effective to destroy
the entanglement.

In Figure 2 we numerically show the modulus |F1(t)|
versus time. The frequencies ωj are chosen randomly in a
region ωj ∈ [50, 55], in which the condition tr/tp > 1 is
satisfied. Then, the modulus |F1(t)| oscillates with time
and periodically crosses the horizontal line correspond-
ing to the threshold value F1 = 0.8398. Obviously, the
witness-like quantity R in equation (25) displays discon-
tinuous behavior and below the line it becomes zero.

Consequently, in Figure 3, we numerical calculate R
with the energy ωj randomly in the region [50, 50 + δ],
where δ is the width of the distribution. In this frequency
region the time scale ratio tr/tp > 1 and which will in-
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Fig. 3. (Color online) (a) R versus time with different coupling
parameter g. The frequencies of heat bath are chosen randomly
in a higher region ωj ∈ [50, 55]. The size of the bath L = 200
and the system is at the temperature T = 1. (b) We consider
the frequency distribution randomly in [50, 50+δ], the coupling
g = 2 and the system is at T = 1.

Fig. 4. (Color online) (a) Three dimensional (3D) diagram of
R versus time and temperature, with L = 200 and g = 3. The
region of frequencies is ωj ∈ [50, 58]. (b) Quantity R versus
time at different temperatures. (c) R versus temperature at a
fixed time t = 0.003 for different sizes.

troduce oscillations of the decoherence factors. For small
values of the coupling constants, as shown in Figure 3a,
R displays cyclic evolution and the maximum achievable
level of R is reduced. When the coupling strength is strong
enough, R decays rapidly to zero without revivals. More-
over, extended the time region, it remains zero. In this
case the BE which can be detected by R is completely
destroyed.

Figure 3b presents numerical results for different fre-
quency widths. From the figure, we see that when the fre-
quency width increases, the revival amplitude decreases.
It can be understood as that increasing the width δ can
decrease the time scale ratio tr/tp, and the randomized
frequencies will suppress the periodic oscillation of the fac-
tors.

We can also consider the thermal effect on the BE. Fig-
ures 4a and 4b show that the thermal fluctuation can de-
stroy entanglement and accelerate the decaying process of
R. With the joint effect of thermal fluctuation and strong

coupling g, R vanishes in a finite time without reviving. In
Figure 4c, we can see that with the temperature increasing
R decreases to zero, and enlarging the size of heat bath
can suppress R and accelerate the decay speed. Generally,
thermal fluctuation is harmful in holding quantum entan-
glement [28], and here thermal fluctuation also suppress
the BE which is detected by the quantity R.

2.2 Second bound entangled state

We choose another 3 × 3 bound entangled state as the
initial state of the two qutrits which was introduced by
Bennett et al. [29] from the unextendible product bases:

|φ0〉 =
1√
2
|0〉(|0〉 − |1〉),

|φ1〉 =
1√
2
(|0〉 − |1〉)|2〉,

|φ2〉 =
1√
2
|2〉(|1〉 − |2〉),

|φ3〉 =
1√
2
(|1〉) − |2〉)|0〉,

|φ4〉 =
1
3
(|0〉 + |1〉 + |2〉)(|0〉 + |1〉 + |2〉), (34)

from which the density matrix could be expressed as

ρ =
1
4

⎛

⎝I9×9 −
4∑

j=0

|φj〉〈φj |
⎞

⎠ . (35)

In this case, the dynamics of entanglement are determined
by six decoherence factors, and analytical results are not
available. We numerically calculate R and N , and the
results are shown in Figure 5.

In order to compare BE and FE, we have numerically
given the time behaviors of both quantity R and nega-
tivity N . We choose a frequency region ωj ∈ [50, 50 + δ],
which will induce periodic properties of R and N . In Fig-
ure 5a, we see that under some condition the negativity is
larger than zero, which is different from the case of the first
bound entangled state (9). The nonzero negativity implies
that the state is free entangled. This phenomena shows us
that by choosing some appropriate energy distribution of
the environment, the BE and FE can be realized alter-
nately. When the coupling g becomes stronger, as shown
in Figure 5b, both R and N will tend to zero in finite time
at last.

In Figure 5c, we extend the width of frequency region
to δ = 9. Expanding the energy region will prevent the re-
vivals of R and N . In Figure 5d, we show the behaviors of
R and N against temperature for a fixed time. With the
increasing temperature, quantity R and negativity N de-
crease gradually, and at last the thermal fluctuation com-
pletely destroys the BE (detected by R) and FE of the
two qutrits.
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Fig. 5. (Color online) We consider the BE and FE together.
And in the four subfigures the blue lines with circle markers
correspond to R and the red lines with × markers denote N .
(a) R and N versus time with coupling g = 1, the size of
environment L = 300, and the system is at temperature T =
10. The frequencies of heat bath are chosen randomly in the
region ωj ∈ [50, 55]. (b) Only changing the coupling to a larger
one g = 5, and the other parameters are the same as (a). In
(c), parameter δ = 9, the other parameters are the same as
(b). In (d), it shows R versus temperature at t = 0.005 and N
versus temperature at t = 0.115. g = 1 and L = 300.

3 Bound entanglement in a spin environment

Different environment should cause different decoherence
processes with distinct characters for the same qutrit sys-
tem. In this section, we choose another modeling of envi-
ronment which consists of L spin halves. The correspond-
ing model Hamiltonian reads [30]

H =
g

2
(S1z + S2z) ⊗

L∑

k=1

ωkσ(k)
z , (36)

where σ
(k)
z denotes the z-component of the Pauli vector

corresponds to the kth spin half. g and ωk together denote
the coupling strength between central qutrits and each
spin half in the environment. We notice that the above
model has been considered by Zurek [30] as a solvable
model of decoherence.

The time evolution operator can be expressed as:

U (t) =
L∏

k=1

exp(−itΛ̂ωkσ(k)
z ), (37)

where we define a special operator-valued parameter

Λ̂ =
g

2
(S1z + S2z) . (38)

3.1 Horodecki’s bound entangled state

In a similar vein as the discussions in the bosonic environ-
ment, we first study the disentanglement of Horodecki’s
bound entangled state (9) and give the analytical results.

3.1.1 Analytical results

Let us consider the whole system initially starts from a
product state

ρtot (0) = ρa ⊗ ρE , (39)

where the initial state of the two qutrits ρa is a bound en-
tangled state represented in equation (9), and ρE denotes
the initial state of the environment which is assumed to
be a thermal state described by the density matrix

ρE =
L∏

k=1

eβωkσ(k)
z

2 cosh(βωk)
. (40)

Then the reduce density matrix at time t can be given
by the same matrix as equation (14), and now the three
decoherence factors in this spin environment can be ob-
tained as

|F1 (t)| = |F2 (t)| =
L∏

k=1

|F1,k|

=
L∏

k=1

√

1 − sin2(gtωk)
cosh2(βωk)

, (41)

|F3 (t)| =
L∏

k=1

|F3,k|

=
L∏

k=1

√

1 − sin2(2gtωk)
cosh2(βωk)

. (42)

From equations (41) and (42) one can find each decoher-
ence factor |Fk| is less than unity, which implies that in
the large L limit, |Fk (t)| will go to zero under some rea-
sonable condition. Now, we make some further analysis by
introducing a cutoff number Kc similar to the discussion
in reference [31]. We define the partial product as

|F1 (t)|c =
Kc∏

k>0

|F1,k| ≥ |F1 (t)| , (43)

from which the corresponding partial sum ln |F1 (t)|c ≡
−∑Kc

k>0 |ln F1,k|. We can do some heuristic analysis in
some special conditions such as confining the coupling fre-
quencies are random in a region ωk ∈ [0, ω]. When the
cutoff number Kc is small enough, in a finite long time,
with some proper g we can pick out some tiny ωk to make
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gtωk begin a small one and achieve the approximation
sin2 (gtωk) ≈ (gtωk)2. At a finite temperature we can have

ln |F1 (t)|c =
1
2

Kc∑

k>0

ln
(

1 − sin2 (gtωk)
cosh2 (βωk)

)

≈ −1
2

(
Kc∑

k>0

ω2
k

cosh2 (βωk)

)
g2t2

= −γt2 (44)

where

γ =
1
2
g2

Kc∑

k

ω2
k

cosh2 (βωk)
. (45)

From equations (43) and (44), we find that the decoher-
ence factors decay in a Gaussian form with time, there-
fore from equation (25) it is apparent that the witness-like
quantity R will vanish in a finite time. On the other hand,
when we consider the short time case, with a cutoff fre-
quency ω

Kc
, the approximation condition gtωk � 1 can

be satisfied and then we can also obtain the Gaussian de-
cay [25]. In order to study the effect of the temperature,
we decrease the temperature quite nearly to T = 0 in
equation (44), then γ approaches zero thus the decoher-
ence factors will not decay with time. It implies that, in
this environment the temperature greatly affect the dy-
namics of BE. It is a rough calculation in our analysis,
nevertheless it gives us some constructive results.

3.1.2 Numerical results

If the frequency distribution are random in the region ωk ∈
[0, ω], the decoherence factors displays a Gaussian decay,
which is just as the analytical discussion in the former
section. And in reference [32], Gaussian decay was shown
numerically in various distributions of ωk in the region
[0, ω], thus we do not show the numerical result in this
case.

Instead we consider a random distribution in [50, 55]
which will introduce periodic properties to R. In Figure 6,
the oscillation of R is observed, and the maximum achiev-
able level of R is reduced. We show R versus time with
different widths δ of frequency distribution. Larger width
δ will weaken the oscillation of R.

In Figure 7, effects of the thermal fluctuation on the
dynamic of BE are studied. The 3D plot (a) displays a
flat at low temperatures about T < 10, which implies
that the R is stable against temperature and time in this
region. When temperature is high enough, R rapidly de-
creases to zero. In Figure 7b, we can see explicitly that
temperature plays an important role in the dynamics of
R in this spin environment. It is just like a control pro-
cess that when temperature is higher than some proper
value, R will decay sharply with time. This is a quite dif-
ferent property from the case of bosonic environment. At
a very low temperature, from equations (41) and (42), we

Fig. 6. (Color online) R versus time with different δ which is
the region widths of the couplings ωk ∈ [50, 50+δ] and g = 0.5.
The size of the spin environment is L = 300 and the system is
at the temperature T = 10.

Fig. 7. (Color online) (a) Three dimensional (3D) diagram of
the R versus time and temperature, with L = 300, g = 0.5
and ωk ∈ [50, 55]. (b) Several part sections of the 3D diagram.
Explicitly, it presents R versus time at different temperatures
of T = 1, T = 10 and T = 40. Panel (c) shows R decays with
temperature at a fixed time t = 0.005 with different sizes of
environment L = 300, 1000, and 5000.

know that decoherence factors tend to 1 and nearly not
change with time. Thus R is stable at low temperatures.
Physically speaking, when the temperature is very low,
the spins in environment are almost at the ground state
of σ

(k)
z . In this case the time evolution operator (37) can

not make the whole system entangled, thus the effect of
the environment on the two-qutrit entanglement is weak
at low temperature. In Figure 7c, we also plot R against
temperature for different size of environment. As we ex-
pected, the larger size of the spin environment accelerates
the decay of R.
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Fig. 8. (Color online) R versus time at different temperatures,
T = 10, T = 15 and T = 35. With the coupling g = 0.5,
environment size L = 300 and ωk ∈ [50, 55].

3.2 Second bound entangled state

We now consider that the two qutrits initially in the sec-
ond bound entangled state (35). We choose ωk ∈ [50, 55]
and study the finite-temperature effects on entanglement.
In Figure 8, we can see the similar phenomena with Fig-
ure 6, namely, at low temperature R only oscillates weakly
around the initial value. At higher temperature BE decays
sharply with time, and complete destruction and revivals
of R are also observed. We also study negativity, however,
it always keeps zero which means there does not exist FE
all the time.

4 Conclusion

In summary, we have studied the decoherence phenomena
of two-qutrit system couple to an environment when the
qutrit system is initially prepared in a bound entangled
states. Two typical pure dephasing systems, the bosonic
and the spin systems are considered in order to show the
different dynamical properties of entanglement induced by
different environments.

We used the realignment criterion to characterize BE,
and the PPT criterion to study FE. Beyond the negativ-
ity, we have introduced a novel witness-like quantity R to
study BE. Since the cross-norm criterion is only a neces-
sary criterion of separability, we only studied the bound
entanglement which can be detected by R. Two typical
bound entangled states are considered as the initial states
of the qutrits.

One of our central result is to express the quantity
R and negativity N in terms of three decoherence fac-
tors, and these factors are analytically obtained. In the
case of bosonic environments, the Gaussian decay and the
exponential decay of R can be analytically obtained in
some cases. And in the spin environment, we also find
that R can display a Gaussian decay under some approx-
imation. In both environments, the collapse and revivals
of the BE detected by R can be observed when we choose

the frequency distribution of the environment in a re-
gion with the mean frequency ω̄ is larger than the region
width ∆ω. Larger coupling strength, larger environment
size and higher temperature will enhance the disentangle-
ment process.

We find that different environment can induce great
differences in the time evolution of entanglement. When
the two qutrits start from the second bound entangled
state, we find the BE and FE appear alternately in the
bosonic environment with appropriate frequency region,
which is different from the case of spin environment. When
the qutrits start from the Horocecki’s bound entangled
state and in the spin environment, we find that R keeps
stable until the temperature is higher than some proper
value, and the remarkable effect of temperature on the
dynamical property of entanglement is greatly different
from the case of bosonic environment.

Finally we have to point out that since we are lack of
entanglement measure for two qutrits, the study of deco-
herence of entanglement here is incomplete. Nevertheless,
the realignment criterion and the PPT criterion are very
efficient to characterize the dynamical properties of entan-
glement. It will be interesting to consider decoherence of
BE under other decoherence processes such as dissipation,
and investigate the robustness of the BE.

We thank Hui Dong, T. Shi and L. Zhou for some valuable dis-
cussions. This work is supported by NSFC with Nos. 10405019,
10604002, 10474104, 90503003, 60433050, the specialized Re-
search Fund for the Doctoral Program of Higher Education
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sic Research Program (also called 973 Program) under grant
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