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Abstract. Spin-orbit coupling (SOC) can mediate the electric-dipole spin resonance (EDSR) within an a.c.
electric field. By applying a quantum linear coordinate transformation, we find that the essence of EDSR
could be understood as a spin precession under an effective a.c. magnetic field induced by the SOC in the
reference frame, which is following exactly the classical trajectory of this spin. Based on this observation,
we find an upper limit for the spin-flipping speed in the EDSR-based control of spin. For two-dimensional
case, the azimuthal dependence of the effective magnetic field can be used to measure the ratio of the
Rashba and Dresselhaus SOC strengths.

1 Introduction

It is of great importance to prepare and manipulate the
pure quantum state of single particles for quantum infor-
mation processing and even for the future quantum de-
vices using the new degrees of freedom, such as the spin.
Through Coulomb blockade, the single electron state in
the charge degree of freedom has been realized in a quan-
tum dot (QD) system [1–8]. In the last decade, the spin-
tronics provides a new paradigm for quantum operations
of spin in addition to the electric charge [9,10]. However,
the issue of how to perfectly control the quantum state of
a single spin in a QD is still challenging.

The conventional method to flip the spin is based on
the electron spin resonance (ESR) [11], where resonant
magnetic field pulses are applied. Different from an a.c.
electric field, which could be generated by exciting a lo-
cal gate electrode, a strong and high-frequency magnetic
field is very difficult to apply effectively to a micro/nano-
structure with a QD [12,13]. To overcome this problem,
physicists try to control electron spin in another fashion
with an electric field. Rashba and Efros [14,15] proposed
to realize indirect control of the electron spin by elec-
tric field through spin-orbit coupling (SOC) [16,17]. With
SOC, the moving electron spin seems to experience an ad-
ditional effective magnetic field induced by the a.c. electric
field. When the frequency of the electric field matches the
Zeeman splitting of the electron spin, the coherent control
of a single electron spin can be achieved with an electric
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field indirectly [18–23]. This spin resonance in the effec-
tive magnetic field is called electric-dipole spin resonance
(EDSR) [24].

There is a lot of literature [25–29] on the theoretical
explanation of EDSR effects. An intuitive picture of EDSR
is given by Golovach et al. [25]. They first eliminated the
SOC terms by making the Schrieffer-Wolff transformation
to the first order of perturbation theory, and then they
found that the electric field would behave as an effective
magnetic field. In this paper, we revisit this enlightening
physical explanation by studying the spin dynamics in a
reference frame which follows exactly the classical trajec-
tory of a driven electron trapped in a harmonic potential.
For a QD in a one-dimensional (1D) nanowire, the elec-
tron is constrained in a harmonic trap and driven by an
a.c. electric field. When the trap is tight enough, the in-
fluence of the high-frequency free oscillation of the elec-
tron on the dynamics of the spin can be neglected, but
the forced oscillation of the electron under the a.c. elec-
tric field with lower frequency provides the spin with an
effective resonant magnetic field through SOC. If the a.c.
electric field is along the axis of the wire, the magnetic field
induced by Rashba SOC is perpendicular to the electric
field, while the one induced by Dresselhaus SOC is paral-
lel to the electric field. The induced magnetic field has the
same frequency as the driving electric field, and the coher-
ent controlling of the spin can then be realized when the
electric field is resonant with the Zeeman splitting (ωz) of
the electron spin. Our investigation here shows that for
a tight trap, one can enlarge the Zeeman splitting of the
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Fig. 1. The electron moving in a one-dimensional nanowire is
constrained in a harmonic trap. The electron spin is initially
polarized along the z-axis by an external static magnetic field
B. When an a.c. electric field Ex(t) is applied to drive the
electron, the electron spin will experience an additional mag-
netic field induced by the SOC. In our case, the magnetic field
induced by Rashba SOC is perpendicular to the electric field.

electron spin, in addition to increasing SOC strength or
electric driving strength, to increase the spin-flip speed.
But there exists an upper limit (∼10−2ωz) of the effective
Rabi frequency of the coherent control of the spin with
EDSR [30].

For a two-dimensional (2D) QD system, we find that
the induced a.c. magnetic field becomes azimuth depen-
dent. If the external static magnetic field is weak and the
2D harmonic trap is isotropic, we discover that the mag-
netic field induced by Rashba SOC is still perpendicu-
lar to the electric field. The a.c. magnetic field induced
by Dresselhaus SOC lies on the mirror-image line of the
a.c. electric field with respect to the x-axis. Based on the
above understanding of the EDSR, we can realize the pre-
cise control of spin precession on the Bloch sphere sur-
face. On the other hand, we can also measure the ratio
of the Rashba and Dresselhaus SOC strengths by using
the azimuthal dependence of the induced magnetic field
as proposed in reference [15].

In the next section, we present our model and show
the origin of the effective magnetic field in EDSR. In Sec-
tion 3, the effective spin precession under the electric field
through SOC is presented. We investigate how to speed
up the coherent spin control with EDSR in Section 4. In
Section 5, we study the coherent spin control via EDSR
in a 2D QD system. Finally, the summary of our main re-
sults is given in Section 6. Some detailed calculations are
displayed in the Appendices.

2 The electric-dipole spin resonance

We first take the 1D nanowire QD system, where an
electron is confined in an 1D harmonic trap along the
x-direction with frequency ω (Fig. 1), as an illustration
to explore the physical mechanism of EDSR. The model
Hamiltonian reads [31,32],

H = �ωa†a− iα̃
(
a† − a

)
σy +

1
2

�ωzσz + ξ
(
a† + a

)
cos νt,

(1)

where a =
√
meω/(2�)[x+ ipx/(meω)] is the annihilation

operator of the vibration degree of the electron with co-
ordinate (momentum) x (px) and the effective mass me,
α̃ = α

√
meω/(2�) with the Rashba SOC constant α,

ξ = eEx

√
�/(2meω) is the effective driven strength of the

a.c. electric field −Ex cos νt. An external static magnetic
field with strength B is applied along the z-direction to
polarize the electronic spin. ωz = gμBB/� is the Zeeman
splitting of the electron spin with the Bohr magneton μB

and the effective g-factor g. Here, we just take the Rashba
SOC into account, because our approach can be general-
ized to the Dresselhaus case straightforwardly. Hereafter,
we take � = 1 for convenience.

Now, we consider the dynamics of a electron spin pre-
cession in a reference frame following exactly the classi-
cal trajectory of the driven electron in a harmonic trap.
To this end, we introduce a time-dependent displacement
transformation [33]

D[f(t)] = ef(t)a†−h.c. ≡ e−i[pxxc(t)+xpc(t)], (2)

where pc(t) = mẋc and

xc(t) = −
√

2
meω

ωξ

ω2 − ν2
cos νt,

corresponds to the classical trajectory of a driven
harmonic oscillator (DHO) described by the classical
Hamiltonian Hc (please refer to Eq. (A.8) in Appendix A
for details). Here, f(t) = −(

√
meω/2xc + ipc/

√
2meω)

represents a complex displacement in the phase space. As
displayed in Appendix A, the above unitary transforma-
tion D(t) = D[f(t)] is equivalent to the quantum linear
coordinate transformation [34,35]

x′ = x− xc(t), t′ = t, ∇′ = ∇, ∂

∂t′
=

∂

∂t
+ ẋc∇′, (3)

accompanied by a corresponding transformation of the
wave function ψ′(x′, t′) = ψ(x, t)exp(−iφ), with φ =
[pcx

′ + (1/me)
∫ t′

0 p2
c(τ)dτ ], as the requirement of covari-

ance. The above transformation D[f(t)] gives the equiva-
lent Hamiltonian HD = DHD† − iD

(
∂tD

†) in the refer-
ence frame moving along the classical path xc(t) as

HD = ωa†a−iα̃(a†−a)σy−ηα̃σy sin νt+
1
2
ωzσz. (4)

Here, η = 2νξ/(ω2 − ν2) is a dimensionless parame-
ter and we have neglected a time-dependent c-number
Ec = −(ωξ2 cos2 νt)/(ω2 − ν2), which corresponds to the
classical energy of this DHO.

It is found that η is proportional to the driving
strength ξ and will be greatly enhanced if the driving
frequency ν is nearly resonant with the frequency of the
trap ω. It follows Hamiltonian (4) that, in the new ref-
erence frame, the forced oscillation of the electron under
the a.c. electric field induces a time-dependent spin flip-
ping term with the same frequency as the electric field.
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3 Effective spin precession

In experiment [21,22], the electron is tightly constrained
in the trap with orbital transition energy ∼5–9 meV (cor-
responding oscillating frequency ω ∼ 1012–1013 Hz), the
SOC strength α̃ ∼ 109 Hz, the Zeeman splitting ωz is
∼1010 Hz with B ∼ 0.1 T and g ≈ 9, and the driving fre-
quency ν is resonant with ωz. Thus, we have the condition
ω � ωz ≈ ν > α̃, and then we can adiabatically eliminate
the degree of the freedom of the vibration part to obtain
the effective spin Hamiltonian.

The formal solution of the Heisenberg equation of a(t)
reads

a(t) = a(0)e−iωt − α̃e−iωt

∫ t

0

σy(τ)eiωτdτ. (5)

To estimate the value of the integral in equation (5), we
first analyze the oscillatory behavior of σy(t). In the case
of ω � ωz ≈ ν > α̃, the SOC in equation (4) will
contribute a fast oscillating term in the motion equa-
tion of the spin operators, and the strength of the res-
onant term ηα̃ is much smaller than the Zeeman split-
ting ωz, i.e., ηα̃ � ωz. Thus, the zeroth order of the
spin operator σy(t) is of ∼exp(±iωzt), then the mag-
nitude of the integral in equation (5) is approximated
as α̃/(ω±ωz) � 1. As a result, the influence of the SOC on
the dynamics of the vibration part can be neglected. Then
we can take the semi-classical approximation by replac-
ing a and a† in Hamiltonian (4) with 〈a(0)〉D exp(−iωt)
and 〈a†(0)〉D exp(iωt) (〈· · · 〉D means averaging over the
displaced initial state), respectively. For simplicity, we as-
sume the system is in the state |ψ(0)〉 = |0〉 ⊗ |↑〉, and
then the effective Hamiltonian for the spin part reads

Heff
s =

1
2
ωzσz − ηα̃σy sin νt+

2ω
ν
ηα̃σy sinωt. (6)

The free oscillation and the forced oscillation of the elec-
tron generate two effective a.c. magnetic fields Bfree =
(2ω/ν)Bind sinωt and BE = −Bind sin νt for the spin, re-
spectively, with Bind = ηα̃/(gμB). The strengths of these
two effective magnetic fields are both proportional to α̃ξ.
In a 1D case, the effective magnetic fields induced by
Rashba SOC (both Bfree and BE) are perpendicular to
the electric field, and the magnetic fields induced by the
Dresselhaus SOC are parallel to the electric field.

We find that the effective magnetic field BE generated
by the forced oscillation of the electron under the electric
field through SOC has the same frequency ν as the elec-
tric field. The effective field Bfree generated by the free
oscillation of the electron has the same frequency as the
frequency of the harmonic trap ω. Although the strength
of Bfree is 2ω/ν times larger than BE, it contributes little
to the spin control because its frequency ω is largely de-
tuning from ωz. Therefore, in the case of ω � ωz ≈ ν > α̃,
the dynamics of the spin can be described by the following
Hamiltonian,

HRWA
s =

1
2
ωzσz − ηα̃

2
(
σ+e

−iνt + σ−eiνt
)
. (7)
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Fig. 2. We take the SOC constant as the unit α̃ = 1. ω = 250,
ωz = 2.5, ν = 2.5, and ξ = 50. (a) The solid blue (dashed red)
line is the probability of the |↑〉 (|↓〉) state of the spin, which is
directly calculated via HD. (b) Probabilities of the spin state
|↑〉 obtained by different methods are presented. The solid blue
line is obtained from the numerical calculation via HD. The
dashed gray line is obtained from Heff

s . And the thin black line
is obtained from HRWA

s with rotating wave approximation.

Here, we have neglected the influence of the fast oscillating
term Bfree and taken the rotating approximation (RWA)
of the resonant term associated with BE.

To demonstrate the coherent control of the electron
spin, we turn to numerical calculations. The spin is ini-
tially polarized in the state |↑〉 and its wave function at
time t can be expanded as |χ(t)〉 = C↑(t) |↑〉 + C↓(t) |↓〉.
Here, |C↑(t)|2 (|C↓(t)|2) denotes the occupation probabil-
ity of the state |↑〉 (|↓〉). In the case of ω � ωz = ν > α̃,
the perfect Rabi oscillation of the spin with frequency
ηα̃ ∼ (10−4–10−3)α̃ is observed when the driving fre-
quency ν is resonant with ωz as shown in Figure 2a. In
Figure 2b, the solid blue line is obtained directly from the
Hamiltonian HD by tracing off the degree of freedom of
the vibration, the dashed gray line is obtained from Heff

s ,
and thin black line is obtained from HRWA

s . These three
lines coincide with each other very well, except for some
high-frequency fluctuation around the thin black line (ob-
tained fromHRWA

s ) as shown in the subgraph of Figure 2b.
Thus, the dynamics of the spin is well described by HRWA

s

in the regime ω � ωz = ν > α̃. Similar to ESR, the elec-
tron spin could be well controlled with electric field via
EDSR.

4 Coherent-spin-control speed enhancement

In the preceding sections, we found that one can coher-
ently control the electric spin with electric field through
EDSR just like with magnetic field. Next, we will explore
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Fig. 3. Here, we take the SOC strength as the unit α = 1.
(a) The flipping probabilities for different detunings δ between
the driving electric field and the Zeeman splitting of the elec-
tron spin are presented. The parameters are taken as ω = 100,
ωz = 10, ξ = 10. The dotted red line described the resonant
case with ν = ωz, δ = 0 and η = 0.0202. The solid gray line
described the case with ν = 9.9, δ = 0.1 and η = 0.02. The
thin black line described the large detuning case with ν = 9,
δ = 1 and η = 0.0181. (b) The flipping probabilities for differ-
ent detunings Δ̃ between frequency of the harmonic well and
the Zeeman splitting of the electron spin are presented. Here,
ω = 100, ξ = 10, and the resonance condition δ = 0 is always
guaranteed. And the other parameters are: ν = ωz = 10 with
Δ̃ = 90 for the dotted red line, ν = ωz = 90 with Δ̃ = 10 for
the dash-dotted green line, ν = ωz = 99 with Δ̃ = 1 for the
thin black line, ν = ωz = 100 with Δ̃ = 0 for the solid gray
line.

how to speed up coherent spin control with EDSR. First,
we give the conditions to realize coherent control of elec-
tron spin with EDSR. For a spin-1/2 system described by
Hamiltonian (7), the flipping probability |C↓(t)|2 for the
Rabi oscillation reads

|C↓(t)|2 =
(ηα̃)2

δ2 + (ηα̃)2
sin2

(√
δ2 + (ηα̃)2t/2

)
, (8)

where δ = ωz − ν is the detuning between the driven fre-
quency and the Zeeman splitting of the electron spin. As
shown in Figure 3a, the amplitude of the Rabi oscillation
tends to 1 when δ � ηα̃, while the amplitude tends to
0 when δ � ηα̃. As a result, the flipping probability is
deeply suppressed by the detuning δ.

Similarly, when the detuning between the frequencies
of harmonic trap and the Zeeman splitting Δ̃ = ω−ωz �
ωηα̃/ν is large, the effective magnetic field Bfree hardly
affects the spin-flipping process. As a result, the influ-
ence of the free oscillation of the electron on the dynam-
ics of the spin can be neglected in the former section.

In addition, the “fractional-frequency EDSR” effect has
recently been discovered [36–39], in which the frequency
of the a.c. electric field ν is a fraction of the Zeeman split-
ting of the spin gμBB (i.e., ν = gμBB/n, n is a posi-
tive integer) instead of being resonant with it. Actually,
the “fractional-frequency EDSR” is another different res-
onance mechanism. The core of this effect lies in that the
induced a.c. magnetic field has one component parallel to
the static magnetic field. This component does not flip the
spin but changes its energy splitting frequently. When the
frequency of the a.c. magnetic field satisfies ν = gμBB/n,
a resonance occurs [40]. A similar method was used to
control the coupling and its surroundings [41].

Starting from the original Hamiltonian (1), we numeri-
cally study the influence of the detuning Δ̃ to the coherent
controlling of the spin. It is discovered that when Δ̃� α̃
and δ � ηα̃, the coherent controlling of electron spin is
realized, as shown by the dotted red line (Δ̃ = 90α̃) in Fig-
ure 3b. When Δ̃ � α̃, the SOC will destroy the coherence
of the spin, and then collapse and revival phenomenon ap-
pear. As shown by the thin black line (Δ̃ = 1α̃) and the
solid gray line Δ̃ = 0 in Figure 3b, the coherent control-
ling of the electron spin is destroyed by SOC. As a result,
to realize perfect spin control through EDSR, two nec-
essary conditions must be guaranteed: (1) the frequency
of the a.c. electric field must be resonant with the Zee-
man splitting of the spin in the external magnetic field,
i.e., δ � ηα̃; (2) the frequency of the harmonic trap must
be largely detuned from the Zeeman splitting of the spin,
i.e., |α̃/Δ̃| � 1.

According to equation (8), spin-flip speed is character-
ized by the Rabi frequency:

ΩR =
1
2
ηα̃ =

ωzξα̃

ω2 − ω2
z

, (9)

where we have used the resonance condition δ = ωz − ν =
0. It is found that this Rabi frequency ΩR is proportional
to the strengths of the SOC α̃ and electric driving ξ.
Hence, we should increase α̃ and ξ to enlarge ΩR. But
if the driving strength ξ � ω, the electron will flee from
the harmonic trap. When α̃ is large enough to break the
large detuning condition |α̃/Δ̃| � 1, the free oscillation of
the electron and the spin precession will be highly corre-
lated, thus the SOC will destroy the coherent control ac-
cording to Hamiltonian (4). For safety, we require ξ � ω

and 0 < |α̃/Δ̃| � 0.01 to guarantee the perfect Rabi oscil-
lation of the electron spin in the trap. From equation (9),
ΩR monotonically increases with ωz with an upper limit of
10−2ωz for this case (see Fig. 4). Thus, for a very large ω,
one can increase ωz, besides the driving strength ξ and
SOC strength α̃, to speed up the spin flipping.

5 Two-dimensional quantum dot system

For the two-dimensional (2D) QD system, the magnetic
field induced by the a.c. electric field via SOC becomes
azimuth-dependent and much more complicated. We can
utilize this azimuth dependence to measure the Rashba
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Fig. 4. Here, we take the SOC strength as the unit α = 1.
The Rabi frequency of the coherence spin flip increases with
ωz. The parameters are taken as ξ = ω = 500.

and Dresselhaus SOC strength ratio and realize a perfect
single electron spin qubit operation through EDSR.

The Hamiltonian of the electron confined in a 2D har-
monic trap H = Hv +Hs +Hso +V (t) is composed of four
parts: the vibration part of the electron is described with

Hv =
1

2me

[
p +

e

c
A(r)

]2

+
1
2
meω̃

2
xx

2 +
1
2
meω̃

2
yy

2, (10)

where p = pxex + pyey is the in-plane momentum, ω̃x(y)

the frequency of the harmonic trap of x(y)-direction,
and A(r) = B(0, 0, y cosϕB − x sinϕB) the vector
potential for the in-plane static magnetic field B =
B(cosϕB , sinϕB , 0). The second part Hs = �gμBB · σ/2
describes the Zeeman splitting of the electron spin in
B = B(cosϕB , sinϕB , 0). For the third part, both the
Rashba and Dresselhaus SOC with strength αR and αD,
respectively, are taken into account

Hso = αR(σxpy − σypx) + αD(σypy − σxpx). (11)

The last part V (t) = −er·E(t) describes the in-plane elec-
tric drive with E(t) = − (Eex cosϕE + Eey sinϕE) cos νt.

After a unitary transformation similar to the 1D case,
the a.c. electric field will be converted to an a.c. mag-
netic field with the same frequency (please refer to Ap-
pendix B for details). In the experiment [18], the external
static magnetic field is weak, i.e., the frequency modifi-
cation induced by the vector potential can be neglected
ωc = eB/(mec) � ω̃x(y) [42]. In this case, the effec-
tive spin Hamiltonian for the isotropic 2D harmonic well
ω̃x = ω̃y = ω could be simplified to

Heff
s =

1
2
gμB [B + BR(t) + BD(t)] · σ, (12)

where

BR(t) = BR sin νt(sinϕE ,− cosϕE , 0)

and BD(t) = BD sin νt(− cosϕE , sinϕE , 0) are the mag-
netic fields induced by Rashba and Dresselhaus SOC re-
spectively, with strength

BR(D)(t) =
2�νeEαR(D)

gμB (ω2 − ν2)
. (13)

Fig. 5. The 2D electric field caused spin precession on the
Bloch sphere. (a) Schematic of the directions of the induced
magnetic fields. (b) The trajectory of the spin from the ini-
tial point ρ(0) = |↑〉 〈↑| to the final state ρ(θ, φ) with θ =
gμBBRt/2 and φ = νt + ϕE on the Bloch sphere surface.

It is observable that BR is always vertical to the electric
field E, but that BD is vertical to E only when the polar-
ization angle of the electric field is ϕE = nπ/2+π/4 (n =
0, 1, 2, 3) (see Fig. 5a). When ϕE = 3π/4 or 7π/4, BR

and BD are parallel, BR and BD are anti-parallel when
ϕE = π/4 or 5π/4. Therefore, one can measure the ratio
of the SOC strength αR/αD by measuring the different
Rabi frequencies for ϕE = π/4 and ϕE = 3π/4 [15].

In addition, the direction of the effective magnetic field
can be controlled by tuning the direction of the a.c. elec-
tronic field. For the case where the static magnetic field
along z-direction B = B(0, 0, 1) instead of the in-plane
one is applied, the induced magnetic fields are nearly the
same. If there is only one type of SOC (e.g., Rashba one),
we can use the electric field to induce an effective magnetic
field in any needed direction, which controls the evolution
of the spin state from a starting point to anywhere we
wanted on the Bloch sphere. If the electric field is resonant
with the Zeeman splitting of the spin (i.e., ν = gμBB, the
dynamics of the spin can be described by the Hamiltonian

HRWA
s =

gμB

2
Bσz−BR

2

[
e−i(ϕE+νt)σ++ei(ϕE+νt)σ−

]
.

(14)
An arbitrary target state ρ(θ, φ) = (1 + n · σ)/2 with
n = (sin θ cosφ, sin θ sinφ, cos θ) on the Bloch sphere
can be realized through EDSR by choosing proper time
gμBBRt/2 = θ and proper angle ϕE = φ − νt from the
starting point ρ0 = |↑〉 〈↑| (see Fig. 5b). Namely, the elec-
tric field can perform a perfect single-qubit operation in
the spin system through EDSR.

6 Summary

For the physical mechanism of EDSR in 1D nanowire QD
or for a 2D case, we provide an intuitive explanation with
an exact picture in physics based on the reference frame
transformation: the electric field can behave as a magnetic
field in the reference frame following exactly the classical
trajectory of a DHO. This electric-magnetic duality can
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generally be found in the relativistic transformation of
Maxwell equations. We also notice that SOC is in essence
the consequence of relativistic quantum theory in the low-
velocity limit. Thus our approach presented in this paper
is, in principle, consistent with the point of view of special
relativity.

For the EDSR technology itself, our study shows that
two necessary conditions must be guaranteed to realize
perfect spin control through EDSR: (1) the frequency of
the a.c. electric field must be resonant with the Zeeman
splitting of the spin; (2) the detuning beween the fre-
quency of the harmonic trap and the Zeeman splitting of
the spin must be much larger than SOC coupling strength.
Based on these conditions, there are three ways to increase
the speed of coherent spin control: (1) increasing the elec-
tric driving strength; (2) increasing the strength of SOC α̃;
(3) increasing the external state magnetic field to increase
the Zeeman splitting of the electron spin.

The azimuthal dependence of the induced magnetic
field can be used to measure the ratio of the strengths of
the Rashba and Dresselhaus SOC. We also show that the
precise control of spin in the whole Bloch sphere can be
realized in 2D QD systems through EDSR technology.

We thank Da-Zhi Xu and Pr. Xia-Ji Liu for helpful discus-
sion. This work was supported by the National Natural Science
Foundation of China Grant No. 11121403 and the National 973
program (Grant Nos. 2012CB922104 and 2014CB921403).

Appendix A: The quantum driven harmonic
oscillator

A.1 Time-dependent displacement transformation

The exact solution of the Schrödinger equation of a
quantum driven harmonic oscillator (DHO) described by
Hamiltonian

H = ωa†a+ [F (t)a+ h.c.], (A.1)

has been given by Husimi [43] in 1953 (and independently
by Kerner [44] in 1958). Here, we give another method
to deal this problem by taking a time-dependent displace-
ment transformation

D[f(t)] = exp
[
f(t)a† − f∗(t)a

]
, (A.2)

where function f(t) is to be determined. It is ready to find
the relations

DaD† = a− f(t), and Da†D† = a† − f∗(t). (A.3)

After the transformation, the effective Hamiltonian reads

H̃ = DHD† − iD

(
∂

∂t
D†

)
. (A.4)

One finds that the Hamiltonian will be diagonalized if we
choose suitable function f(t) satisfying

ωf − F ∗ − iḟ = 0, (A.5a)

ωf∗ − F + iḟ∗ = 0. (A.5b)

Now we split f(t) into real and imaginary parts

f(t) = −
(√

meω

2
xc + i

√
1

2meω
pc

)
. (A.6)

Then equations (A.5a) and (A.5b) change into

ṗc = −
[
mω2xc +

√
meω

2
(F + F ∗)

]
, (A.7a)

ẋc =
pc

m
+ i

√
1

2meω
(F − F ∗) . (A.7b)

If F is real, it is observable that xc and pc satisfy the
classical Hamilton equation generated by the classical
Hamiltonian of a forced classical harmonic oscillator

Hc =
p2

c

2me
+

1
2
meω

2x2
c + F̃ (t)xc, (A.8)

with F̃ (t) =
√

2meωF (t).
In our case F = F ∗ = ξ cos νt, then we obtain the

solution

xc(t) = −
√

2
meω

ωξ

ω2 − ν2
cos νt+A sinωt+B cosωt,

(A.9)

pc(t) =
√

2meω
νξ

ω2 − ν2
sin νt+Aω cosωt−Bω sinωt,

(A.10)

where A and B are time-independent constants. For sim-
plicity, we take A = B = 0 (corresponding to the spe-
cial initial conditions xc(0) = −√

2ω/meξ/(ω2 − ν2) and
ẋc(0) = 0), then the displacement operator reads

D = e−i[pxc(t)+xpc(t)], (A.11)

and the Hamiltonian changes into

HD = ωa†a+ Ec, (A.12)

where

Ec = − ωξ2

ω2 − ν2
cos2 νt. (A.13)

As shown in the following subsection, Ec corresponds to
the classical energy for the DHO.

A.2 Equivalent quantum coordinate transformation

In this subsection, it will be shown that the time-
dependent unitary transformation in the former sub-
section corresponds to a quantum linear coordinate
transformation [43,45].

Now, we rewrite the Hamiltonian of the DHO as:

H = − �
2

2me
∇2 +

1
2
meω

2x2 + F̃ (t)x. (A.14)
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Then we take a linear coordinate-translation
transformation

x′ = x− xc(t), (A.15)

where the time-dependent c-number xc(t) satisfies the
classical Hamilton equation

ẋc =
pc

me
, (A.16a)

ṗc = −meω
2xc − F̃ (t), (A.16b)

i.e.,
meẍc +meω

2xc + F̃ (t) = 0. (A.17)

Obviously, xc(t) describes the classical path of the DHO.
It is ready to obtain the following relations

x′ = x−xc(t), t′ = t, ∇′ = ∇, ∂

∂t′
=

∂

∂t
+ ẋc∇′. (A.18)

As the consequence of the required covariance,

i�
∂

∂t′
ψ′(x′, t′) = H ′ψ′(x′, t′), (A.19)

a transformation of the wave function is needed

ψ′(x′, t′) = ψ(x, t)e−iφ, (A.20)

with

φ =
1
�

[

pcx
′ +

1
me

∫ t′

0

p2
c(τ)dτ

]

. (A.21)

Here, the Hamiltonian in the new reference frame reads

H ′ = − �
2

2m
∇′2 +

1
2
mω2x′2 + Hc(t), (A.22)

where Hc(t) = (p2
c/me +meω

2x2
c)/2 + F̃ (t′)xc is the clas-

sical Hamiltonian of the DHO. It is found that the DHO
moves as a free harmonic oscillator in this new reference
frame.

For our case F = �ξ cos νt, we also take the solution
of the Hamilton equation (A.17) as

xc(t) = −
√

2ω
�me

ξ cos νt′

ω2 − ν2
. (A.23)

Following the classical Hamiltonian Hc(t), we obtain the
classical energy of the DHO

Ec(t′) = − ωξ2

ω2 − ν2
cos2 νt′, (A.24)

which is the exact time-dependent function defined in
equation (A.13). It should be pointed that we have ne-
glected a time-independent constant ωξ2ν2/(ω2 − ν2)2
and taken � = 1 in equation (A.22). Consequently, this
quantum linear coordinate transformation is equivalent
with the time-dependent displacement D(t) defined in
equation (A.2).

Appendix B: Two-dimensional quantum dot
system

B.1 Diagonalization of the vibration potential

By defining creation and annihilation operators

x =
1√

2meωx

(
a† + a

)
, y =

1
√

2meωy

(
b† + b

)
, (B.1)

we rewrite the vibration Hamiltonian (10) of the electron
in 2D QD system as

Hv = ωxa
†a+ ωyb

†b− χ
(
a†b+ ab†

)

where

ω2
x = ω̃2

x + ω2
c sin2 ϕB , (B.2)

ω2
y = ω̃2

y + ω2
c cos2 ϕB , (B.3)

ωc =
eB

mec
, (B.4)

and we have taken the rotating wave approximation since

χ = ωc sin 2ϕB

√
ω2

c

ωxωy
� ωx(y). (B.5)

Hereafter, we let � = 1 for simplicity.
It is convenient to diagonalize Hv by defining two new

modes,
(
A

B

)

=

(
cos ϑ

2 − sin ϑ
2

sin ϑ
2 cos ϑ

2

)(
a

b

)

, (B.6)

where

cosϑ =
Δ/2

√
Δ2/4 + χ2

, sinϑ =
χ

√
Δ2/4 + χ2

, (B.7)

and Δ = ωx − ωy. Then the Hv changes into

Hv = ωAA
†A+ ωBB

†B, (B.8)

with the frequencies,

ωA(B) =
ωx + ωy

2
±

√
Δ2

4
+ χ2. (B.9)

The effective driving for the the new two modes reads

V (t) = ξA
(
A† +A

)
cos νt+ ξB

(
B† +B

)
cos νt, (B.10)

with corresponding driving strength,

ξA =
eE√
2me

[
1√
ωx

cos
ϑ

2
cosϕE − 1√

ωy
sin

ϑ

2
sinϕE

]
,

(B.11)

ξB =
eE√
2me

[
1√
ωx

sin
ϑ

2
cosϕE +

1√
ωy

cos
ϑ

2
sinϕE

]
.

(B.12)
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B.2 Effective spin-controlling Hamiltonian

Just like the one-dimensional case, we take a similar uni-
tary transformation

D[t] = exp
[
fA(t)A† + fB(t)B†) − h.c.

]
, (B.13)

where

fA =
ξA

ω2
A − ν2

(ω cos νt− iν sin νt), (B.14)

fB =
ξB

ω2
B − ν2

(ω cos νt− iν sin νt). (B.15)

Then the Hamiltonian changes into H = Hv +Hs +Hso +
Hflip, where

Hflip = [G1(αRσx + αDσy) −G2(αRσy + αDσx)] sin νt,
(B.16)

with

G1 =
1
2
ηB

(√
ωy

ωx
sin

ϑ

2
cos

ϑ

2
cosϕE + cos2

ϑ

2
sinϕE

)

− 1
2
ηA

(√
ωy

ωx
sin

ϑ

2
cos

ϑ

2
cosϕE − sin2 ϑ

2
sinϕE

)
,

(B.17)

G2 =
1
2
ηB

(√
ωx

ωy
sin

ϑ

2
cos

ϑ

2
sinϕE + sin2 ϑ

2
cosϕE

)

− 1
2
ηA

(√
ωx

ωy
sin

ϑ

2
cos

ϑ

2
sinϕE − cos2

ϑ

2
cosϕE

)
.

(B.18)

Here, the additional spin-flipping term Hflip is generated
by the electric field mediated by SOC and

ηA(B) =
2νeE

ω2
A(B) − ν2

. (B.19)

For most cases, the azimuthal dependence of Hflip about
ϕE is complicate. In experiment, the external static mag-
netic field is weak χ � ω, and so the influence of the
vector potential A(r) can be neglected, i.e., ϑ → 0 and
ωA(B) ≈ ω̃x(y). If the 2D harmonic well is isotropic ω̃x =
ω̃y = ω, one will get the effective spin Hamiltonian (12).
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