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Abstract Considering the collisions between the two condensates and the tunneling effects,
we study the time evolution of the relative phase of two Bose-Einstein condensates (BECs).
The phase amplitude is given in coherent picture for many cases, which furnishes us a new
method to study the interference of two BECs.
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The recent experimental realization of a weak-interacting Bose-Einstein condensatel!~3]
(BEC) has stimulated various theoretical works on the properties of these condensates. Among
them the problem of the phase of an atomic sample has been raised with renewed interest.
Theoretically, this phase appears naturally as a result of a broken symmetry in the theory
of BEC.1! The recent study, however, shows that the spontaneous symmetry breaking is
unnecessary for the explanation of interference of two BECs.[5~8] Instead, a measurement
looking for the interference of two cohdensates will find the characteristic consequences of the
phase, even if there is no phase in the initial state of system.[5:7-9-13]

Tong et al.l'?] extended the work of Javanainen and Yoo to study the relative phase be-
tween two BECs including the effects of collisions (except those between the two condensates).
The results show that after many detections the relative phase is very precisely defined and
the coherence (built up by the detections) is increasingly degraded with more and more atoms

.being detected, the later phenomenon is caused by atomic collisions. The evolution of con-
densates was considered there by using an effective Hamiltonian, which is non-Hermitian.
" Yvan Castin et al.[11] developed an approach to the problem of relative phase of two macro-
scopic entities that is based on microscopic measurements, the time evolution of the phase
distribution shows that it is difficult to establish a long-lived phase coherence between two
condensates. Using-continuous measurement theory, the dynamics in a single run of an in-
terference experiment between two BECs prepares a state with relative fixed phase, and the
relative phase is directly reflected in the spatial distribution of the interference pattern, more-
over, the measurement of the position of an atom gives information about the relative phase.
Most of these studies, however, have neglected the collisions and tunneling effects between the
two condensates, which may occur when the two condensates overlap.!14l

In this paper, we study the time evolution of relative phase between two condensates
including the collisions between two condensates and tunneling effects. As shown in the
following, they will result in a new conclusion for the interference of two BECs.

The many-body Hamiltonian describing atomic BEC in a double well potential V (r) isl!5]

#= [ @t 5L 4ve - o + Rytewewewn}, o)

where m is the atomic mass, Uy = 47rh%a/m measures the strength of the two-body interaction,
and a is the s-wave scattering length, ¢(r) and 9! (r) are the field operators which annihilate
and create atoms at position r. In the two-mode approximation, we expend the field operators
in terms of local modes and introduce the annihilation and creation operators

%=/fmmwvx j=r(ight), I(left),  af=(a))', 2)
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which satisfy [aj,aL] = §r and u;(r) is the normalized single-particle state in j-potential.
The two-mode approximation is valid if the overlap between the modes of opposite wells is
very small. Mathematically, this can be stated as follows:

[ Erusen) = 65+ - 630), @)

and € <« 1. Within the framework of variational principle, it is proved that the single-particle
state u;(r) satisfies equation(!®!

2
[“2%; + V(1) = fur) + 2Nilui(r) Pus(r) + z;; Njlus (r)*us(r) = 0. €y
JFi

This is the Hartree-Fock equation, the solution of Eq. (4) represents the amplitude of density
profile for the atoms in - potentlal Here, we do not deal with the detailed method of solving
the HF equation, the detailed discussion was given in Ref. [17]. Substituting ¥(r) = arun(r) +
ayu(r) into Hamiltonian (1), the many-body Hamiltonian reduces to the following two-mdde
approximation

H= E eijala; + (Upuo/2)atarata, + (Uouo/2)a;a1a;al
i,j=nl
+ 2U0u1a;‘a,a"a, +1 Uouga,"ala"a, +1 Uouga{a,a;'ar , (5)
where ei; =Up [ d®ru (r)[—(FY/2m) V% +V —pu;(r), 'u.o-Uofd3ru wrupu, =Ug [ 3rufulwuy,
uy = Up [ d3rujuulu,, and uz = Up [ d3rufuluu;. Here, we have considered the self-
interaction (terms with ug) within each well and the cross-interaction (terms with u, and us)
between two wells, which have the order of €. The Hamiltonian (5) was widely considered
to discuss the problems of discrete self-trapping equation,'® nonlinear optical directional
coupler!'® and quantum dynamics of an atomic BEC in a double-well potential.l!4]
To begin with, we consider the following Hamiltonian for simplicity
H= Z e,-jala,-, (6)
i,j=rl
.which was used to study the coherent quantum tunneling between two BECs in Ref. [20]. Here
we borrow it to discuss the time evolution of relative phase between two condensates.
For an initial state |¢)) with a well-defined total number of particles N, the time evolution
of relative %)h]ase is conveniently analyzed by expanding |1) onto the overcomplete set of phase
state |@) .2t

[8)n = (1/V2VNY) (a] ' +ale™'%)"|0), )

where |0) stands for the vacuum. If the system is in a given state |@)y, there exists a well-
defined relative phase ¢ between r (right) and ! (left).
Any state i) with N particles can be expanded in a set of phase states

0.57 d¢
= . 8
W=/ Fe@on, Q
where the phase amplitude ¢(¢) is given as
N
e(g)=2v2 3 (2B ittnrogn, N — ). Q
n.=0 :

The phase states are complete for large N and for —0.57 < ¢ < 0.57, namely,

N 19"y =cos™ (¢~ ¢') = V21/N 6 (¢ — ¢).
In what follows, we use the phase state |¢)» to study the time evolution of the relative phase.
The Hamiltonian (6) can be diagonalized through

a; = —cosfA +sinbB, ar =sinfA + cosdB (10)



No. 4 Time Evolution for Relative Phase of Two Bbse—Ein_stein_ Condensates 523

to be
H=EsA'A+ EpB'B, (11)

where E4 = ey cos? 8 + e, sin? § — sin§ cosfe,; and Ep = e, cos® 0 + ey sin? @ — sin 6 cos fe,;.
It is well known that the mean numbers of atoms in the right well and in the left well are
equal. For this reason, we consider the state |N/2, N/2) = |N/2), ® |N/2); as the initial state,
in other words, there are 0.5N atoms trapped in the left well and the same number in the right
well-at ¢t = 0. It is convenient to calculate the time evolution of relative phase by expanding
the initial state into coherent state

)= / 420 Beq njacamalo(®) © BN, (12)

where ¢, n/2 = §(@|N/2);, )¢ denotes the coherent state with mean number of atoms |a|? in
the left well. With this initial condition, at time t, the state [N/2, N/2) evolves to

le(t)) = / ad®Bea nj205.m 2l ® 1BH)E, (13)

where a(t) = cos8(—acosf + Bsin§) e~ (/M Eat L sin §(8 cos§ + asinf) e~ (1/MEst and B(t) =
sinf(—acos® + Bsinf)e~(/MEat 4 cosh(Bcosh + asinf)e~(i/MEst, Equation (13) shows
that |¢(t)) is a coherent state if the initial state is a coherent state. This property is well used
to study the atom-laser coupled form BEC.!1¢] The phase amplitude ¢(¢,t) reads

N
.y =22 [ dtaatp 30 (HEGTR) R e (4 - B0 (19

As shown in Refs [5], [7] and [9]-[13], the relative phase of the condensates is established by
measurements. To involve the measurement effect, we treat the measure apparatus as a bath
which consists of a set of boson modes. The Hamiltonian describing such a system is given

as(??)
H= Ze,,aa1+2ﬁwaa,+ZZthan+aa) (15)

j=rd i

where a; is the bath anmhlla.tlon operator with energy fiw;. Under the Morkov approximation,
the operators a; can be eliminated, and the Hamiltonian is reduced to

eff - Zeu 1aJ ) (16)

where eu = ejj — ihﬂy for ¢ = j, and e = ¢;; for i # j. The evolution governed by Heg
is a nonunitary one and arises because the condensate is being continuously monitored by
detector. After in detections, the state vector of the condensates will bel12]

|om) = Plam) e Hetn/h  y(zy) e Hanti /M N/2, Ny2 ), (17

where |N/2,N/2) is the initial state and {¢;,t;,...,tm} is the sequence of time intervals
between the detections. ¥(z) is introduced to denote the field operator ¥(z) = (1/v/2)(a; +
are'?) with ¢(z) = (k. — ki)z, k. and k; are the momenta of atom in the right and left wells
respectively. This theory was borrowed from the well-known theory of photon detection.??!
It is evident that the state after m detections |ppm) is different from that of Ref. [12], the
difference is only from Hg.

These results are obtained in the case of neglecting the atomic collisions. However, the
collision terms such as the last five terms in Eq. (5) play a virtual role in recent experiment
on BEC.

In order to study the effect of atomic collisions on the time evolution of the relative phase,
we rewrite the Hamiltonian in terms of J3 = af a—ata,, J; = a,ta,+a a;and N = a;‘a¢+afa,,

H = KON + 208 + 2e01J, + LUsuoN? . (18)
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Here the terms proportional to u; and u, are dropped, since they are smaller than the terms
proportional to uy. It is interesting to find that the Hamiltonian may be diagonalized by a
rotation of 6 about y axis. Mathematically, it is given that

H' = eWiHe 7% = RON + 2R,/6% + €2, J3 + 1Uouo N2, (19)

where 8 = arccos(6/1/6% + €2,). It is well known that [N, Js] = 0, thus the eigenstates and
eigenvalues of the Hamiltonian H' are then given as

a'f j=m(a1)i+m ,
¢(<})_m)(z(3)+ ;1000 Bn(6) =20+ 2mhy/6% + €f, +2Wiuaj . (20)

The eigenstates of the Hamiltonian H are then given as

|B5(0) = e™lj,m) =Y dlliym),  dl = (m|em o im), (21)
ml

l7,m) =

the corresponding eigenvalues are the same as those of H'. Following the same procedure as
stated above, we easily arrive at

o($,) = Y dom (8)dn s (6) e=(/WER"Chte(g) (22)

m',n

where c(¢) = 2¥/2[(0.5N — n)!(0.5N + n)!/N1)*/? e2ins,

In summary, we have studied the time evolution of the relative phase of two BECs. We
need to point out that there are a lot of papers devoted to this problem in literatures, but
most of them neglect the time evolution of the relative phase during every interval of detection
or consider it by using effective Hamiltonian. In this sense, the results of this paper provide
a new method for studying the interference of two BECs.
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