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Beam splitter for spin waves in quantum spin network
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Abstract. We theoretically design and analytically study a controllable beam splitter for the spin wave
propagating in a star-shaped (e.g., a Y -shaped beam) spin network. Such a solid state beam splitter can
display quantum interference and quantum entanglement by the well-aimed controls of interaction on
nodes. It will enable an elementary interferometric device for scalable quantum information processing
based on the solid system.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 75.10.Jm Quantized spin models – 03.67.Lx
Quantum computation

1 Introduction

Beam splitters are the elementary optical devices fre-
quently used in classical and quantum optics [1], which
can even work well in the level of single photon quanta [2]
and are applied to generate quantum entanglement [3].
For matter waves, an early beam splitter can be referred
to the experiments of neutron interference based on a per-
fect crystal interferometer with wavefront and amplitude
division [4]; and now an atomic beam splitter has been
experimentally implemented on the atom chip [5]. The
theoretical protocols have been suggested to realize the
beam splitter for the Bose-Einstein condensate [6].

In this paper, we propose and study the implementa-
tion of beam splitter for the spin wave propagations in the
star-shaped spin networks (SSSNs) with m + 1 weighted
legs (see Fig. 1a), where each leg is a one-dimensional
(1-D) spin chain with XY couplings. This investigation is
mostly motivated by the recent researches on the perfect
transfer of quantum states along a single quantum spin
chain [7–9] and for a 1-D Bloch electron system [10,11].
The similar shape quantum networks have been consid-
ered for the coupled harmonic oscillators system [12], the
spin networks with deliberated engineered couplings [13],
quantum cloning via spin networks [14,15], and quantum
algorithm [16].

A basic SSSN is a Y -shaped network or called
Y -beam [5] for m = 2, which can be regarded as an el-
ementary block, in principle, to the architecture of com-
plicated networks (such as a solid state interferometer)
for quantum information processing. It can function to
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Fig. 1. (Color on line) (a) The star-shaped spin network with
an input spin chain A and m output spin chain. (b) Y -shaped
network or called Y -beam, a special star-shaped spin network,
serves as the fundamental block for the architecture of compli-
cated quantum spin networks.

transfer quantum state coherently in multi-channel and
to generate entanglement between two spins which are a
long distance apart. Furthermore, we will show that the
quantum coherence of spin waves propagating in two legs
can be well controlled by adjusting the coupling strengths
only at the node; and then a controllable solid state in-
terferometer is built based on this crucial function. The
basic element of an arbitrary spin network is the cou-
pling between spins, which is usually described by the XY
Hamiltonian as

HXY =
∑

〈ij〉
(JijS

+
i S

−
j +H.c.), (1)
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where S±
i are the Pauli spin operators acting on the inter-

nal space of electron on the ith site. The sum is assumed
to be over nearest neighbors hereafter. One can apply
magnetic field Bz beforehand and then switch off it, to
prepare a polarized initial states with all spins down for
the quantum network. The dynamics of the lower exci-
tations (magnons) from this polarized state is attractive
because of their relevance to quantum information appli-
cations [7]. In the low-temperature and low magnon den-
sity limit, the magnon can be regarded as boson by the
Holstein-Primakoff transformation S+

j � b†j [17]. As to our
paper, we only consider the single magnon case. Then one
can translates a XY spin network into the bosonic system
with the Hamiltonian b†jbj+1 + h.c, approximately.

2 Star-shaped beam splitter and its reduction

We consider a spin network of a star shape (we
call the SSSN) as shown in Figure 1a. Under the
Holstein-Primakoff transformation the Hamiltonian of leg
l consisting of Nl spins with XY interactions can be writ-
ten as

Hl = Hl(Jl, Nl) = Jl

Nl−1∑

j=1

(b†l,jbl,j+1 +H.c.), (2)

where b†l,j , bl,j are the boson operators on the jth site of
the lth leg. Here we have assumed that the couplings Jl

are the same for a given bosonic chain l. We uniquely de-
note the Hamiltonian by Hl(Jl, Nl) for the bosonic chain
hereafter. The SSSN is constructed by linking the m out-
put bosonic chains to the one end (or the node) O of the
input leg A by the couplings Jnl. The Hamiltonian of an
SSSN is of the form as the same as equation (2) except
for the part around the node O.

We will show that, due to the quantum interference
mechanism, by some constrain for the coupling constants
Jl and Jnl, an SSSN can be reduced into m independent
imaginary linear bosonic chains with homogeneous cou-
plings, one of which has the length equals to the total
length of the input leg and the output leg, while the rest
m− 1 chains have the length equal to the ones of the out-
put leg if only the single-magnon case is concerned. The
fact that the input chain A is a part of this virtual linear
chain implies that the bosonic wave packet can perfectly
propagate in this virtual linear chain without the reflec-
tion by the node. This indicates that there is a coherent
split of the input bosonic wave packet because the magnon
excitation in this virtual chain actually is just a superpo-
sition of magnon excitations in the m bosonic chains.

To sketch the central idea, we first consider a gen-
eral SSSN, which consists of m identical “output” chains
B1, B2, ..., Bm with homogeneous coupling Jl = J , Jnl =
Jn and the same length N , while the length of chain A is
M . The Hamiltonian

H =
m∑

p=1

HBp(J,N) +HA(J,M) +Hnod (3)

can be explicitly written in terms of the leg Hamiltonians
HBp(J,N) and HA(J,M) defined by equation (1) and the
interactions around the node O

Hnod = −(b†A,M

m∑

p=1

JnBpbBp,1 +H.c.). (4)

Now we construct the virtual bosonic chain a of length
M+N with the boson operators b†a,j = b†A,j (j =
1, 2, ...,M) in the real chain A and the collective operator
b†a,M+j = (1/

√
m)

∑m
p=1 b

†
Bp,jfor the virtual part, where

j = 1, 2, ..., N . There exist m − 1 complementary linear
bosonic chains with the collective operators

b†bq,j = (1/
√
m)

m∑

p=1

exp(−i2πpq/m)b†Bp,j (5)

where q = 1, 2, ..., m− 1. It can be checked that, together
with b†a,j, the above defined collective operators b†a,M+j

and b†bq,j , (q = 1, 2, ..., m − 1) and their conjugates also
satisfy the commutative relations of boson operators.

Using operators b†a,M+j and b†bq,j , we divide the total
Hamiltonian into two commutative parts

Hb =
m−1∑

q=1

Hbq (J,N);Ha = Ha(J,M +N) +Hvn,

Hvn = (J −√
mJn)b†a,Mba,M+1 +H.c. (6)

The first Hamiltonian Hb describes m − 1 independent
virtual bosonic chains without input from HA while the
second one describes a linear bosonic chain with an im-
purity at the Mth site. Usually, it can reflect the bosonic
wave packet from the input leg.

Only when the coupling matching conation Jn =
J/

√
m is satisfied, the virtual bosonic chain described by

Ha is just a standard bosonic chain since Hvn = 0. In this
case no reflection occurs at the node. With this matched
node coupling, an ideal beam splitter can be realized with
m coherent outputs since each operator b†a,M+j is a linear
combination of b†Bp,j . Then it can create a superposition
from the vacuum state with bosons excitation. Each com-
ponent of this superposition represents a magnon or boson
excitation in a leg. Actually, the SSSN can be extended to
a more general case with different JnBp (p = 1, 2, ...,m).
For an arbitrary set of JnBp , we introduce the collective
operators as

b†a,M+j =
m∑

p=1

uBp,ab
†
Bp,j =

m∑

p=1

J∗
nBp√∑m

p=1

∣∣JnBp

∣∣2
b†Bp,j

b†bq,j =
m∑

p=1

uBp,bqb
†
Bp,j (7)

where uBp,G (p = 1, 2, ...,m,G = a, b1, b2, ..., bm−1) com-
pose a unitary matrix U . Therefore, the above corrective



S. Yang et al.: Beam splitter for spin waves in quantum spin network 379

operators and their conjugates also satisfy the commuta-
tive relations of boson operators. In addition, when the
general constrain condition

∑m
p=1

∣∣JnBp

∣∣2 = J2 is satis-
fied, the SSSN can be completely reduced to a virtual
homogeneous bosonic chain with M +N sites and m− 1
independent virtual bosonic chains. Interestingly, the val-
ues of JnBp can determine the amplitudes of the bosonic
wave packet on leg Bp. The detailed analysis will be done
with the special SSSN of m = 2 in the next section.

3 Y-shaped beam splitter decoupling

To be convenient, we consider the asymmetric Y -beam
consisting of three legs A, B and C with three hopping
integrals JF for F = A,B,C and the node interactions
JnF for F = B,C, see also fig. 1b. The total Hamiltonian
reads

H =
∑

F=A,B,C

HF −
∑

F=B,C

(JnF b
†
A,MbF,1 +H.c.) (8)

where HF = HF (JF , NF ) and NA = M, NB = NC = N.
In order to decouple this Y -beam as two virtual linear

bosonic chains, we need to optimize the asymmetric cou-
plings so that the perfect transmission can occur in the
decoupled linear bosonic chains. To this end we introduce
two sets of operators by

b†a,M+j = cos θb†B,j + sin θb†C,j;

b†b,j = sin θb†B,j − cos θb†C,j, (9)

for j = 1, 2, ..., N . A straight forward calculation shows
that the two sets of operator act as boson operators and
commutative. Here, the mixing angle θ is to be determined
as follows by the optimization for quantum information
transmission. In comparison with the optical beam split-
ter, the above equation can be regarded as a fundamental
issue for the boson beam splitter.

Together with the original boson operator b†a,j = b†A,j

for the input leg, the set with b†a,M+j defines a new linear
chain a with the effective couplings Jaj = JA (j ∈ [1,M −
1]), JaM = JnB cos θ +JnC sin θ and Ja,M+j = JB cos2 θ
+JC sin2 θ, for j ∈ [1, N −1]. Another virtual linear chain
b is defined by b†b,j with homogeneous couplings Jbj =
JB sin2 θ +JC cos2 θ for j ∈ [1, N − 1].

In general, these two linear chains do not decouple with
each other since there exists a connection interaction

Hcon = g

N−1∑

j=1

(b†b,jba,M+j+1 + b†a,M+jbb,j+1 +H.c)

− JAB(b†a,M bb,1 +H.c.) (10)

where g = (JB − JC) sin 2θ/2 and JAB = JnB sin θ
−JnC cos θ. Fortunately, the two bosonic chains decou-
ple with each other when we optimize the mixing an-
gle θ and the inter-chain coupling by setting them as

tan θ = JnC/JnB, JB = JC and then JaM = JnB/ cos θ.
Thus when we set JnB = JA cos θ, the coupling matching
condition

JA =
√
J2

nC + J2
nB = JB = JC (11)

holds. Here, JnB and JnC can be real or complex, which
will not affect the final results. Especially, the virtual
bosonic chain a becomes homogenous when condition (11)
is satisfied. Then it can be employed to transfer the quan-
tum state without reflection on the node in the trans-
formed picture. By transforming back to the original pic-
ture, the quantum state transfer is shown to be a perfect
beam splitting. Similar to the point of view of linear op-
tics, such beam splitting process can generate entangle-
ment. We will show that the magnitudes of JnB and JnC

can determine the amplitudes of the bosonic wave packet
on legs B and C.

Now we apply the beam splitter to a special spin wave
packet, a Gaussian wave packet (GWP) with momentum
π/2, which has the form

∣∣ψA π
2
(N0)

〉
=

1√
Ω1

∑

j

e−
α2

2 (j−N0)
2
ei π

2 j |j〉 (12)

at t = 0, where Ω1 is the normalization factor and N0

is the initial central position of the GWP at the input
chain A. The single excitation basis vector |j〉 = S+

A,j|d〉
is defined by the polarized state |d〉 with all spins aligned
down. As mentioned in the introduction, the conclusion we
obtained for bosonic system is exact for the single-magnon
case. It is known from the previous work [11] that such
GWP can approximately propagate along a homogenous
chain without spreading. Then at a certain time t, such
GWP evolves into

|Φ(t)〉 = cos θ
∣∣ψB π

2
(Nt)

〉
+ sin θ

∣∣ψC π
2
(Nt)

〉
(13)

where Nt = N0 + 2tJA −M , i.e., the beam splitter can
split the GWP into two cloned GWPs completely.

In order to verify the above analysis, a numerical sim-
ulation is performed for a GWP with α = 0.3 in a finite
system with NA = NB =NC = 50. Let |Φ(0)〉 be a normal-
ized initial state. Then the reflection factor at time t can
be defined as R(JnC , JnB, t) =

∑
j∈D′

∣∣〈j| e−iHt |Φ(0)〉∣∣2
to depict the reflection at the node whereD′=[1,M−1].At
an appropriate instant t0, R(JnC , JnB) = R(JnC , JnB, t0)
as a function of JnC and JnB is plotted in Figure 2. Here
JnC and JnB are in the unit of JA. It shows that around
the coupling matching condition (11), the reflection fac-
tor vanishes, which is just in agreement with our analytical
result.

4 Dynamic of beam splitter as entangler

Now we consider how the SSSN can behave as an en-
tangler to produce spin entanglement with the Y -beam
as an illustration. Let the input state |φ(0)〉 to be a sin-
gle magnon excitation state in the leg A (e.g., = S+

A,j|d〉
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Fig. 2. (Color on line) (a) The contour map of the reflection
factor R(JnC , JnB) as a function of JnC , JnB for the GWP
with α = 0.3 and momentum π/2 in a finite system with NA =
NB = NC = 50. It shows that around the matching condition,
i.e, the circle J2

nC +J2
nB = J2

A, the reflection factor approaches
zero. (b) The profile of R(JnC , JnB) along JnC = JnB . JnC

and JnB are in the unit of JA.

or
∣∣ψA π

2
(N0)

〉
introduced by Eq. (12)). It can propagate

into the legs B and C through the node with some re-
flection. On the other hand, the spin wave can be re-
garded as being transferred along the virtual legs a and
b. Once we manipulate the coupling constants to satisfy
the coupling matching condition, the spin wave can only
enter the leg a rather than b without any reflection. Then
the final state is of the magnon excitation only in the
leg a. As an illustration, a transferring wavepacket in
the imaginary chain with the location beyond the input
arm can be written as |φ(t)〉 =

∑N
j=1 C (j, t)S+

a,M+j |d〉.
Here S+

a,M+j |d〉 = cos θ|ujB〉 ⊗ |dC〉 + sin θ|dB〉 ⊗ |ujC〉,
|ujF 〉 = S+

F,j |dF 〉 (F = B,C) represents single-magnon
excitation from the fully polarized state |dF 〉 of the chain
F with all spin down and C (j, t) describes the shape of
the wavepacket at a certain instant t. This is an entangled
state and then the Y -beam acts as an entangler similar to
that in quantum optical systems.

To quantitatively characterize entanglement of two
separated waves

∣∣ψB,C π
2
(Nt)

〉
obtained by the beam split-

ter, the total concurrence with respect to the two wave
packets located at the ends of legs B and C can be calcu-
lated as C(t) =

∑
i∈D

∣∣∣〈Φ(t)| (S+
B,iS

−
C,i + S−

B,iS
+
C,i) |Φ(t)〉

∣∣∣
according to references [18,19]. Here, D = [N −W,N ],
W = 4

√
ln 2/α is the width of the wave packet is cor-

responding to the size of the wave packet. We set the
range of the sum to match the local measurement for
the electron in the experiment since the non-spreading
wave packet is regarded as a local particle. On the other
hand, the concurrence is also the function of JnC and
JnB. Numerical simulation is performed for a GWP with
α = 0.3 and momentum π/2 in a finite system with
NA = 50, NB = 50, and NC = 50. The maximal con-
currence Cmax(JnC , JnB) = max{C(t)} as a function of
JnC and JnB is plotted in Figure 3. Here JnC and JnB

are in the unit of JA. It shows that two split wave pack-
ets yield the maximal entanglement just at the coupling
matching point JnC = ±JnB = ±JA/

√
2.

Fig. 3. (Color on line) (a) The contour map of maximal con-
currence of two GWPs at two legs A and B, Cmax(JnC , JnB)
for the same setup as that in Figure 2. It is found that
two GWPs yield the maximal entanglement at the point
JnC = ±JnB = ±JA/

√
2. (b) The profile of Cmax(JnC , JnB)

along JnC = JnB . JnC and JnB are in the unit of JA.

Fig. 4. (Color on line) (a) The interferometric network with
an input chain A and output chain D, which consists of two
Y -beams. ∆ is the “optical path difference” which determines
the interference pattern of output spin wave. (b) The in-
terference pattern of output wave in the leg D (r0 = 50,
t0 = 100/JA) for the GWP with α = 0.3 in the interferometric
network with NA = NB = ND = 50, NC = NB + ∆.

5 Quantum interferometer for spin wave

Finally, we consider in detail a more complicated spin net-
work (SN) than the Y -beam, the quantum interferometer
for spin wave, which consists of two Y -beams (see Fig. 4a).
Similar to the optical interferometer, where the polariza-
tion of photon is utilized to encode information, the SN
uses the spin down and up to encode the quantum infor-
mation.

We still use the evolution of GWP to demonstrate the
physical mechanism of such setup. Firstly, we consider the
simplest case with the path difference (defined in Fig. 4a)
∆ = 0. It is easy to show that such network is equivalent to
two independent virtual chains with lengthsNA+NB+ND

and NB respectively when the coupling matching condi-
tion is satisfied. Then the initial GWP will be transmitted
into the leg D without any reflection. This fact can be un-
derstood according to the interference of two split GWPs.
It means that the nonzero ∆ should affect the shape of
the pattern of output wave.
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Actually, from the above analysis about the GWP
propagating in the Y -beam, we note that the conclusion
can be extended to the Y -beam consisting of two differ-
ent length legs NB �= NC . It is due to the locality of
the GWP and the fact that the speed of the GWP only
depends on the coupling constant. Thus the interference
pattern at site r0 and time t0 in leg D can be presented
as I(r0, t0, ∆) = |〈r0| exp(−iHt0) |Φ(0)〉|2. Numerical sim-
ulation of I(r0, t0, ∆) for the input GWP in the interfero-
metric network with NA = NB = ND = 50, NC = NB +∆
is performed. For r0 = 50, t0 = 100/JA, a perfect interfer-
ence phenomenon by I(r0, t0, ∆) is observed for the range
∆ ∈ [−25, 25] in Figure 4b.

In summary, we point out that our coherent quantum
network for spin wave can be implemented by an array of
quantum dots or other artificial atoms. It will enable an
elementary quantum device for scalable quantum compu-
tation, which can coherently transfer quantum informa-
tion among the qubits to be integrated. The observable
effects for spin wave interference may be discovered in the
dynamics of magnetic domain in some artificial quantum
material.
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CB724508.
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