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Abstract. Based on the Born-Oppenhemer approximation, the concept of adiabatic quantum entanglement
is introduced to account for quantum decoherence of a quantum system due to its interaction with a large
system of one or a few degrees of freedom. In the adiabatic limit, it is shown that the wave function of the
total system formed by the quantum system plus the large system can be factorized as an entangled state
with correlation between adiabatic quantum states and quasi-classical motion configurations of the large
system. In association with a novel viewpoint about quantum measurement, which has been directly verified
by most recent experiments [e.g., S. Durr et al., Nature 33, 359 (1998)], it is shown that the adiabatic
entanglement is indeed responsible for the quantum decoherence and thus can be regarded as a “clean”
quantum measurement when the large system behaves as a classical object. By taking the large system
respectively to be a macroscopically distinguishable spatial variable, a high spin system and a harmonic
oscillator with a coherent initial state, three illustrations are presented with their explicit solutions in this
paper.

PACS. 03.65.-w Quantum mechanics – 03.65.Bz Foundations, theory of measurement,
miscellaneous theories (including Aharonov-Bohm effect, Bell inequalities, Berry’s phase) –
03.65.Sq Semiclassical theories and applications

1 Introduction

In general, time-irreversible processes in quantum me-
chanics, such as the wave packet collapse of a measured
system in quantum measurement and the quantum de-
coherence of a small system surrounded by an environ-
ment [1–3], suffer information loss due to the interaction
of the considered system S with an external system E (the
measuring instrument or the environment) with many par-
ticles or many degrees of freedom. In this paper we will
show that, even if the external system has only one or
a few degrees of freedom, it can still cause decoherence
of the quantum system under the adiabatic condition. It
turns out that the Born-Oppenhemer approximation leads
to a partial factorization of the wave function of the total
system formed by the quantum system plus the external
large system and the motion configuration of the external
system can then record the information of the quantum
system effectively.

Physically, for Young’s two-slit experiment the quan-
tum decoherence is reflected by the disappearance of
interference pattern in the presence of a “which-way”
detector E. Associated with the wave-particle duality,
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before the measurement to observe which way the particle
actually takes, the quantum particle seems to move from
one point to another along several different ways simulta-
neously. This just reflects the wave feature of a quantum
particle. The detection of “which-way” means a probe for
the particle’s feature, which leads to the disappearance of
wave feature or quantum decoherence. The recent “which-
way”experiments [4–7] show that Schrödinger’s concept of
entangled state, besides the unavoidable measurement dis-
tribution, is also crucial for the wave-particle duality. A
quantum entangled state [8–10] such as

|Ψ〉 =
∑
n

Cn|Sn〉 ⊗ |Dn〉 (6= |S〉 ⊗ |D〉 (1.1)

(for any |S〉 and |D〉, Cn is a complex number) is a coher-
ent superposition of states of the total system. It involves
a correlation between the states |Sn〉 of the quantum sys-
tem and the states |Dn〉 of E. Once the external system
is found in a state |Dn〉, the total system must collapse
into a certain component |Sn〉 ⊗ |Dn〉. Then one can in-
fer the state |Sn〉 of the quantum system. The interfer-
ence pattern can be described mathematically by using the
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reduced density matrix

ρ = TrD(|Ψ〉〈Ψ |) =
∑
n

|Cn|2|Sn〉〈Sn|

+
∑
m6=n

C∗mCn|Sn〉〈Sm|〈Dm|Dn〉 (1.2)

which is obtained by tracing out the variables of E. The
above-mentioned decoherence phenomenon can be equiva-
lently expressed as a projection or reduction of the reduced
density matrix from a pure state ρ =

∑
m,n |Sn〉〈Sm| to a

mixed state ρ̂ =
∑
n |Sn〉〈Sn|. The off-diagonal terms on

the rhs of the above equation is responsible for the interfer-
ence pattern. It is easy to see that the interference fringes
completely vanish when the states of E are orthogonal to
one another [10], i.e., when 〈Dm|Dn〉 = δm,n. In this sit-
uation, an ideal quantum measurement results from the
ideal entanglement with the correlated components |Dn〉
orthogonal to one another, in which one can distinguish
the states of E very well.

It is noticed that, so long as the “which-way” informa-
tion already stored in the detector could be read out, the
interference pattern has been destroyed without any data
read out in practice [4,5]. In this sense the environment
surrounding the quantum system behaves as a detector to
realize a “measurement-like” process. This is because the
environment never needs to read out the data. Thus, the
above argument is also applicable to the analysis of de-
coherence problem of an interfering quantum system cou-
pling to the environment [8–10]. In this kind of problems,
the environment is imagined as an objective detector de-
tecting the states of the quantum system and thereby the
detector states |Dn〉 are thought to be the macroscopic
quantum states of the environment. Provide the environ-
ment couples with the quantum system and produce an
ideal entanglement, the quantum system must lose its co-
herence. It is worthy to point out that this simple en-
tanglement conserves the energy of the quantum system
while destroying the quantum coherence. The loss of en-
ergy of the quantum system can be separately discussed in
the quantum dissipation theory well developed in recent
years [11–16].

In our previous works on quantum measurement the-
ory [17–23], we investigate how an ideal entanglement ap-
pears in the macroscopic limit that the number N of par-
ticles making up the detectors approaches infinity. It was
found that the factorization structure

Fm,n = 〈Dm|Dn〉 ≡
N∏
j=1

〈D[j]
m |D[j]

n 〉 (1.3)

concerning the overlapping of detector-states plays a cru-
cial part in quantum decoherence. Here, |D[j]

n 〉 are the
single states of those blocks constituting the detector,
and Fm,n is called decoherence factor. Since each factor
〈D[j]

m |D[j]
n 〉 in Fm,n has a norm less than unity, the prod-

uct of infinite such factors may approach zero. This in-

vestigation was developed based on the Hepp-Coleman
mode and its generalizations [24–27]. In 1998, this the-
ory was applied to the analysis of the universality [28] of
the influences environment [29] on quantum computing
process [30,31]. Parallelly, the classical limit that certain
quantum numbers (such as angular momentum) are huge
is also investigated in our previous works.

However we have not got a totally-satisfactory answer
to the question why the large system entangling with the
small system behaves so classically in such limit situa-
tions. In fact, concerning the transition of the detector
from quantum status to classical status, there were only
some vague presentations [17,19,21] in the cases with large
quantum number. In a general situation the classical fea-
ture of the large system can not simply be characterized
by large quantum numbers, and thus what is responsi-
ble for the classical feature remains unclear yet. Besides,
all of our previous discussions about quantum decoher-
ence are based on interaction of particular forms, namely
the non-demolition interaction [3]. In this paper, using
Born-Oppenheimer (B-O) approximation [32], we univer-
sally consider the decoherence problem for a quantum sys-
tem coupling to a large system with one or a few degrees
of freedom through a most general interaction. This basic
approach can be applied to analyzing influences exerted
by environment and detector as well. Our discussion is
also involved with a fundamental problem that the physi-
cist can not avoid completely: how does the time rever-
sal symmetry implied by the Schrödinger equation at the
microscopic scale turn into the time reversal asymmetry
manifested by quantum decoherence or quantum dissipa-
tion at the macroscopic scale?

This paper is organized as follows. We describe in Sec-
tion 2 the adiabatic factorization of slow and fast dynamic
variables in terms of the B-O approximation and show how
the interaction of the large object of one or a few degrees of
freedom with a quantum system causes a quantum entan-
glement dynamically. In Section 3, incorporating the semi-
classical approach to the quasi-classical motion of slow
variable in a smooth potential, we manifest that, driven
by the adiabatically-effective Hamiltonian, the final states
of the large object initially in an appropriate state are or-
thogonal to one another,and their entanglement with the
quantum system leads to decoherence. In Sections 4, 5
and 6, the universal formal treatment in Sections 2 and 3
is illustrated by three explicit examples:

a. a particle with spin 1/2 moving slowly in an inhomoge-
neous magnetic field of varying direction (it is similar
to the Stern-Gerlach experiment [33]);

b. a two level quantum system interacting with a
very large spin (it is the generalization of the Cini
model [34]);

c. a quantized cavity field coupled with a simple har-
monic oscillator.

The third illustration has certain practical significance
as it is relevant to the problem of detecting gravitational
wave by intracavity dynamics [35,36].
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2 Quantum entanglement
via Born-Oppenheimer approach

In a very wide sense, any interaction between two quantum
systems can cause an entanglement between them. In gen-
eral, it then realizes a quantum measurement in a certain
meaning. This is because one quantum system in differ-
ent states can act on another with different effects corre-
spondingly. However, this entanglement and its relevant
quantum measurement is generally not very ideal because
the usual interaction can not produce a one-one corre-
spondence between the states of the two systems. Indeed,
only a very particular interaction or its effective reduction
can lead to an ideal entanglement and thereby an ideal
quantum measurement. Nevertheless, fortunately, so long
as one of the two systems can be separated adiabatically
and behaves classically, as we will prove in the following,
any interaction can result in an ideal entanglement in the
evolution of the total system through its adiabatic reduc-
tion based on Born-Oppenheimer (B-O) approximation.

From the view point of B-O approximation, we con-
sider a total quantum system (“molecular”) with two sets
of variables, a fast (“electric”) one q and a slow (nuclear)
one x. Resolving the dynamics of fast variables for a given
motion of the slow subsystem, we obtain certain quantum
states labeled by n for the fast part. To the first order ap-
proximation, the left effective Hamiltonian governing the
slow variables involves an external scalar potential Vn(x)
and an magnetic-like vector potential An(x) induced by
the fast variables [37,38]. The latter is called the induced
gauge potential or Berry’s connection. If we assume the
motions of the slow subsystem are “classical”, we natu-
rally observes that, due to the back-actions of the fast
part, there are different induced forces

Fn = −∇xVn(x) +
d
dt
x(∇x ×An) (2.1)

exerting on the slow part. Their direct physical effects are
that the information of the “fast” states labeled by n is
recorded in the different motion configurations of the slow
part. An entanglement just stems from this correlation
between the quantum states of the fast subsystem and
the classical motion configurations of the slow subsystem.
In spirit of this physically-intuitive observation, we study
the production of such quantum entanglement from the
adiabatic separation of slow and fast variables based on
the B-O approach.

Let us consider the interaction between a quantum sys-
tem S with fast dynamic variable q and the large system
E with slow variable x. The former with the Hamiltonian
Hs = Hs(q) can be regarded as a subsystem soaked in an
environment or a measured system monitored by a detec-
tor, and the latter with the Hamiltonian HE = HE(x) as
the environment or the detector accordingly. In general
the interaction Hamiltonian is written as HI = HI(x, q).
For a fixed value of slow variable x of E, the dynamics of
the quantum system is determined by the eigen-equation

[Hs(q) +HI(x, q)]|n[x]〉 = Vn(x)|n[x]〉. (2.2)

Both the eigen-values Vn[x] and the eigen-state |n[x]〉 de-
pend on the slow variable x as a given parameter.

Usually, the variation of the Hamiltonian Hs(q) +
HI(x, q) with as a parameter x can cause transition from
an energy level Vn(x) of the quantum system to another
level Vm(x). But within the spatial domain R to which
the slow variable x belongs, if the variable x changes so
slowly that the adiabatic conditions [39–42]∣∣∣∣ 〈n[x]|∂x|m[x]〉dx/dt

Vm(x)− Vn(x)

∣∣∣∣
=
∣∣∣∣ 〈n[x]|{∂xHI(x, q)}|m[x]〉dx/dt

{Vm(x)− Vn(x)}2

∣∣∣∣� 1 (2.3)

hold for any two of the different energy levels Vn(x),
this transition can be physically neglected and then the
B-O approximation works as an effective approach. Let
|Φn,α〉 be the full eigen-function of the full Hamiltonian
H = HE(x)+Hs(q)+HI(x, q) for the total system formed
by the large system plus the quantum system. The B-O
approximation treats it as a partially factorized function

〈x|Φn,α〉 = φn,α(x)|n[x]〉 (2.4)

of the slow and fast variables x and q. Here, the set of slow
components {φn,α(x) = 〈x|φn,α〉} and the correspond-
ing eigen-values ωn,α are obtained by solving the effective
eigen-equation

Hn(x)φn,α(x) = ωn,αφn,α(x). (2.5)

The effective Hamiltonian Hn(x) is defined by

Hn(x) = HnE(x) + Vn(x) (2.6)

where HnE(x) is an gauge-covariant modification of
HE(x). It was obtained by replacing the momentum op-
erator p = −i~∇x with its gauge-covariant form p =
−i~∇x − An(x). Here, An(x) = i〈n[x]|∇xn[x]〉 is a U(1)
gauge potential induced by the motion of the quantum
system. In the classical limit that the slow part behaves
classically, an effective dynamics of interaction between
quantum and classical objects naturally results from the
effective Hamiltonians or its relevant Lagrangian [43].

The completeness relations
∑
n,α |Φn,α〉〈Φn,α| = 1 for

the full eigen-functions |Φn,α〉 can be expressed in x-
representation as∑
n,α

∫
dxdx′φ ∗n,α (x′)φn,α(x)|x〉〈x′| ⊗ |n[x]〉〈n[x]| = 1

(2.7)

which is equivalent to∑
n

|x〉〈x| ⊗ |n[x]〉〈n[x]| = |x〉〈x|,
∑
α

|φn,α〉〈φn,α| = 1.

(2.8)

After obtaining the complete set {φn,α(x)|n[x]〉} of eigen-
states of the total system, we can now consider how the
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entanglement appears in the adiabatic dynamic evolution.
Let the total system be initially in the state |Ψ(t = 0)〉:

〈x|Ψ(t = 0)〉 =
∑
n

cn|n[x]〉φ(x). (2.9)

The first component of the initial state |Ψ(t = 0)〉 is a
superposition of the eigenstates of the quantum system
while the second one a single pure state. Expanding |Ψ(t =
0)〉 in terms of the complete set {φn,α(x)|n[x]〉}, we have
the evolution wave function at time t

〈x|Ψ(t)〉 =
∑
n,α

cn〈φn,α|φ〉 exp[−iωn,αt]|n[x]〉φn,α(x)

(2.10)

where we have used the completeness relation equa-
tion (2.7). In terms of the effective Hamiltonian Hn(x) re-
lated to each single adiabatic state |n[x]〉, the above wave
function is rewritten in a concise form

〈x|Ψ(t)〉 =
∑
n

cn|n[x]〉〈x|Dn(t)〉 (2.11)

with

|Dn(t)〉 =
∑
α

〈φn,α|φ〉e−iωn,αt|φn,α〉 = exp[−iHnt]|φ(x)〉.

(2.12)

The full wave function|Ψ(t)〉 is obviously an entangled
state. Starting from the same initial state |φ〉 at t = 0, the
large system will be subject to different back-actions de-
fined by (Vn, An) from the different adiabatic states |n[x]〉
of the quantum system. Then it evolves to a superposi-
tion of different final states |Dn(t)〉. This intuitive argu-
ment shows us that, there indeed exists an entanglement
between two quantum systems with an quite general inter-
action, if one of them moves so slowly that their dynamic
variables can be adiabatically factorized according to the
B-O approximation. Roughly speaking, in the B-O ap-
proach, the slow subsystem is usually referred to as heavy
particles (such as nucleons) while the fast one as light par-
ticles (such as the electrons). So it is reasonable to expect
the slow subsystem to behave as a classical object.

3 Decoherence: Transition from quantum
to classical

In this section we will discuss under what conditions the
large system, the environment or the detector, can behave
classically so that the quantum system entangled with it
could completely lose its coherence and approach the clas-
sical limit.

Consider the reduced density matrix of the quantum
system

ρs(t) = TrD(|Ψ(t)〉〈Ψ(t)|) =
∑
n

|Cn|2|n[x]〉〈n[x]|

+
∑
n6=m

CmC
∗
n|m[x]〉〈n[x]|〈Dn(t)|Dm(t)〉 (3.1)

obtained by “summing over” the variables of the large sys-
tem. The off-diagonal term responsible for interference is
proportional to the overlapping Fn,m = 〈Dn(t)|Dm(t)〉 of
the two large system states. Were there no large system
interacting with it, the quantum system would be com-
pletely coherent for ρs(t) = |ϕ(t)〉〈ϕ(t)| is a pure state.
Here |ϕ(t)〉 = exp(−iHst)|ϕ〉 is a free evolution state of
the large system. Mathematically, the effect of the adi-
abatic effective interaction is to multiply the off-diagonal
term of the reduced density matrix by the decoherence fac-
tor Fn,m. A complete decoherence is defined by Fn,m = 0
while a complete coherence by Fn,m = 1 (m 6= n).

Before considering how the decoherence factor Fn,m
becomes zero for the large system, we need to review
some known arguments about the meaning of the clas-
sical limit of the motion of the large system. According
to a widely accepted viewpoint [44], in the classical limit,
the expectation value of an observable for certain partic-
ular states should recover its classical value forms. These
particular states can give definite classical trajectories of
particle in this limit. Usually we call them quasi-classical
states. A coherent state or its squeezed version is a typ-
ical example of such states. According to Landau and
Lifshitz [44], in general, a quasi-classical state is a partic-
ular superposition

∑
n cnφn with the non-zero coefficients

cn only distributing around a large quantum number ñ.
Then the correspondence principle requires that ñ → ∞,
~ → 0 and the product ñ~ approaches a finite classical
action. In such a limit, the expectation of an observable
will take the Fourier series of its corresponding classical
quantity; or strictly speaking, it takes the Fejér’s arith-
metic mean of the partial sums of the Fourier series [45].
In this sense the mean-square deviation of the observable
is zero; and accordingly the mean of the position oper-
ator defines a classical path. Physically, the zero mean-
square deviation of the position operator implies the zero
width of each wave packet 〈x|Dm(t)〉, and the overlapping
Fn,m = 〈Dn(t)|Dm(t)〉 of zero width wave packets must
vanish. From such a semi-classical picture, we will clearly
see in the following how the decoherence factor Fn,m ap-
proaches zero dynamically as the large system becomes
classical.

In the semi-classical approach, for a heavy particle, the
initial state |ϕ〉 can be regarded as a very narrow wave
packet of width a. Since the heavy particle has a large
massM it hardly spreads in the evolution because without
the environment induced quantum dissipation [15,16] the
width of the wave packet at time t is

w(t) = a

√
1 +

t2

4M2a4
· (3.2)

Then we describe the large system as an moving wave
packet with the center along a classical path x(t) on a
manifold with local coordinates x. For a proper initial
state |ϕ〉, we will see that the wave packet will split into
several narrow peaks with the centers along different paths
determined by different motion equations governed by
the effective forces Fn = −∇xVn(x) + (dx/dt)(∇x × An)
with effective potentials (Vn(x), An). Usually, the widths
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of these peaks are almost of the same order as that of
the original wave packet and each peak is correlated to an
adiabatic quantum state |n[x]〉 for a large mass. Except
for some moments at which the centers of two or more
peaks coincide, these narrow peaks hardly overlaps with
one another. In this sense, the large system starting from
a narrow initial state can reach a superposition of those
states orthogonal to one another. Thus we approximately
have Fn,m = 0 in the classical limit for m 6= n.

With reference to the useful analysis in reference [10],
we present an explicit but sketchy calculation to justify the
above physically-intuitive observation about Fn,m = 0 in
the classical limit. Assume the large system to be a heavy
particle with very large mass M . In the duration τ of
the adiabatic interaction with the quantum system, if the
condition vτ ≈ (∆p/M)τ � ∆x holds, the momentum
p0 of the free heavy particle can not be changed notably.
Thus the contributions of the kinetic term and the induced
gauge potential can be ignored in the wave function evolu-
tion of the free heavy particle under this condition. From
this consideration we can approximately write down

|Dn(t)〉 = e−iHnt|φ(x)〉 ∝ e−iVn(x)t|φ(x)〉. (3.3)

The approximation requires that the effective potential
Vn(x) is satisfactorily smooth or the interaction HI(x, q)
is a smooth function of x. So we can use

Vn(x) ≈ Vn(0) + Fnx; Fn ≈ ∇Vn(0) (3.4)

to re-express the decoherence factor

Fn,m = 〈ϕ| exp
(
− itδF (m,n)x

)
|ϕ〉. (3.5)

Here, δF (m,n) = Fm − Fn is the difference of two exter-
nal forces exerted by two adiabatic potentials Vm(x) and
Vn(x). Then the role of the back-action of the quantum
system on the large system is summing up the momen-
tum shift by a quantity δF (m,n)t with respect to the
initial state |ϕ〉. Obviously, when the width σ = a−1 of
the initial wave packet 〈p|ϕ〉 in the momentum space is
much less than the momentum shift δF (m,n)t, the large
system will adiabatically evolves into states orthogonal to
one another. In fact, if the initial state is chosen to be
a Gaussian wave packet 〈x|ϕ〉 = σ exp[−σ2x2/2]/

√
π of

width ∆x = 1/σ, the decoherence factor is a Gaussian
decaying function of time t

Fn,m = exp
(
−δF (m,n)2

4σ2
t2
)
. (3.6)

As the evolution time t approaches infinity or if we have a
very narrow width σ, Fn,m → 0 and a quantum decoher-
ence results from the dynamical evolution automatically.

Generally, we consider a system described by Hn =
p2/2M + Vn(x) without the induced gauge field. Define
xc = 〈ϕ|x|ϕ〉 and pc = 〈ϕ|p|ϕ〉 for an initial state |ϕ〉. In
the classical regime one may expect that the variations
ξ = x − xc and pξ = p − pc are small compared with xc

and pc. Accordingly the potential can be expanded as

Vn(x) ' Vn(xc) + V ′n(xc)ξ +
1
2
V ′′n (xc)ξ2. (3.7)

O t

xC

Fig. 1. Classical orbit with quantum fluctuation.

So, approximately the Heisenberg equations of motion be-
come

d
dt
x =

p

M
,

d
dt
p = −V ′n(xc)− V ′′n (xc)ξ. (3.8)

Sandwiched by the initial state |ϕ〉, the above equations
turn into the classical equations of motion

d
dt
xc =

pc

M
,

d
dt
pc = −V ′(xc). (3.9)

Now we turn to Schrödinger’s picture. The evolution of
the initial state is governed by i~∂t|ϕ(t)〉 = Hn|ϕ(t)〉. In-
troduce the following time-dependent translation

|φ(t)〉 = exp
{

i
~

(
θ(t) + xcpξ − pcξ

)}
|ϕ(t)〉 ≡ S(t)|ϕ(t)〉

(3.10)

where θ(t) is determined by θ̇t = p2
c/2M + V (xc). Then

straightforward calculation gives

i~∂t|φ(t)〉 =

(
p2
ξ

2M
+

1
2
Mω2

t ξ
2

)
|φ(t)〉 (3.11)

where Mω2
t = V ′′(xc). This exactly describes an oscillator

with time-dependent frequency. The above direct deriva-
tion shows that in the non-inertial frame moving along
the classical orbit, every quasi-classical system looks like
a time-dependent oscillator whose frequency depends on
the orbit. This fact is an established conclusion and il-
lustrated in Figure 1. Actually, it is present in many text-
books about path integral. But our argument here is based
on a clear physical picture and is applicable to the three
dimensional case after a slight generalization.

Denote by |0〉 the vacuum state of the harmonic oscil-
lator with frequency ω0 which is equivalent to a Gaussian
wave packet of width σ−1

0 =
√

2mω0/~. Suppose that ini-
tially the system is in the state S†(0)|0〉, a coherent state
whose center lies at (xc(0), pc(0)). At time t, the center
of the wave packet is obviously at (xc(t), pc(t)), and it is
reasonable to expect that the width of the wave packet be-
comes σ−1

t =
√

2mωt/~, since the frequency of the time-
dependent oscillator changes very slowly. For two different
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potentials V1(x) and V2(x) the macroscopic distinguishi-
bility is ensured when the width sum of the two evolved
packets is less than their orbital difference, that is, when

σ1t + σ2t ≤ |xc1(t)− xc2(t)|.

One cannot expect that this condition can always be ful-
filled for all time t. The orbital difference is determined
by something like |V ′1 − V ′2 | and the width is determined
by the second derivative of the potential. But their rela-
tion is not very clear to us at present. What is clear is, to
have 〈D1(t)|D2(t)〉 = 0 one should require the points that
fail the inequality form a zero measure set. On the other
hand, the adiabatic approximation also imposes some re-
strictions on the potential. To clarify the situation further
more sophisticated considerations are needed.

4 From macroscopic distinguishibility
to decoherence

In the context of quantum measurement, a variant of the
Stern-Gerlach (S-G) experiment provides an illustration
of the above formalism. Quantum measurement is muta-
tionally an observing process that “reads out” the system
states from the “macroscopically distinguishable” states
of the detector. As is shown in the above, if the large par-
ticle moves slowly enough, an adiabatic eigen-state of the
quantum system will be correlated to one of the detector
states in the B-O approximation. So the adiabatic corre-
lation

|1[x]〉 → |D1(t)〉, |2[x]〉 → |D2(t)〉, ... |n[x]〉 → |Dn(t)〉
(4.1)

between the system states |n[x]〉 and the detector states
|Dn〉 defines a quantum measurement. In the classi-
cal limit, this measurement is thought to be ideal for
|Dn〉 (n = 1, 2, ...) are orthogonal to one another, i.e.,
|Dn〉 are shown to be “classically- or macroscopically dis-
tinguishable”. Once the detector is found in the state |Dn〉,
we can infer that the system is just in the state |n〉. In the
following we will quantitatively analyze the dynamical re-
alization of such an adiabatic measurement in a variant of
the S-G experiment.

The original Stern-Gerlach (S-G) experiment can be
considered as a quantum measurement process detect-
ing the spin states of particles from their spatial dis-
tribution. The WPC or quantum decoherence can be
described in an dynamical evolution governed by the in-
teraction between the space- and spin-degrees of freedom.
In its variant, a spin-1/2 particle initially in a certain
superposition state enters an inhomogeneous magnetic
field of amplitude B(x) with varying direction n(x) =
(sin θ cos kx, sin θ sin kx, cos θ) where θ is fixed. Its config-
uration is shown in Figure 2. A simple experiment though
it is, it is among the candidates of experiments proposed
to test the Berry’s phase or its corresponding induced
gauge field for a neutron in a static heliacal magnetic field
[42,46]. In the usual S-G experiment, the direction of the

~B
~B

~B

x

kx
X

Y Y Y

Z Z Z

O
�

2k

Fig. 2. The configuration of a rotating magnetic field for Stern-
Gerlach experiment.

magnetic field is along the fixed x-axis, but in our present
model the polarization direction varies as the position x
changes.

The spatial variable is considered to be the slow sys-
tem while the spin-variable to be fast as a quantum sys-
tem. Corresponding to the eigenvalues V±(x) = ±µB(x),
the adiabatic eigenstates of the spin-Hamiltonian Hspin =
µB(x) n(x) · σ are

|χ+[x]〉 =

[
cos θ/2 e−ikx

sin θ/2

]
, |χ−[x]〉 =

[
sin θ/2 e−ikx

− cos θ/2

]
.

Here σ = (σx, σy , σz) is the Pauli spin operator and
µ the gyromagnetic ratio. Let the incoming beam be
initially in a superposition of the adiabatic eigen-states
|ψ〉 = c+|χ+[x]〉 + c−|χ−[x]〉 along a certain polarization
direction depending on x. When the particle moves so
slowly that the adiabatic condition∣∣∣∣ d

dt
xk sin θ/µB(x)

∣∣∣∣� 1 (4.2)

holds, to the lowest order of the B-O approximation, the
total initial state |Ψ(0)〉 = {c+|χ+[x]〉+c−|χ−[x]〉}⊗|φ(x)〉
will evolve into an entangled state

|Ψ(t)〉 = c+|χ+[x]〉 ⊗ |D+(t)〉 + c−|χ−[x]〉 ⊗ |D−(t)〉.
(4.3)

Here, |D±(t)〉 = exp[−iH±t]|φ(x)〉 are the spatial states
governed by the effective Hamiltonians

H± =
1

2M
(−i∂x −A±)2 + V±(x). (4.4)

The effective scalar potentials V±(x) and the induced vec-
tor potentials A± = k(1 ± cos θ)/2 are determined from
the adiabatic spin eigenstates |χ+[x]〉 and |χ−[x]〉. In the
semi-classical picture, because the particles in the adia-
batic spin states |χ+[x]〉 and |χ−[x]〉 separately suffer two
forces F± = −∂V±(x)/∂x of opposite directions along x,
they will finally form two macroscopically-distinguishable
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spots on the detecting screen, each of which is correlated to
one of the spin states. This spin-space correlation process
enables people to pick out different spin states according
to the spatial distribution.

To analyze this measurement process in details we as-
sume the spatial part φ(x) in the initial state is a Gaussian
wave packet

|φ(x)〉 =
(

1
2πa2

) 1
4
∫

dx e−
x2

4a2 |x〉 (4.5)

distributing along direction x with the center at the
original point. Here a is the initial width of the atom
beam. Adopting the semi-classical method, we have the
linear approximation B(x) ' [∂xB (x = 0)]x and f =
µ∂xB (x = 0). Factorizing the evolution operator U±(t) =
exp[−iH±t] by Wei-Norman method [47,48], we exactly
obtains, in position representation, the following effective
wave functions |D±(t)〉at time t

〈x|D±(t)〉 =
(
a2

2π3

) 1
4
(

π

a2 + it
2M

) 1
2

e−iΩ±(t)∓iftx

× exp

[
− (x− x±c(t))2

4(a2 + it
2M )

]
(4.6)

where

Ω±(t) =
f2t3

6M
+

1
2
ft2A±.

It is seen from equation (4.6) that the Gaussian wave pack-
ets 〈x|D±(t)〉 center on the classical trajectories

x±c(t) = ∓1
2
f

M
t2 − A±

M
t. (4.7)

They have the different group speeds v± = ∓ft/M −
A±/M along the opposite directions, but have the same
width a(t) = a

√
1 + t2/(4M2a2) spreading with time. It

is obvious that the motions of the wave packet centers
obey the classical motion law that a particle of mass M
forced by ∓f will move with the acceleration ∓f/M . The
quantum character of this motion is mainly reflected in the
spreading of the wave-packets. The induced gauge fields
A± are constant, but they change the initial value of dx/dt
according to the corresponding classical Hamilton equa-
tion

M
d2

dt2
x = ∓f ;

d
dt
x =

p

M
− A±
M
· (4.8)

This means that the zero initial value of the canonical mo-
mentum p = Mdx/dt+A± determines the initial velocity
dx(0)/dt = −A±/M. The quantum effects of A± are to
contribute the additional phases −ft2A±/2 in the wave
functions.

The macroscopic distinguishibility of wave-packets in
quantum measurement requires that the distance between

the two wave-packets should be larger than the width of
each wave packet, i.e.

ft2 − k cos θt� a

√
M2 +

t2

4a2
· (4.9)

This condition is easily satisfied for a long time evolution.
To analyze the decoherence quantitatively, we com-

pute the norm of the decoherence factor F (t) =
|〈D+(t)|D−(t)〉|. The extent of quantum coherence de-
pends totally on this overlapping integral. We can explic-
itly integrate it

F (t) = exp

[
−a2f2t2 − 1

8a2

(
f

M
t2 − k cos θ

M
t

)2
]
.

(4.10)

It is obvious that the decoherence process indeed happens
as t → ∞, but it does not obey the simple exponential
law e−γt. In a long time scale, the temporal behavior of
decoherence is described by F (t) ≈ exp

[
−f2t4/8a2M2

]
and the characteristic time of the decoherence process can
be defined by F (τd) = e−1, that is

τd =

√
2
√

2Ma

f
· (4.11)

This shows that the long time behavior of decoherence is
independent of the spatial details of interaction, which is
caused by the configuration of the external field.

5 Decoherence resulting from large spin

There is a second illustration to show the happening of de-
coherence owning to the adiabatic separation of two sys-
tems. Based on our previous investigation about quantum
decoherence in the classical limit [17,21,22], we assign an
arbitrary spin j to interact with a two-level system (such
as a spin-1/2 system) through a coupling of particular
form. Let J = (Ĵx, Ĵy, Ĵz) be the angular momentum op-
erator of the large system and σ = (σx, σy,σz) be the Pauli
matrix describing the quasi-spin of the two-level quantum
system with energy-level difference ωs. The full Hamilto-
nian of this model is

HI = ωsσz+ωJz + f(J)σx. (5.1)

The general interaction f(J)σx is linear with respect to
the variable of the quantum system while it depends on
the variable J through a function f(J). Two free Hamil-
tonians ωsσz and ωJz were introduced to consider the
energy-exchange between the quantum system and the
large system.

The interaction f(J)σx can not well distinguish the
states | ± 1/2〉 of the quantum system for | ± 1/2〉 are
not the eigen-states of the interaction Hamiltonian. So,
in general, this model can not well describe a quantum
measurement process and thus can not give a good de-
scription of quantum decoherence. However, if we think J
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as the slowly-changing variable relative to the fast one σ,
determined by the B-O approximation under the adiabatic
condition, the effective potential V± = ±

√
ω2

s + f(J)2

of the large system will clearly distinguish the adiabatic
eigen-states |u+[J]〉 = (cosϑ/2, sinϑ/2)T and |u−[J]〉 =
(sinϑ/2,− cosϑ/2)T . Here, the angle parameter ϑ =
argtan(−f(J)/ωs) depends on the slow variable J. Then,
the adiabatic separation of the spin-1/2 and the large spin
system will result in a quantum decoherence.

In fact, because of the introduction of the arbitrary
spin j, which labels the (2j + 1)-dimensional irreducible
representation of the rotation group SO(3), we are able to
consider the behaviors of the quantum dynamics governed
by this model Hamiltonian in the classical limit with in-
finite spin j. The reason why the limit with infinite j is
called classical is that the mean square deviations of the
components Ĵx, and Ĵy enjoy the following limit feature
∆Ĵx/j = ∆Ĵy/j = 1/

√
2j → 0 as j →∞ [17,34,49].

To solve the dynamical evolution of the total sys-
tem explicitly, we choose a particular form of interac-
tion: f(J) =

√
g2J2

x − ω2
s . Taking this particular form

is equivalent to making a linear approximation for the
effective potential V±[J]. With this particular form the
effective Hamiltonians H± = ωJz+ V±[J] can be ex-
pressed as an rotation of the simple spin-Hamiltonian
H0 =

√
g2 + ω2Jz, i.e.,

H± = exp[iĴyφ±]H0 exp[−iĴyφ±] (5.2)

where the polar angle φ± is defined by tanφ± = ±g/ω.
According to the quantum angular momentum theory,

the eigen-states of H± can be constructed as

|j,m(φ±)〉 = exp[iĴyφ±]|j,m〉=
j∑

m=−j
djm′,m,(−φ±)|j,m′〉

(5.3)

where |j,m〉 is a standard angular momentum state and
djm′,m,(φ) = 〈j,m′| exp[iĴyφ]|j,m〉 is the corresponding
d-function; the corresponding eigen-values are Em =
m
√
g2 + ω2.

Here, we should remark that the exact solvability of the
above model largely depends on the particular form of the
function f(J). If this is not the case, the above method
can not work well and then certain semi-classical approx-
imation methods should be used to deal with the effective
Hamiltonian in its classical limit with very large j. If the
coupling function f(J) depends on J quite slightly, we can
generally linearize the above effective potential V±(J) to
realize the particular form.

We are concerned with classical characters of the large-
spin system. Let us suppose it is initially assigned the adi-
abatic ground state |j,m = −j(φ)〉 with the lowest mag-
netic quantum numberm = −j. In quantum measurement
theory, the choice of ground state is required by a stable
measurement. Starting with its initial state

|ψ(0)〉 = (C+|u+[J]〉+ C−|u−[J]〉) ⊗ |j,−j(φ)〉 (5.4)

F (j; t) =
�
1� sin2

�
t
p
g2 + !2=2

�
sin2 2�

�j

j = 1

j = 5

j = 50

p
g2 + !2t

2

1

1

1

0

Fig. 3. Disappear of non-diagonal elements of density matrix.
Here sin2φ = 1/2.

the effective Hamiltonians (5.2) evolves the large spin sys-
tem into an entanglement state

|ψ(t)〉 = C+|u+[J]〉 ⊗ |D+(t)〉+ C−|u−[J]〉 ⊗ |D−(t)〉,
(5.5)

with

|D±(t)〉 = exp[±iĴyφ] exp[−it
∧
Jz
√
g2 + ω2]

× exp[∓iĴyφ]|j,−j(φ)〉. (5.6)

Using the explicit expressions of the d-function djm′,m(φ±),
we can calculate the overlapping 〈D−(t)|D+(t)〉, obtaining

F (j; t) = |〈D−(t)|D+(t)〉|

=

∣∣∣∣∣1− sin2 2φ sin2

√
g2 + ω2

2
t

∣∣∣∣∣
j

. (5.7)

The above formula directly manifests the happening of
quantum decoherence in the classical limit j →∞. In fact,
in a nontrivial case with φ 6= 0,∣∣∣∣1− sin2 t

2

√
g2 + ω2 sin2 2φ

∣∣∣∣
is usually a positive number less than 1. In the classical
limit with j → ∞, its jth power |〈D−(t)|D+(t)〉| must
approach for t 6= tn ≡ 2nt/

√
g2 + ω2, n = 0, 1, 2... At

those instances tn, quantum coherence revivals as so-called
quantum jumps (see Fig. 3). Then, as far as the present
model is concerned, we reach the conclusion that, if the
large spin system behaves classically, the decoherence can
be dynamically realized for the entangled quantum sys-
tem. In traditional quantum measurement, the detector
was pre-required as a purely classical object to reduce
the coherent superposition instantaneously. But now it
is proved that the WPC occurs as the quantum detector
moves slowly to approach the classical limit. This means
in our treatment the detector is essentially still a quan-
tum object. Thus it has the advantage of dealing with the
problem of quantum measurement consistently within the
framework of quantum theory.



C.P. Sun et al.: Quantum decoherence from adiabatic entanglement 153

Fig. 4. Cavity with a oscil-
lating mirror.

6 Intracavity dynamics with classical source

Our third example about decoherence in quantum adia-
batic process is the intracavity dynamics with a classical
source, which is associated with the interferometric detec-
tion of the gravitational wave by a squeezed light [35,36].

We consider a cavity with two end mirrors (as in
Fig. 4), one of which is fixed while the other is treated
as a simple harmonic oscillator of frequency Ω and mass
M with the position and momentum x and p. The ra-
diation pressure force of the cavity field on the moving
mirrors is proportional to the intracavity photon density.
Let a† and a be the creation and annihilation operators of
the cavity with a single mode of frequency ω. The cavity-
mirror coupling is described by an interaction Hamiltonian
HI = gxa†a where g is the coupling constant depending
on the electric dipole. In the radio frequency range the
cavity field can be prescribed as a macroscopic current.
From this consideration we describe the cavity field dy-
namics with the Hamiltonian Hc = ωa†a+f(a†+a). This
cavity field-mirror coupling system can also be used to
detect the photon number in the cavity by the motion of
mirror. Obviously, the motion of the mirror is slow with re-
spect to the oscillation of the cavity field. Thus we can use
the B-O approximation to approach the quantum decoher-
ence problem in the measurement of the cavity field. Most
recently, the special case of this model without classical
source has been used as a scheme probing the decoherence
of a macroscopic object [51].

Coupled with the mirror and the classical source, the
adiabatic eigen-states

|n[x]〉 =
1√
n!

[a† + λ(x)]n|0〉 (6.1)

of the cavity field for displacement λ(x) = f/(ω + gx)
are determined by

{[ω + gx]a†a+ f(a† + a)}|n[x]〉 = vn(x)|n[x]〉 (6.2)

with the corresponding eigen-values vn(x) = n(ω +
gx), n = 0, 1, 2, ... Under the B-O approximation, the ef-
fective Hamiltonians are also referred to as the forced har-
monic oscillators in the same renormalization external po-
tential (RNEP) Vrne = f2/(ω + gx) [11,12]. Under the
adiabatic condition∣∣∣∣∣ 〈(n− 1)[x]∂x|n[x]〉 d

dtx

ω + gx

∣∣∣∣∣ ∼ |ngf d
dtx|

ω3
� 1 (6.3)

µ, the RNEP Vrne can be linearized as

f2

ω

[
1− gx

ω

∣∣∣ .

Then the effective Hamiltonians can be rewritten as Hn =
Ωb†b+ gn(b† + b) in terms of

b =
MΩ x+ ip√

2MΩ
, gn =

g(n− f2/ω2)√
2MΩ

= µ

(
n− f2

ω2

)
.

(6.4)

For each effective Hamiltonian Hn, the corresponding evo-
lution is a displacement operator

D[αn(t)] = exp
(
αn(t)b† − αn(t)∗b

)
(6.5)

with αn(t) = −gn(exp[iΩt]− 1)/Ω.
Let the initial state of the mirror be a well-defined

quasi-classical state, a coherent state |α〉 and the initial
state of the cavity be a superposition |c(0)〉 =

∑
n cn|n[x]〉

of the adiabatic states. The evolution governed by the ef-
fective Hamiltonian Hn leads to an entangled state

|ψI(t)〉 =
∑
n

cn|n[x]〉 ⊗D[αn(t)]|α〉

≡
∑
n

cn|n[x]〉 ⊗ |Dn(t)〉 (6.6)

for the total system. The overlapping of the mirror states
in this entanglement can be computed and its norm is

|〈Dm(t)|Dn(t)〉| = exp
(
−(n−m)2 2µ2

Ω2
sin2 Ωt

2

)
. (6.7)

The changing rate dx/dt (the velocity) of the slow vari-
able x is proportional to Ω. In the adiabatic limit, Ω is
very small. So we can rationally consider the limit Ω → 0
for a fixed µ. Then an ideal entanglement appears in this
limit case for the overlapping becomes an non-linear ex-
ponential decaying factor

|〈Dm(t)|Dn(t)〉| = exp
(
−1

2
(n−m)2µ2t2

)
. (6.8)

This result is quite similar to that of the Cini model in
van Hove limit [34]. This decay phenomenon was first il-
lustrated in reference [21,23]. Mathematically, it results
from the fact that in the strong coupling limit, the pe-
riod of the oscillation is very large in comparison with the
small frequency Ω.

Another interesting situation arise when the mirror is
initially prepared in a Fock state |n〉 =

(
a†
)n |0〉/√n!. To

show a macroscopic, but non-classical dynamic behavior,
the Fock state should possess a very large occupation num-
ber n. The overlapping for the initial Fock state can be
expressed as

F (t, n) = 〈n|D[−αk(t)]D[αl(t)]|n〉

= exp
[
−1

2
(l − k)2 µ

2

Ω2
sin2 Ωt

2

]
× Ln

(
(l − k)2 µ

2

Ω2
sin2 Ωt

2

)
(6.9)
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Fig. 5. Time-dependency of the nondi-
agonal elements.

in terms of the Laguerre polynomial Ln(z). Figure 5 shows
F (t, n) as a function of time t for different j. In fact, ac-
cording to the theory of special function, Ln(z) approaches
the zero-order Bessel function J0(

√
nz) when n → ∞,

hence [52],

F (t, n) → e−
1
2 (l−k)2µ2t2 Ln((l − k)2µ2t2/4) (6.10)

→ e−
1
2 (l−k)2µ2t2 J0(

√
n(l − k)2µ2t2). (6.11)

The zero-order Bessel function of real variable ζ
√
n is

a decaying-oscillating function and approaches zero as n
tends to infinity. Therefore, when the cavity is occupied
by a large number of photons, the macroscopic feature of
the detector (the end mirror) dynamically decoheres the
initial pure state of the cavity.

7 Concluding remarks

In a wide sense, the adiabatic entanglement can be well
understood in the picture of coupled channels [50], which
is an extensive generalization of B-O approximation. Con-
sider a total system whose wave function depends on two
sets of variables, q and x. Let Q be an operator only acting
on the function of q and has a complete set of eigen-vectors
{|n〉} with the corresponding eigenvalues vn. Since {|n〉}
forms a complete basis of the Hilbert space of all functions
of q, the total eigenfunction ΨE(x, q) of the full Hamilto-
nian H = HE(x)+Hs(q)+HI(x, q) with eigen-value E can

be regarded as a function of q for a given x and then can
be expressed as ΨE(x, q) =

∑
φn(x)|n〉. The channel wave

function φn(x) is defined by the coupled channel equations

Hnn(x)φn(x) +
∑
m6=n

Hnm(x)φm(x) = Eφn(x). (7.1)

The matrix elements Hmn(x) = 〈m|H|n〉q are defined in
terms of the q-function space “integral”. Under a certain
condition, if the off-diagonal elements can be neglected
physically, an effective non-demolition HamiltonianHeff =
HE−eff(x) +Hs−eff +Hin(x):

HE−eff = diag[HE
11(x),HE

22(x), ...,HE
dd(x)],

Hs−eff = diag[λ1, λ2, ..., λd],
Hin(x) = diag[Hs

11(x),Hs
22(x), ...,Hs

d(x)], (7.2)

can be partially diagonalized in the “channel space”.
Here HA

mm(x) = 〈m|HA|m〉q for A = E,S and
λm = 〈m|Hs(q)|m〉q are constants. Obviously, the non-
demolition condition [Hs−eff , Hin(x)] = 0 holds as Hs−eff

is a constant matrix. In the B-O approximation the
channel operator Q is taken to be Q[x] = Hs(q) +
HI(x, q),which is parameterized by x. The adiabatic con-
dition maintains that, only the diagonal elements play
a dominant role and the off-diagonal elements can be
neglected for very small channel-channel coupling [42].
Therefore, it can be concluded that there may exist a
more general mechanism beyond B-O approximation to
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realize the quantum decoherence dynamically originating
from the basic interaction, which is related to the theory
of coupled channels.

Finally we point out that the presence of non-
demolition interaction [3] is only a necessary condition
for quantum decoherence to appear. Sufficient conditions
should include the requirement that the large system be
classical so that its final states could be orthogonal to one
another. In this paper, we have regarded the spin-system
with a very large spin and the harmonic oscillator ini-
tially in a coherent state as classical objects. Then within
the semi-classical framework, even in the case of a general
potential motion, we are able to relate the macroscopic
distinguishibility of the quantum states of the large sys-
tem to its classical limit behaviors. However, there are still
vague points in the definition of the quantum-classical di-
vision for the large system. This problem is deeply rooted
in the following more fundamental and more challenging
issue: why or in what sense does a general large system be-
have classically. If we imagine that, besides the considered
quantum system, there is another system coupling with
the large system to decohere it, then the present problem
will be trapped into an evil logic chain. One notices the
difficulty here is very similar to that faced by von Neu-
mann and Wigner about sixty years ago [1,2]. Though
new experiments have been revitalizing the study of deco-
herence problem and progress is being made, it seems that
there is still a long way to go to finally understand quan-
tum irreversible process completely. To reach this goal;
one should first find a satisfactory definition for the so
called quantum-classical boundary. At present it is very
unclear to us how to do this without recourse to particu-
lar physical systems.
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