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Abstract. We investigate the spatial motion of the trapped atom with the electromagnetically induced
transparency (EIT) configuration where the two Rabi transitions are coupled to two classical light fields
respectively with the same detuning. When the internal degrees of freedom can be decoupled adiabatically
from the spatial motion of the center of mass via the Born-Oppenheimer approximation, it is demonstrated
that the lights of certain profile can provide the atom with an effective field of magnetic monopole, which
is the so-called induced gauge field relevant to the Berry’s phase. Such an artificial magnetic monopole
structure manifests itself in the characterizing energy spectrum.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 42.50.Vk Mechanical effects of light on atoms,
molecules, electrons, and ions – 14.80.Hv Magnetic monopoles

Modern concept of magnetic monopole in quantum me-
chanics was postulated by Dirac in 1931 [1]. Since that
time physicist have been making efforts to seek for the
magnetic monopole in real space for more than seventy
years. Though convincing evidence for its existence in
real space has not yet been found, the theoretical con-
ception of magnetic monopole has initiated many im-
portant progresses in both physics and mathematics. In
fact, in the extremely high energy scale that we have not
reached at present, the grand unification theory [2] pre-
dicted the magnetic monopole as a consequence of the
beautiful topology structure of Yang-Mills theory [3]. The
discovery of Berry phase also resulted in a physical imple-
mentation of magnetic monopole in the parameter space
[4]. Precisely speaking, the degeneracy point in the pa-
rameter space acts like a magnetic monopole caused by
an effective gauge field. The Berry phase based magnetic
monopole of this kind can be demonstrated in association
with the anomalous Hall effect of ferromagnetic metals [5]
where the slowly changing parameter is just the crystal
momentum. Now we consider an artificial realization of
magnetic monopole in real space.

For the quantum adiabatic process induced Berry
phase, it is well-known that when the slowly varying pa-
rameters are the dynamic variables of a subsystem in-
teracting with another subsystem with fast varying vari-
ables, the adiabatic separation of the two subsystems
via the Born-Oppenheimer approximation [6] can provide
the slow subspace with a scaler and a vector potentials
[7] called the induced gauge potential. In the neutron
spin precession experiment [8] the Aharonov-Borhm ef-
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fect caused by this vector potential was pointed out as a
manifestation of Berry phase. It is also recognized that if
we have a quantum system which can be considered as
a bead sliding along a rod which rotates slowly, the fast
motion of the bead can induce into the dynamics of the
bead a gauge potential which has the same form of the one
of a magnetic monopole [9]. One example is the induced
gauge field of nuclear rotation in a diatom [10]. Up to our
knowledge this is the unique example of the physical im-
plementation of magnetic monopole in the real space. It
is pointed out that in this system the parameters of the
“magnetic monopole” is determined by the character of
the molecular system and then can not be adjusted.

In this article, we will derive the monopole type in-
duced gauge field for the spatial motion of Λ−type atom
interacting with control and probe laser beams which drive
the transitions |e〉-|1〉 and|e〉-|2〉 respectively (see Fig. 1)
[11,12]. When the atom is cold enough, its internal degrees
of freedom can decouple adiabatically from the spatial
motion of the center of mass. Correspondingly, the Born-
Oppenheimer approximation provides the atomic center of
mass with an effective gauge field. This effect have been
studied by some authors [13–15]. Here we will show that
when the lights are artificially shaped in certain profiles,
effective magnetic monopole field can be created as a spe-
cial induced gauge field relevant to the Berry phase. We
predict that such an artificial magnetic monopole can be
observed experimentally through its special spectral struc-
ture. In fact, the prompt advance in experiments of trap-
ping and cooling atoms has provided a platform to test
our predictions exactly.

The Hamiltonian for our cold atom system driven by
two laser beams (see Fig. 1) can be written in the form
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Fig. 1. Three level atoms interacting with two laser beams.
The probe beam coupling the states |e〉 and |1〉 has an orbital
angular momentum. The atoms in state |1〉 and |2〉 are trapped
by the potential V , which is a function of the atomic position r.

H = P2/2M +Hf (r) with the local internal Hamiltonian

Hf (r) =
2∑

i=1

Vi (r) |i〉 〈i| +∆ |e〉 〈e|

+Ωp (r) |e〉 〈1| +Ωc (r) |e〉 〈2| + h.c. (1)

Here, r is the atomic position, ∆ the one-photon detun-
ning, Ωc (r) (Ωp (r)) the Rabi frequency of the probe (con-
trol) beam, and Vi (r) the trap potential of the ith inner
energy level. We assume that there is no trap for the level
e, i.e., Ve (r) = 0, and there is the same trap for both level
1 and 2, i.e., V1 (r) = V2 (r) = V (r). This assumption just
ensures the occupancy of the dark state.

To use the generalized Born-Oppenheimer approxima-
tion [8], we first diagonalize the interaction part Hf (r) of
the Hamiltonian and obtain the r-dependent eigenvalues
of Hf (r): E0 (r) = V (r) and

E± (r) =
1
2
(∆̃±

√
4 |Ωc|2 + 4 |Ωp|2 + ∆̃2) + V (r) . (2)

where ∆̃ = ∆̃ (r) = ∆ − V (r) is the local one-photon
detunning. The eigenstate corresponding to E0 (r) is the
r-dependent dark sate defined as

|D (r)〉 =
1
Ω

[Ωp |2〉 −Ωc |1〉] . (3)

where Ω = Ω (r) =
√
|Ωc|2 + |Ωp|2. The other two eigen-

states corresponding to the eigenenergies E± (r) can be
noted as |B± (r)〉. Their explicit expressions are not nec-
essary to the following discussion for the case that the
atom spatial motion is sufficiently slow so that the inter-
nal motion is not excited.

It is well-known that the atomic wave function in the
r-representation can be written as

〈r|Ψ〉 = ψ0 (r) |D (r)〉 +
∑

k=+,−
ψk (r) |Bk (r)〉 . (4)

When the energy gaps E±−E0 (r) between the dark state
|D (r)〉 and the states |B± (r)〉 are large enough, the Born-
Oppenheimer approximation is applicable. Under this ap-
proximation, the atom can be assumed to be “kept” in the

dark state |D (r)〉 at every position r and the eigen wave
function of the total Hamiltonian H can be written as
〈r|Ψ〉 = ψ0 (r) |D (r)〉 where ψ0 (r) satisfies the eigenequa-
tion

[
1

2M
(P + A0)

2 + V (r)
]
ψ0 (r) = Eψ0 (r) . (5)

Here, A0 (r) = −i 〈D (r)| ∇ |D (r)〉 is the induced gauge
potential corresponding to the dark state.

As in reference [15], we may assume that the probe
beam and the control beam have the same frequency and
propagate along the z-direction. Then the Rabi frequen-
cies Ωp (r) and Ωc (r) can be expressed as

Ωp = |Ωp| exp [i (k · r + gφ)] , (6)
Ωc = |Ωc| exp (ik · r) .

Here, the real parameters |Ωp (r)| and |Ωc (r) | are just
the slowly varying norms of the Ωp and Ωc and φ the
directional angle of the (x−y)-plane. Note that in writing
down equation (6), we have also assumed that the probe
beam has an orbital angular momentum gφ with g an
integer [16]. Then the induced gauge potential A0 of the
dark state can be written as

A0 =
g |Ωp|2
Ω2

∇φ. (7)

It is obvious that the orbital angular momentum number g
of the probe beam induces an effective magnetic monopole
of strength g.We thus conclude that the effective magnetic
charge of this induced monopole can be controlled artifi-
cially by adjusting the angular momentum of photons in
the probe beam.

When the norms |Ωp (r)| and |Ωc (r)| of the Rabi fre-
quencies take the forms

|Ωp|2 = ξ (r + z) , |Ωc|2 = ξ (r − z) (8)

where ξ is a constant positive coefficient [17], the potential
A0 has the same form as that of the potential created by
a monopole and can be expressed as

A0 =
g (1 + cos θ)

2r sin θ
eφ. (9)

Here, r, θ and φ are just the spherical polar coordinates.
In this case we have |Ωp| = |Ωc| = 0 at the origin r = 0.
This leads to an “accidental degeneracy” E± (0) = E0 (0)
at the origin where the energy levels cross. Thus the Born-
Oppenheimer approximation does not work well. For this
reason, in the following discussion, we only discuss the
atomic motion around the region far away from the origin.

For the original Dirac’s monopole, as is well-known,
the induced monopole potential A0 has singularity at the
string of θ = 0. But this singularity can be exorcized by
means of the approach developed by Wu and Yang [3,19].
To this end one needs to divide the total real space (except
the origin) into two regions (see Fig. 2), Ra: 0 ≤ θ <
π/2+δ and Rb: π/2−δ ≤ θ < π, which are two overlapping
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Fig. 2. The whole space excluding the origin O is divided into
two regions Ra and Rb. Ra is the space excluding the lower
circular cone (the region enveloped by the dashed line), Rb is
the space excluding the upper one (the region enveloped by
the dash dot line). The space outside of the two cones is the
overlap of Ra and Rb.

caps and have their well defined local coordinates. Then
the dark state |D (r)〉 and the wave function ψ0 (r) can no
longer be defined globally. Instead, |D (r)〉 and ψ0 (r) will
have different expressions in the different regions marked
by a and b. For instance the dark state can be defined as

|D (x)〉a = e−i(gφ) 1
Ω

(Ωp |2〉 −Ωc |1〉) (10)

in Ra and

|D (x)〉b =
1
Ω

(Ωp |2〉 −Ωc |1〉) (11)

in Rb. The Schrödinger equation (5) can be rewritten in
different caps as

[
1

2M
(P + A0α)2 + V (r)

]
ψ0α (r) = Eψ0α (r) (12)

in Rα for α = a, b. Here, ψ0a (r) and ψ0b (r) are the expres-
sions of ψ0 (r) in Ra and Rb respectively and the gauge
potential A0a (A0b) can be expressed as

A0a =
g (−1 + cos θ)

2r sin θ
êφ, A0b =

g (1 + cos θ)
2r sin θ

êφ. (13)

Apparently, A0a (A0b) is not singular in the region Ra

(Rb). In the overlap of Ra and Rb, we have a connection
ψ0b (r) = ψ0a (r) e−igφ due to the U(1)− guage. Such two
local wave functions in two caps with this connection in
the overlapping region are mathematically called the wave
section.

We now consider a simple case that the trap potential
V (r) is spherically symmetrical. In this case we can sepa-
rate the radial degree of freedom r and the angular degrees

0
z �

x

y

z

rO

Fig. 3. The atoms are trapped in the “discus form” region
whose center is the point (0, 0, z0). In this figure, O is the
origin of the coordinate.

of freedom θ and φ in the Schrödinger equation (12) by
invoking the generalized angular momentum operator [19]

L = r× (P + A0) − gr
2r
. (14)

It was proved [19] that ψ0 (r) = Rl (r) Yq,l,m can be ex-
pressed in terms of the monopole harmonics Y g

2 ,l,m (θ, φ)
which is the common “eigensection” of L2 and Lz with
respect to the eigenvalues l (l+ 1) and m. Here, we have
l = |g/2| , |g/2|+1, ... and m = −l,−l+1, ..., l. The radial
wave function Rl (r) satisfies the equation

[
−∂r

(
r2∂r

)

2Mr2
+
l (l + 1) − (g/2)2

2Mr2
+ V (r) − E

]
Rl = 0.

(15)
In the special case V = 0, when E > 0, the solution of
equation (15) is [20] a Bessel function R = (1/

√
kr)Jµ (kr)

with

µ =

√
l (l + 1) −

(g
2

)2

+
1
4
, k =

√
2ME. (16)

Next we consider a more interesting case. We assume the
the trap is a harmonic potential

V =
1
2
Mω2

z (z − z0)
2 +

1
2
Mω2ρ2 (17)

where z0 > 0 and ρ2 = x2 + y2 (see Fig. 3). In this case,
the atom is confined near a fixed point (0, 0, z0) in the
region Ra. Therefore, we need only consider the expres-
sion ψ0a of ψ0 in Ra. Since the trap potential is cylindri-
cally symmetrical, it is convenient to discuss this problem
with the cylindrical coordinate (ρ, z, φ). Because of the
cylindrical symmetry of V and A0, the wave function ψ0a

has the factor exp (imφ) (m = 0,±1,±2, ...) which is just
the generator of the rotation along z-axis. Then we have
ψ0a = Tm (ρ, z) exp (imφ) where Tm (ρ, z) satisfies the ra-
dial Schrödinger equation

1
2M

[
−∂2

ρ − 1
ρ
∂ρ − ∂2

z + Fm (ρ, z)
]
Tm + V Tm = ETm.

(18)
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Here, the function Fm (ρ, z) is defined as

Fm (ρ, z) =

(
m

ρ
+ g

z −
√
ρ2 + z2

2
√
ρ2 + z2ρ

)2

. (19)

If the trap along z-axis is strong enough, i.e., ωz is large
enough, we can make the approximation Fm (ρ, z) ≈
Fm (ρ, z0). It is obvious that Fm (ρ, z0) can be expanded
as a Laurent series of ρ. We also assume that the trap
localized in (x − y)-plane is also strong enough that we
can only keep Fm (ρ, z0) up to the term proportional to
ρ2. Thus approximately we have

Fm (ρ, z) ≈ m2

ρ2
+

g2

16z4
0

ρ2 − mg

2z2
0

, (20)

and we can solve equation (18) to obtain the energy spec-
trum

Em,nρ,nz = (2nρ + |m| + 1) ω̃ − mg

4Mz2
0

+
(
nz +

1
2

)
ωz

(21)
in terms of the radial quantum number nρ and the vertical
one nz (= 0, 1, 2, ...), where

ω̃ =

√

ω2 +
g2

16M2z4
0

(22)

is the modified radial frequency for the two dimensional
reduced radial oscillator. The corresponding radial fre-
quency shift ω̃−ω ∼ g2/32ωM2z4

0 can be regarded as the
first observable effect of the artificial magnetic monopole.
The additional term −mg/4Mz2

0 in the energy spectrum
of the spatial motion of atom may reflect its effect in re-
alistic experiment. The corresponding wave function can
also be obtained explicitly:

ψ
m,nρ,nz

0a = Nnze
imφρ|m|e−M(ω̃+ωz)ρ2/2

× F
(−nρ, |m| + 1,Mω̃ρ2

)
Hnz

(√
Mωzz

)
. (23)

Here, Nnz =
[√
Mωz/

√
π2nznz!

] 1
2 , F is the confluent hy-

pergeometric function and Hnz the Hermit function.
Since the above results are achieved with the gener-

alized Born-Oppenheimer approximation, we should in-
vestigate the condition under which this approximation is
applicable. The adiabatic condition can be obtained semi-
classically. For simplicity, we only consider the case∆ = 0.
In our problem, the sufficient condition of adiabatic ap-
proximation is

|〈D|∇ |B±〉 · v| · |E± − E0|−1 � 1, (24)

where v is the velocity of the atomic center of mass (c.m).
By straightforward calculation, it can be obtained that
the upper limit of |〈D| ∇ |B±〉 · v| is (1/2r)(|vρ| + |vz| +
g |vφ|) ∼ gv/r. Here, vρ, vz and vφ are the components
of the c.m velocity in the cylindrical coordinate and v the
speed rate. On the other hand, the lower limit of |E±−E0|

is |√|Ωc|2 + |Ωp|2 + (V/2)2 − V/2|. Then the condition
(24) can be rewritten as

g

r

√
2E
M

� 1
2
(
√

8ξr + E2 − E). (25)

Here we have used the fact that the upper limit of v is√
2E/M and the upper limit of V is the atomic energy E.
The adiabatic condition (25) can be satisfied in some

realistic cases. For instance, we confider the cesium atoms
trapped around the origin r = 0. We assume ξ = π ×
1017 (Hz)2m−1 and the atomic energy E ∼ 10−27 J. Then
it is easy to see that when the optical angular momen-
tum g ∼ 101, the adiabatic condition is satisfied when
r > 10−4 m. Therefore, if the scale of the atomic en-
semble is r ∼ 10−3 m, the adiabatic approximation holds
in almost all the region of the atomic motion. Another
case discussed above is that the cesium atoms are trapped
around the point (0, 0, z0) by the harmonic potentials. We
assume z0 ∼ 10−4 m, g ∼ 102 and the frequencies of the
trap potentials are ωz ∼ 106 Hz and ω ∼ 102 Hz. Then
the adiabatic condition can be met again if E and ξ has
the same values as mentioned above. Therefore, the in-
duced change of zero point energy −mg/ (

4Mz2
0

)
is about

101 Hz. The frequency shift ω̃−ω caused by the monopole
potential will have the same order with ω.

Before concluding this paper we make a remark
on the results that we have obtained. We assume a
group of more universal conditions |Ωp|2 = ξ (r + z),
|Ωc|2 = ξ [(2η − 1) r − z] where η > 1 are satisfied. In
this case, the induced gauge potential will be A0 =
g (1 + cos θ) êφ/(2ηr sin θ). As we have shown above, to
eliminate the singularity of A0, a relationship between
the dark state and wave function in the regions Ra and
(Rb) should be introduced: |D〉a = e−igφ|D〉b, ψ0a (r) =
ψ0b (r) eigφ/η. It is apparently that ifg/η is not an integer,
the dark state and wave function are not single valued
function in Ra (but their product is single valued). There-
fore, when solving the Schrödinger equation (12) in Ra

we should change the single valued condition ψ0a|φ=0 =
ψ0a|φ=2π into ψ0a|φ=0 = ψ0a|φ=2πe

i2gπ/η. Obviously, the
condition that the wave function are single valued in the
whole space (g/η is an integer) is just corresponding to
Dirac’s quantization condition.
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