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Abstract. To account for the phenomenon of quantum decoherence of a macroscopic object, such as the
localization and disappearance of interference, we invoke the adiabatic quantum entanglement between
its collective states (such as that of the center-of-mass (CM)) and its inner states based on our recent
investigation. Under the adiabatic limit where motion of the CM does not excite the transition of inner
states, it is shown that the wave function of the macroscopic object can be written as an entangled state
with correlation between adiabatic inner states and quasi-classical motion configurations of the CM. Since
the adiabatic inner states are factorized with respect to each component of the macroscopic object, this
adiabatic separation can induce the quantum decoherence. This observation thus provides us with a possible
solution to the Schrödinger cat paradox.

PACS. 05.30.-d Quantum statistical mechanics – 03.65.-w Quantum mechanics –
32.80.-t Photon interactions with atoms – 42.50.-p Quantum optics

1 Introduction

It is common sense that a macroscopic object should be
localized in a certain spatial domain. However, a problem
will arise if one directly uses quantum mechanics to de-
scribe the motion of a free macroscopic object with spatial
localization.This issue originated from the correspondence
between Einstein and Born [1]. They observed that, in a
spatially-localized state, generally a macroscopic object
can only be described by a time-dependent localized wave
packet, which is a coherent superposition of the eigen-
states of the center-of-mass Hamiltonian H0 = p2/2M . If
the macroscopic object is regarded as a heavy particle of a
large mass M , its initial state |ϕ〉 should be a very narrow
wave packet of width a. Since the wave packet spreads in
evolution by the law

w(t) = a

√
1 +

t2

4M2a4
, (1)

where w (t) stands for the width of the wave packet, the
spreading of an initially well localized wave packet can be
reasonably ignored for very large mass. This seems to give
a solution to the localization problem of the macroscopic
object. But Einstein argued that the superposition of two
narrow wave packets is no longer narrow with respect to
the macro-coordinate, and on the other hand, it is still a
possible state of the macroscopic object. So a contradic-
tion to the superposition principle arises because of the
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requirement that the wave packet of a macroscopic object
should be narrow [1].

To cope with this problem, Wigner [2], Joos and Zeh
[3] propose the so-called scattering-induced-decoherence
mechanism (or WJZ mechanism) [4]: scattering of photons
and atoms off a macroscopic object records the informa-
tion of its position to form a quantum measurement for the
position. Indeed, the most recent experiments [5,6] show
that Schrödinger’s concept of entangled state, rather than
the unavoidable measurement distribution, is crucial for
the wave-particle duality in this “which-way” detection.
Actually, similar gedanken experiments using photons and
neutrons have been considered before [7,8]. From these
experiments and theory, it seems reasonable to conclude
that there does not exist coherent superposition of states
of a macroscopic object due to the quantum decoherence
resulting from its coupling to an external environment as
a generalized detector.

Here a natural question arises: if a macroscopic ob-
ject, such as the famous Schrödinger cat, is completely
isolated from any external environment, can its quantum
coherence be maintained to realize macroscopic superpo-
sition state? Such a question leads people to consider the
influence of the inner particles of a macroscopic as the so-
called “internal environment” [9]. Most recently, a novel
experiment was presented to observe the matter wave in-
terference of C60 molecules by diffraction at an absorb-
ing grating [10]. Though decoherence phenomena have not
been observed in this experiment, it might be possible to
set up a decoherence experiment if one can find a new
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way to effectively record the “which-way” information of
C60. In fact, there does exist coherent superposition of
macroscopic states in certain extreme cases, for exam-
ple, in the case that superconductivity or Bose-Einstein
condensation [11]. In such cases macroscopically-quantum
phenomenon requires that each part of the macroscopic
object has the same phase in the process of evolution. For
this reason, they will not be considered in this paper.

In this paper, we will show that when quantum en-
tanglement occurs between the states of the-center-of-
mass (CM) of the macroscopic object and its inner states,
the conception of adiabatic quantum entanglement (most
recently proposed in reference [12] based on the Born-
Oppenhemeir (BO) approximation) is suitable for the
study of the decoherence phenomenon. In fact, when the
motion of the CM does not excite the transition of inner
states, the wave function of the macroscopic object can
be adiabatically factorized with correlation between the
adiabatic inner states and the quasi-classical motion con-
figuration of the CM. By this correlation or entanglement,
the spatial localization of a macroscopic object can be ex-
plained and the dilemma of the Schrödinger cat can be
resolved in a natural way.

2 Adiabatic entanglement and the WJZ
mechanism

In the following, based on the idea of adiabatic entangle-
ment, we incorporate the WJZ mechanism and the rele-
vant study in the dynamic theory of quantum measure-
ment [13–16] developed by many people, including one
(CPS) of the authors.

In the WJZ mechanism, the “which-way” information
of the macroscopic object is recorded through the quan-
tum entanglement caused by scattering of atoms or pho-
tons regarded as the so-called environment. Let x be the
collective position (CM) of a macroscopic object. To study
how different positions of the macroscopic object entangle
with the environment (scattering atoms, photons, etc.), we
suppose that the total system is initially in a product state
|Ψx(t = 0)〉 = |x〉⊗|φ〉,where the first component |x〉 is the
eigen-state of the collective position operator x while |φ〉
is an arbitrary pure state of the environment. According
to an argument by Joos and Zeh [4], only when the back-
action is negligibly small, can the interaction between the
collective and environment states realize a “measurement-
like process”:

|x〉 ⊗ |φ〉 → |x(t)〉 ⊗ |φ(x, t)〉 · (2)

Here, |x(t)〉 represents the free evolution in the absence of
the coupling to the environment and |φ(x, t)〉 represents
the environment state parameterized by the collective po-
sition x of the macroscopic object. If the collective motion
is initially described by a wave packet |ϕ〉 =

∫
ϕ(x)|x〉dx,

then equation (2) defines a reduced density matrix

ρ(x, x′, t) = ϕ(x, t)ϕ∗(x′, t)〈φ(x′; t)|φ(x; t)〉 (3)

of the macroscopic object. Considering the translational
invariance of the scattering process, Joos and Zeh showed
that, the off-diagonal terms F (x, x′) = 〈φ(x′; t)|φ(x; t)〉
take a damping form depending on the total cross-section.

Now we consider a macroscopic object with collective
and internal variables, say x and q. By the above discus-
sion one easily sees that the interaction between these two
kinds of variables may lead to an ideal quantum entangle-
ment between the collective and internal states, when the
collective states are free of the back-action. But the ques-
tion is whether the negligibility of the back-action is the
unique cause of the appearance of the above mentioned
“measurement-like process”. If not, what are the other
causes besides it? To resolve this problem, we use the BO
approximation to adiabatically separate the collective and
internal variables. Assume that the total Hamiltonian is
H = p2/2M + h(q, x), where the Hamiltonian h(q, x) de-
scribes the motion of the internal variables q coupling to
the collective variable x. For a fixed value of the slow vari-
able x, the eigen-state |n[x]〉 and the corresponding eigen-
values Vn[x] are determined by the eigen-equation

h(q, x)|n[x]〉 = Vn(x)|n[x]〉 · (4)

Regarding x and q as the slow and fast variables respec-
tively in the BO adiabatic approach, we approximately ob-
tain the complete set {〈x|n, α〉 ≡ φn,α(x)|n[x]〉} of eigen-
states of the total system, where φn,α(x) comes from the
eigen-equation

Hnφn,α(x) = En,αφn,α(x) (5)

and

Hn = p2/M + Vn[x] (6)

is the effective Hamiltonian associated with the internal
state |n[x]〉. Here, we do not consider the induced gauge
potential connected with Berry phase factor through the
quantum adiabatic method [17,18]. Then, we can see how
the “measurement-like process” naturally appears as a re-
sult of the adiabatic dynamic evolution.

In fact, under the BO approximation, we can expand
the factorized initial state |Ψ(0)〉 = |x〉 ⊗ |φ〉 in terms of
the adiabatic basis {|n, α〉} and then we obtain the total
wave function [12]

|Ψ(t)〉 =
∑
n

〈n[x]|φ〉
∫

dx′K(x′, x, t)|x′〉 ⊗ |n[x′]〉 (7)

where we have used the completeness relations for the
full eigen-functions expressed in x-representation and
K(x′, x, t) = 〈x′|e−iHnt|x〉. Generally, the propagator
K(x′, x, t) is not diagonal for |x〉, is not an eigen-state of
Hn and then |Ψ(t)〉 cannot define an ideal entanglement
state. However, for large mass M , we can prove that, to
the first order approximation, K(x′, x, t) takes a diagonal
form proportional to a δ-function. Actually, in the large
limit, the kinetic term p2/2M can be regarded as a per-
turbation in comparison with the effective potential Vn(x).
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Using Dyson expansion to the first order of 1/M , we have

e−iHnt = e−iVnt

(
1− i

∫ t

0

eiVnt
′ p2

2M
e−iVnt

′
dt′ + ...

)
= e−iVnt

(
1− i

p2t

2M
− t2

4M
(p∂xVn + [∂xVn]p)

− it3(∂xVn)2

6M
+ ...

)
. (8)

Since ∫
〈x′|pn|x〉f(x′) dx = 0

for n = 1, 2, ..., we conclude that

K(x′, x, t) = e−iVn[x]t

[
δ(x− x′)

+
i

2M

∫ t

0

dτ eiVn[x′]τ ∂2

∂x′2
δ(x− x′)e−iVn(x)τ

]
· (9)

Then, we observe that it is approximately diagonalized:
K(x′, x, t) = e−iHn(x)tδ(x − x′), and the adiabatic wave-
function leads to an ideal entanglement

|Ψ(t)〉 =
∑
n

〈n[x]|φ〉e−iHn(x)t|x〉 ⊗ |n[x]〉 (10)

We call this entanglement adiabatic entanglement.
In conclusion, up to the first order approximation of

1/M , the quantum entanglement appears in the adiabatic
evolution. The Born-Oppenheimer adiabatic approxima-
tion has provided us with a novel mechanism to produce
a quantum entanglement between the macroscopic object
and its internal variables.

3 Localization induced by factorized internal
motion

We notice that the above simple result has the follow-
ing physical explanation: the evolution state of a heavy
particle for very large M , which is almost steady, is ap-
proximately an eigenstate of the position operator if it
is initially in a state with a fixed position. Then, it fol-
lows that, in the large-mass limit, the wave function |Ψ(t)〉
can be factorized approximately: |Ψ(t)〉 = |x〉 ⊗ S(x, t)|φ〉
where the entangling S-matrix

S(x, t) =
∑
n

e−iVnt |n[x]〉〈n[x]| (11)

is defined in terms of the adiabatic projection |n[x]〉〈n[x]|.
According to our previous argument about the factor-

ized structure of S-matrix in [11,12] developed based on
the Hepp-Coleman model [13], if the internal degree of
freedom has many components, e.g., if q = (q1, q2, ...qN ),

then in their normal non-interaction modes, S(x; t) can be
factorized as:

S(x; t) =
N∏
j=1

S
j
(x; t) (12)

with

Sj(x; t) = e−ihj(qj ,x)t (13)

where hj(qj , x) is the single particle Hamiltonian of the
macroscopic object. Of course, in the derivation of the
above factorized structure for the S-matrix, we have made
some simplifications. Roughly speaking, we have assumed
that the adiabatic effective potential takes the form of a
direct sum Vn =

∑
j Vnj(qj), and that the eigenstate takes

the form of a direct product

|n[x]〉 =
N∏
j=1

⊗|nj[x]〉 (14)

the higher order terms ≈ O(1/M) being neglected.
For the initial state |φ〉 =

∏N
j=1⊗ |φj〉 factorized with

respect to internal components, the reduced density ma-
trix

ρ(x, x′, t) = ϕ(x)ϕ∗(x′)FN (x′, x, t) (15)

can be re-written in terms of the so called decoherence
factor

FN (x′, x, t) =
N∏
j=1

F [j](x′, x, t)

≡
N∏
j=1

〈φj |S†qj (x
′; t)Sqj (x; t)|φj〉 · (16)

This factor is expressed as an N -multiple product of the
single decohering factors

F j(x, x′) = 〈φj |S†qj (x
′; t)Sqj (x; t)|φj〉 (17)

with norms not larger than unity. Thus in the macroscopic
limit N → ∞, it is possible that FN (x′, x, t) → 0, for
x′ 6= x. In fact, this factor reflects almost all of the dy-
namic features of the influence of the fast part on the
slow part. Physically, an infinite N means that the object
is macroscopic since it is made of infinite number of par-
ticles in that case. On the other hand, the occurrence of
decoherence at infinite N manifests a transition of the ob-
ject from the quantum realm to the classical realm. Here,
as expected, the physical picture is consistent.

As to the localization problem raised by Einstein and
Born [1], we, based on the above argument, comment that
one can formally write down the wave function of a macro-
scopic object as a narrow pure state wave packet, but it is
not the whole of the story. Actually, the statement that an
object is macroscopic should physically imply that it con-
tains many particles. So a physically correct description
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of its state must concern its internal motion coupling to
the collective coordinates (e.g., its center-of-mass). Usu-
ally, one observes this collective coordinate to determine
whether two spatially-localized wave packets can inter-
fere with each other. If there does not exist such interfer-
ence, one may say that, the superposition of two narrow
wave packets for the macro-coordinate is no longer a possi-
ble pure state of the macroscopic object. Indeed, because
the “which-way” information of the macro-coordinate is
recorded by the internal motion of particles making up
the macroscopic object, the induced decoherence must de-
stroy the coherence in the original superposition so that
the state of the macroscopic object is no longer pure.

The present argument also provides a possible solu-
tion for the Schrödinger cat paradox. If we consider the
Schrödinger cat as a macroscopic object consisting of
many internal particles, then we can never observe any-
thing corresponding to the interference between the dead
and the living cats. This is because the macroscopically-
dead and the macroscopically-living states, |D〉 and |L〉, of
the cat are correlated to the corresponding internal states,
|dj〉 and |lj〉. From the argument in this section the cat
state can be written as

|Cat〉 = |L〉 ⊗
N∏
j=1

|lj〉+ |D〉 ⊗
N∏
j=1

|dj〉 (18)

where |D〉 and |L〉 represent the collective states while∏N
j=1 |lj〉 and

∏N
j=1 |dj〉 describe the corresponding inter-

nal motion. It leads to a reduced density matrix with the
off-diagonal elements proportional to

∏N
j=1〈dj |lj〉. Thus

if there is only a pair of inner states that are orthogo-
nal, the off-diagonal elements will vanish and decoherence
will happen. Even if there does not exist any pair of inner
states orthogonal to each other, it is also highly possible
that

∏N
j=1〈dj |lj〉 → 0 in the macroscopic limit N → ∞

since the norm of each 〈dj |lj〉 is less than or equal to
unity. In this sense, we conclude that the Schrödinger cat
paradox is not a paradox at all in practice. Rather, it es-
sentially arises from overlooking the internal motion of a
macroscopic cat or the multi-particle scattering off it.

It is a little bit provocative that in practice the
Schrödinger cat wavefucntion should take the above spe-
cific form to realize decoherence. Actually, as a macro-
scopic object, the cat may have a very large Hilbert space
and a very dense energy spectrum. Thus it is imagin-
able that, the slightly different actions, as perturbations,
exerted by different collective (living and dead) states
will force the inner states with many variables to evolve
into very different perturbed wave functions

∏N
j=1 |lj〉 and∏N

j=1 |dj〉 in normal modes. For the case concerning the
external environment, this point has been mentioned by
Omnes. Another point we wish to make is that it must
be difficult to distinguish the collective variables of a real
cat from its internal ones. Therefore, strictly speaking,
the above discussion about the Schrödinger cat paradox is
only appropriate for an ideal Schrödinger cat, or in other
words, a toy model of a Schrödinger cat. In fact, how to

distinguish decoherence of a large system due to exter-
nal and internal environments is an open question in the
general case.

We have shown that the analysis of the localization
phenomenon of a macroscopic object can be reduced to
the study of entanglement between its collective position
(or CM) and internal variables in the adiabatic evolution
with the above mentioned factorization structure. Closely
related to the Schrödinger cat phenomenon, this entan-
glement results from the adiabatic separation of collective
and internal variables. To our surprise, in the C60 molecule
interference experiment an elegant interference pattern
appears. But there is no contradiction here. Firstly, at
high temperature C60 would emit two or three infrared
photons during its passage through the apparatus. Usu-
ally the emission would entangle the position of the C60

molecule with an ordinary environment, the background
electromagnetic field as an external continuum. But as
the wavelength of the emitted wave from the internal mo-
tion of C60 is much greater than the distance between the
neighboring slits, the photons carry no information about
the route the molecule takes. Secondly, though there exists
interaction with the external air particles, the scattering
rates on the macroscopic object are far too small to in-
duce quantum decoherence. Finally, C60 can not well be
considered as a usual macroscopic object since its inter-
nal variables are almost frizzed so that they are endowed
with a single phase or the matched phases. The entangle-
ment with the internal degrees of freedom could have the
characteristics discussed above if the molecule C60 expe-
riences inhomogeneous fields, but it does not seem to be
the case in the present C60 experiment. These arguments
explain the persistence of the interference pattern in the
experiment [10].

However, we can imagine that in such experiments,
the internal motion (such as radiation of photons of var-
ious frequencies) produces an effective coupling with the
collective motion of the CM. Then, the configuration of
internal motion can record the “which-way” information
even through a single thermal photon so that the inter-
ference contrast should thus be completely destroyed. In
that case, because a C60 molecule has only a finite number
of internal degrees of freedom, the decoherence dynamics
determined by the coupling to the inner states should be
rather different from that happening in the ideal case con-
cerning infinitely many internal degrees of freedom. For in-
stance, coherence revival could occur since the factorized
decoherence factor is a finite product of N parts and thus
is an oscillating function of time t. Moreover, if one can
realize the quantum decoherence of a large system (such
as C60 fullerenes) of many degrees of freedom, the param-
eters (such as the internal temperature of the fullerenes,
the temperature of the environment, the intensity and fre-
quency of external laser radiation) can be controlled con-
tinuously so that quantitative natures such as those de-
scribed in this paper could be tested. Unfortunately, the
study in the present paper is not directly applicable to
such “which-way” experiments because it is based on the
assumption that the macroscopic object is composed of
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two-level subsystems and does not concern the concrete
structure of C60 fullerenes. Nevertheless, for the quanti-
tative investigation of the dynamic details of decoherence
process in such experiments, it can serve as a starting
point.

4 Simple model for macroscopic localization

To make a deeper elucidation of the above general argu-
ments about the localization of a macroscopic object of
mass M , we model the macroscopic object as consisting
of N two level particles, which are fixed at certain po-
sitions to form a whole without internal spatial motion.
The collective position x is taken to be its mass-center or
any reference position in it while the internal variables are
taken to be the quasi-spins associated with two level par-
ticles. Generally, if we assume that the back-action of the
internal variables on the collective position is relatively
small, the model Hamiltonian can be written as

H =
P 2

2M
+ h(x)

h(x) =
N∑
j=1

(
fj(x)|ej〉〈gj |+ f∗j (x)|gj〉〈ej |

)
+

N∑
j=1

ωj (|ej〉〈ej | − |gj〉〈gj |) (19)

where |gj〉 and |ej〉 are the ground and the excited states of
the jth particle and fj(x) denotes the position-dependent
couplings of the collective variable to the internal vari-
ables. Let lj be the relative distance between the jth
particle and the reference position x. Further we assume
fj(x) = f(x + lj). Physically, we may think that these
couplings are induced by an inhomogeneous external field,
e.g., they may be the electric dipole couplings of two-level
atoms in an inhomogeneous electric field.

We remark that the above model enjoys some univer-
sality under certain conditions, compared with various en-
vironment models inducing both dissipation and decoher-
ence of quantum processes. In fact, Caldeira and Leggett
[19] have pointed out that any environment weakly cou-
pling to a system may be approximated by a bath of oscil-
lators under the condition that “each environmental de-
gree of freedom is only weakly perturbed by its interac-
tion with the system”. We observe that any linear cou-
pling only involves transitions between the lowest two lev-
els (ground state and the first excitation state) of each
harmonic oscillator in the perturbation approach though
it has many energy levels. Therefore in such a case we
can also describe the environment as a combination of
many two level subsystems without losing generality [20].
To some extent, these arguments justify our choosing the
two level subsystems to model the internal motion of the
macroscopic object. We will soon see its advantage: the
character of localization can be manifested naturally and
clearly.

Now let us calculate the S
j
(x; t) for this con-

crete model. The single-particle Hamiltonian hj(x) =
ωj(|ej〉〈ej | − |gj〉〈gj |) + (fj(x)|ej〉〈gj | + h.c.) has the x-
dependent single-particle S-matrix

S
j
(x; t) =(

cos(Ωjt)− i sin(Ωjt) cos θj , i sin(Ωjt) sin θj

i sin(Ωjt) sin θj , cos(Ωjt) + i sin(Ωjt) cos θj

)
(20)

in the BO adiabatic approximation. Here Ωj(x) ≡
±
√
|fj(x)|2 + ω2

j . Explicitly, having obtained the above
analytic results about S-matrix, we can further calcu-
late the single-particle decoherence factors F [j](x′, x, t) ≡
〈gj|S†j (x′; t)S

j
(x; t)|gj〉 for a given initial state |φ〉 =∏N

j=1⊗ |gj〉. For simplicity we use the notation f(x′) = f ′.
We have

F [j](x′, x, t) =
{

sin
(
Ω′jt
)

sin θ′j sin (Ωjt) sin θj
+cos

(
Ω′jt
)

cos (Ωjt)+sin
(
Ω′jt
)

cos θ′j sin (Ωjt) cos θ′j cos θj
+i
{

cos
(
Ω′jt
)

sin (Ωjt) cos θj − sin
(
Ω′jt
)

cos θ′j cos (Ωjt)
}}

(21)

where tan θj = fj(x)/ωj. In the weakly coupling limit,
gj � ωj and the coupling fj ' gjx, thus we have sin θj '
θj ' fj/ωj, cos θj ' 1 − θ2

j/2 and Ωj ' ωj . Then, the
decohering factors can be simplified

F (x′, x, t) ' |F (x′, x, t)|

× exp

(
i|gj |2
4ω2

j

(x2 − x′2) sin(2ωjt)

)
(22)

where

|F (x′, x, t)| = exp

(
−(x− x′)2 |gj|2

2ω2
j

sin2 (ωjt)

)
. (23)

In the case of continuous spectrum, the sum

R(t) =
N∑
j=1

g2
j

2ω2
j

sin2 (ωjt) (24)

can be re-expressed in terms of a spectrum distribution
ρ(ωk) as

R(t) =
∫ ∞

0

ρ(ωk)g2
k

2ω2
k

sin2 ωk dωk.

From some concrete spectrum distributions, interesting
circumstances may arise. For instance, when ρ(ωk) =
(4/π)(γ/g2

k) the integral converges to a negative number
proportional to time t, precisely, R(t) = γt. Therefore, our
analysis recovers the result

ρ(x, x′, t) = ϕ(x)ϕ∗(x′)e−γt(x−x
′)2

× exp
[
iπ(x2 − x′2)s(t)

]
(25)
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for the reduced density matrix of the macroscopic object,
which was obtained by Joos and Zeh [3] through the multi
particle external scattering mechanism and by Zurek sep-
arately through the Markov master equation. Here,

s(t) =
N∑
j=1

sin (2ωjt)
4πω2

j

(26)

is a time-dependent periodic function. This shows that the
norm of the decoherence factor is exponentially decaying
and as t → ∞, the off-diagonal elements of the density
matrix vanish simultaneously!

We will show that for a quite general distribution ρ(ω)
the off-diagonal elements of the reduced density matrix
decline rather sharply with time t if the particle number
N is large. Assume that all g′js are equal: gj = g. If the
frequencies lie within an interval [ω1, ω2] and the distribu-
tion is homogeneous, we have ρ(ω) = N/(ω2 − ω1). Then

R(t) =
∫ ω2

ω1

g2

2ω2
sin2 ωt ρ(ω) dω

=
N

(ω2 − ω1)
g2

2

∫ ω2

ω1

1
ω2

sin2 ωt dω

> N

(ω2 − ω1)
g2

2ω2
2

∫ ω2

ω1

sin2 ωt dω

=
N

4
g2

ω2
2

(
1− cos(ω2 + ω1)t

sin(ω2 − ω1)t
(ω2 − ω1)t

)
· (27)

For a general ρ(ω) in the interval [ω1, ω2], we have∫ ω2

ω1

ρ(ω) dω = N.

Then there exists some ω in [ω1, ω2] such that

ρ(ω) =
N

ω2 − ω1
·

If the frequency spectrum of the system is such that there
exist ω3 and ω4 in the interval [ω1, ω2] satisfying

ρ(ω) > N

ω2 − ω1
for ω3 6 ω 6 ω4. (28)

From the derivation of (44) it then follows that

R(t) > N

4
g2

ω2
4

ω4 − ω3

ω2 − ω1

(
1− cos(ω4 + ω3)t

× sin(ω4 − ω3)t
(ω4 − ω3)t

)
· (29)

After a moment’s thought, one can easily convince oneself
that the condition (36) is rather easy to satisfy. From the
inequality (37) we observe that although in the weakly
coupling limit, we should have g2/ω2

4 � 1, R(t) can in-
crease sharply with time t if the particle number is large
enough. This just means that the off-diagonal elements of
the reduced density matrix will decline sharply with time
t. In conclusion, despite the complexity of ρ(x, x′, t) due to
the presence of the oscillating factor s(t), in many cases it
can well describe the decoherence of macroscopic objects
thanks to its simple decaying norm.

5 Decoherence of wave packets

Let us now turn to consider an example similar to that
studied by Joos and Zeh. We take a coherent superposition
of two Gaussian wave packets of width d

ϕ(x) =
1

4
√

8πd2

{
exp

(
− (x− a)2

4d2

)
+ exp

(
− (x+ a)2

4d2

)}
· (30)

The norm of the corresponding reduced density matrix

|ρ(x, x′, t)| =
1∑

k,l=0

Pkl(x, x′, t) (31)

contains 4 peaks:

P11(x, x′, t) =
1√

8πd2
e−γt(x−x

′)2

× exp
[
− (x− a)2

4d2
− (x′ − a)2

4d2

]
P10(x, x′, t) =

1√
8πd2

e−γt(x−x
′)2

× exp
[
− (x− a)2

4d2
− (x′ + a)2

4d2

]
P01(x, x′, t) =

1√
8πd2

e−γt(x−x
′)2

× exp
[
− (x+ a)2

4d2
− (x′ − a)2

4d2

]
P00(x, x′, t) =

1√
8πd2

e−γt(x−x
′)2

× exp
[
− (x+ a)2

4d2
− (x′ + a)2

4d2

]
(32)

centering respectively around the points (a, a), (a,−a),
(−a, a) and (−a,−a) in x− x′-plane. The heights are re-
spectively 1/

√
8πd2, e−4γta2

/
√

8πd2, e−4γta2
/
√

8πd2 and
1/
√

8πd2). Obviously, two peaks with centers at (a,−a)
and (a,−a) decay with time while the other two keep
their heights constant. Figure 1 shows this time-dependent
configuration at t = 0, and a finite t. As t→ ∞, two off-
diagonal terms P10 and P01 decay to zero so that the in-
terference of the two Gaussian wave packets is destroyed.
In this sense, we say that the pure state ρ(x, x′, t = 0) =∫

dxϕ(x)ϕ∗(x′)|x〉〈x′| becomes a mixed state

ρ(t) =
∫

dxϕ(x)ϕ∗(x)|x〉〈x| (33)

in x-representation.
Interference of two plane waves of wave vector

k1, k2 provides us with another simple example. With-
out decoherence induced by its internal motion or
the external scattering, their coherent superposition
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Fig. 1. Disappearance of the nondiagonal elements of the den-
sity matrix.

ϕ(x) =
√

(1/4π)[eik1x + eik2x] yields a spatial interference
described by the reduced density matrix

ρ0(x, x′, t) =
1

4π

{
eik1(x−x′) + eik2(x−x′)

+ exp
[
i
(
k2

1t− k2
2t

2m
+ k2x− k1x

′
)]

+ exp
[
i
(
k2

2t− k2
1t

2m
+ k1x− k2x

′
)]}

·

(34)

Under the influence of internal motion, it becomes

ρ(x, x′, t) ≈ ρ0(x, x′, t)e−γt(x−x
′)2

for large mass. We see that the difference created by deco-
herence is only reflected in the off-diagonal elements,and
the pure decoherence (without dissipation) does not de-
stroy the interference pattern described by the diagonal
term ρ(x, x, t) = ρ0(x, x, t). This simple illustration tells
us that the present quantum decoherence mechanism may
not have to do with the interference pattern of the first
order coherence, but it does destroy the higher order quan-
tum coherence: ρ(x, x′, t) → 0 as t → ∞. In fact, due to
the induced loss of energy, quantum dissipation is respon-
sible for the disappearance of the interference pattern of
the first order coherence. The influence of internal mo-
tion or external scattering on the decoherence of a macro-
scopic object may be very complicated. Intuitively, these
dynamic effects should depend on the details of interaction
between the collective variables and the internal and ex-
ternal degrees of freedom. Practically,we can classify these
influences into two categories, namely, quantum dissipa-
tion and quantum decoherence, and then study them sep-
arately by different models.

6 Concluding remarks

It is noticed that, so long as the “which-way” information
of the collective motion of a macroscopic object already
stored in the internal motion can be read out, the phe-
nomenon caused by interference will be destroyed with-
out any data being read out in practice [5,13–16]. In
this sense the internal degrees of freedom interacting with
the macroscopic object behave as a detector to realize
a “measurement-like” process. Thus, the internal motion
configuration is imagined as an objective detector detect-
ing the collective states. Provided that the internal motion
configuration couples with the collective motion and pro-
duces an ideal entanglement, the collective motion must
lose its coherence. It is worth pointing out that this simple
entanglement conserves the energy of the collective motion
while it destroys the quantum coherence.

In the case without energy conservation, quantum dis-
sipation can also induce the localization of macroscopic
object. Based on the studies of quantum dissipation stim-
ulated by Caldeira and Leggett [18], Yu and one (CPS)
of the authors found a novel mechanism which sheds new
light on the localization problem of macroscopic objects
[21]. They studied the quantum dynamics of a simplest
dissipative system: one particle moving in a constant ex-
ternal field and interacting with a bath of harmonic os-
cillators with Ohmic spectral density. It was found that
the wave function of the total system can be factorized
as a product of those of the system part and the bath
part. When one ignores the effect of Brownian motion
or the quantum fluctuation in the system caused by the
bath, the product wave function becomes a direct prod-
uct and the dissipative evolution of the system is governed
by Caldirora-Kani (CK) Hamiltonian. Using this effective
Hamiltonian, they discovered the following interesting re-
sult: the dissipation suppresses the wave packet spreading
and causes the localization of the wave packet. Actually,
it was shown that the breadth of the wave packet changes
with time t in the following way:w(t) = a

√
1 + t2η/4M2a4.

Here a is the initial breadth of the wave packet and
tη = M(1− e−ηt/M )/η, where η is the damping rate. Com-
paring this formula with the equation (1), we find that the
effect of the influence of the bath is the replacement of t
by tη in (1). We have tη → t when η/M → 0. So one can
regard tη as a deformation of time t caused by dissipa-
tion. Notice that tη approaches the limit M/η as t→∞.
This means localization of the wave packet in the pres-
ence of dissipation. Indeed, we have the limit breadth:
alimit = a

√
1 + (1/2ηa2)2. This suppression of the wave

packet spreading by dissipation possibly provides a useful
mechanism for the localization of quantum particles. It is
a little bit surprising that as t → ∞ the limit width of
the damped particle wave packet is exactly the same as
the “uncertainty product” of the damped particle, estab-
lished by Schuch et al. through the nonlinear Schrödinger
equation [22].

In summary, the environment induced dissipation as
well as decoherence can provide an important mechanism
for the localization of a macroscopic object. Mentioning
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macroscopicness implies the requirement that the macro-
scopic object must contain a large number of internal
blocks. Then the macroscopic object, coupling to the inter-
nal variables, should be described by collective variables
subject to an interaction similar to that concerning the
external scattering in WJZ mechanism and the quantum
dissipation of a particle in a bath.
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