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Abstract

The spectrum shape of atomic radiation in the case of ideal Bose-Einstein condensate (BEC)
excited by quantized light is derived through the Wigner—Weisskopf approximation. Besides
the split and gap in the excitation spectrum, a doublet structure appears in the emission
spectrum with different widths for the non-resonant case and the same widths for the resonant
case. The survival probability is found to decrease exponentially for the non-resonant case
and with oscillation for the resonant case. A suppressed radiation also appears in the non-
resonant case. All these results can be used to detect the existence of BE condensation.

PACS numbers: 32.70, 03.65, 32.80, 42.50

I. Introduction

In last months it was reported that the Bose-Einstein condensates (BEC) of the cooled
37Rb atoms,} 7Li atoms[?l and Na atoms!®! were observed at very low temperatures, e.g.,
0.17 uK for Rb, with very high phase space density. The achievement of atomic BEC is very
important for both fundamental aspect of modern quantum theory and development of high
technology. Therefore the experimental achievement of BEC will urge people to investigate
various properties and manifestations of BEC in details from various aspects. Among the
explicit manifestations of BEC are its optical properties. In fact, optical features of atomic
gas of BEC have been theoretically studied for various cases, such as, the coherent scattering
of weak light on BEC,[¥! the existence of the gap in the excitation spectrum of polaritons in
BEC,”® the temperature-dependence of scattering,[® the line shapes of scattered light from
BEC,["8] and the nonlinear optical response of BEC atoms.[]

It was shown in Ref. [5] by solving an effective field equation that a split and a gap are
found in the excitation spectrum for a system of BEC atoms interacting with light field. This
result derived by Politzer is based on the basic field theory and the assumption that the light
field is classical. Other theoretical studies!®=%] also deal with the cases with classical probing
lights. This assumption is correct for the strong light field, but, for a weak light such as in
a cavity, the light must be quantized. The aim of this paper is to consider the influences of
quantized light on the line shape of the emitted spectrum from BEC. It is very interesting
that there exits asymmetric doublet structure in the emission spectrum, which has different
widths for the non-resonant case and the same widths for the resonant case. It is also found
that the survival probability decreases exponentially and the emission is suppressed for the

former and oscillates with decay for the later. All of these optical features can be used to
detect the existence of BE condensation.

1The project supported in part by National Natural Science Foundation of China and Fok Yin-Tung Edu-
cation Foundation
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II. Effective Hamiltonian for BEC Atoms and Light Field

Let us first consider a system of two-level bosonic atoms without trap interacting with a
light field of vacuum. By using creation and annihilation.operators by, b;k, ber and blk for
the ground and exited atoms respectively, and a; and a} for the light field, the Hamiltonian
can be written as

H=Y hwalag+ Y fepbl bge + > A(wa + €k )b ber +
q k k

hzg(Q)(b;k—qbe,kalq + bgk—qbl,kavq): ‘ (1)
kg

where ¢ = hk?/2m, g(q) = ek - d\/wy/26oh3V, V is the volume of the system, ¢ denotes the
state of a photon with certain momentum, ¢, and polarization, o, and gk and ek correspond
to the atoms with momentum k in ground and excited states respectively. For the case with
very low temperature, a macroscopic number of the bosonic atoms denoted by Ny will be
condensed on the ground state with momentum &k = 0. Then the operators by and bg for the
ground state with zero momentum are usually replaced by a c-number

blo = bgo = /Ny . 2)

After it is substituted into the Hamiltonian, the conservation of atomic number in original
Hamiltonian will be destroyed. In terms of the above quasi-particle operators as well as the
relations (2), an effective Hamiltonian is obtained as follows:

H = Z hwala, + Z heb! bor + Z B(wa + €x)bl ber +

h\/NOZ g(k)(beetly + 0! paok) + B 'a(@)bhi_ bexaly + bor_gbl Lasq], (3)
kq

where the prime is used to exclude the terms with £ = 0 from the summation and the constant
terms representing the ground-state energy of the BEC have been neglected. In the derivation
of the above Hamiltonian, we have assumed that the light field is so weak, e.g., only a single-
photon excitation is considered in the following, that it will not influence the condensation
of the atomic system. The above Hamiltonian will be applied to studying the excitation
spectrum and the dynamic behavior for the coupled system of the BEC atoms and the light
field by solving the Schrodinger equation. The Wigner-Weisskopf approximation (WWA) will
be invoked in our treatment, from which the spectrum shape and the dynamic behavior of the
BEC system interacting with light can be obtained.[1%:11]

II1. Time-Dependent Solution with WWA

We now consider an excitation of the BEC system by a photon with momentum & (in
following discussions, the index, o, is omitted for definite polarization), then the interaction
between the atoms and the light will stimulate the following sequence of excitations

Ik,0,0) - IO,k,O) d |Q)0)k_Q> d IO)Qak—q> oty (4)

where
Ik, 0,0) = a}0), 10, k,0) = 8! ]0), (5)
|k, 0, k) = albl, [0), 10,k k') = bl 0!, |0) (6)
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represent the light and atomic excitations respectively and |0) is the vacuum state. The last
term in the sequence (4) represents two-atom excitation and the dots stands for more than
two atom excitations. Generally, the exact expression can be expanded in terms of them and
the coefficients of these terms will be proportional to g, g2, g3, - - -, respectively. Since general
solutions cannot be obtained exactly, a truncation has to be made. Since the coupling between
the atoms and the light is very small in comparison with the energies of photon and atoms,
we will neglect the fourth as well as the higher order terms and only the first three terms
are preserved. Then, for one-photon excitation the solution of the Schrodinger equation can
approximately be written as

[T (1)) = exp (—iwgt) [A(t)lk,0,0)+B(t)|0,k,0)+Z’ (g, 0k-a)+--]. (D
q

The corresponding equations for the coefficients satisfy
dA t .dB(t
2O _ ot vmB1), 192 4 (op —we - e0)B(O) = o(k)NoA(D) + S aCt) ®

and
.4Cq(t)
dt
The above system of equations just represents a typical problem in quantum dissipation
theoryl11:12] and can be solved approximately by the standard method with WWA and the
solution for an initial condition with one photon and no atomic excitation is

+ (wr — wy — €x-¢)Cq(t) = 9(9) B(t) - 9)

A(t) — P+ +7k/2_iAep+t _ D- +7k/2—iAep_t

P+ —P- P+ —P-
b = LIV (s _ror, (1)

Cq(t) = —g,y(q)g(lc)\ﬂTO[p+ ip_ ( eP+t -t ) +~ Pt ], 2

py—p3 p-—p3/ (p3a—ps)(p3—p-)

where

ps = %(—77’“ +ia)+ %[(? —IA) - 4g(lc)2No]1/2, (13)
p3 = (wk —wg — €k—g) (14)

with. A = wi — W} — e (W), = wa — 8 is the renormalized atomic frequency) where the width
7% and the energy shift §; are given by

|9(“’q)| P(wq)dwq (15)

= 2mp(wy — € — Wi — €k~ 2) op =P
Yk p(wr — €k—q)lg(we — €k—g)| k g —wt + €ty

where P means principal value integration. Then the final spectrum distribution is given by

o 00)2p(we )2y o plavg) LY N0 9(0)*  _ plwga(k)’ - No - g(q)?
Pl = [1Cal0)plun)y o plog) L0 e M, - £00 Be S0 I 1)

which gives a doublet structure and the positions of the peaks are defined by the real part of
the corresponding effective photon frequencies

wE = wp = ep-g +ips, (17)
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and the widths of the peaks are their imagine parts. Besides these stationary properties, the
dynamic behavior can be derived from the solution, for example, the survival probability is

given by |(k,0,0¥(t))* = |A()I*.

IV. Line Shapes in Non-Resonance Cases

In the following discussions we consider two limit cases.

The first case is far from resonance. Since the frequencies of the photon and the atoms are
of the order of 1012 ~ 1014 s=!, the number of the BEC atoms, Ny, is now less than 10% and
the interaction between the atom and the light with dipole approximation is g & 103 s™1, we
have the limit of effective weak interaction g(k) - v/No < |A7 + 7; /2|, which leads to

Y Nog(k)?
i~ 2 7,%/4+A2’ (18)
—3’25 +iA,
respectively. Then the spectral distribution is

plwg)g(k)® - No - g(g)°
Plwy) = 19
S S I v 7V Pt e 77 B

with (k)2 o

No-g

;= No-g(k)® _ Bk 20
Yk 7k7£/4+A2, Uk m ( )

The two peaks in the spectral distribution represent two atomic dressed states, one of which is
approximately light excitation with width, 7, centered in wg —¢&x -4 nearby the light frequency
wp, and the other is the atomic excitation with decay width, v;, in the position w} +¢4 — viq,
i.e., the renormalized atomic transition frequency shifted by Doppler effect and the photon
recoil.

Spectral distribution P(wg)
w
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Fig. 1. The asymmetric doublet spectrum shape of the BEC atoms in the non-resonance
case. The parameters and the units are given in the following: the atomic energy wq is
selected as the origin, gv/No = 10 and wy = 20 with a unit of vx = 1 and an arbitrary unit
for spectral strength.

Let us estimate numerically some of the above results. The natural width of the atom is
about 106 s~1 ie., 74 ~ 10® s~!. With dipole approximation, g\/Np is about 103 to 108 s~!
for the condensed atoms from one to 103. Therefore, even for the resonant case with small
number of the condensed atoms, we may also have g/Ny < 74, then the above approximation
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is also correct. In these cases, which means that ¥} < y&, namely, the width of the photon is
larger suppressed by the atoms in BEC in comparison with the width of atomic decay in free
space. From the above results, we find that an asymmetric doublet structure will appear on
the emitted spectrum for the non-resonance case, which is shown in Fig. 1. Now we consider
the dynamical behavior of the photon excitation. Substituting the approximation (18) into
solution (10), the first term of A(t) is approximately equal to one and the second term will be
zero, then the survival probability of the incident photon will be obtained

I{k, 0, 0] (2))[* = |A(t)[* = exp (~7it) (21)

If the BEC happens in a superconducting cavity (high @ cavity) or the density of the condensed
atoms is very high, the interaction between the atoms and the photon will be far greater than
the width of the atoms, gv/No <« &, which leads to another limit and is discussed in the
following section.

V. Line Shapes in Resonance Cases

Next we consider the second case, i.e., the case of resonance, A = wy —w/, — € = 0. Since
the number of the condensed atoms Ny 3> 1, it is possible that g(k)/No > v+ according to
the above estimation of orders and then we have

e %(-%" + 2ig(k)\/170), (22)

that is y "
wE x wp — ex_g £ g(k)V/No — izk =Es - iz". (23)
In this case, the spectral distribution becomes
2. AL 2
P(wq) = P(“’q)g(k) No g(q) (24)

[(we — E4)2 +77/4] - [(wg — E)* + /4]

From this result we see that the distance of split in the spectral line is about 2g(k)\/17(;
proportional to the square root of the number of the condensed atoms. However, observing
such split experimentally requires that g(k)v/Np >> ¥k, namely, a high resolution spectroscopic
instrument is needed for the detection of atomic BEC through this kind of spectral property. -
This fact can be used to detect the appearance of the atomic BEC. This symmetric spectral
structure is illustrated in Fig. 2.
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Fig. 2. The symmetric doublet spectrum shape of the BEC atoms in the resonance case.
The parameters are the same as in Fig. 1 except wx = 0.
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The dynamic behavior can be obtained from the evolution solutions of A(t) and B(t) by
substituting Eq. (22) into it, which exhibits a decay process with the oscillation structure

Ik, 0,012 (2))]* = |A@)[2 = e=™!/2 cos*(g(k)/Not), (25)
(0, &, 012 ()[* = |B(t)[* = e="*"/2sin*(g(k)+/Not) . (26)

These denote that the survival probability decays with oscillation and the width is equal to a
half of that of atomic transition, but the oscillation frequency is proportional to square root
of the number of the condensed atoms.

For the spontaneous emission of an excited atom on BEC, a similar doublet structure of the
spectrum can be derived in the same procedure as the above by considering an initial condition
of the atom in the excited state and no photon in BEC. The conclusion here is similar to that
of the spontaneous emission of a single atom in a single-mode quantized cavity,['? in which
the vacuum Rabi splitting of the energy level of an atom into two closely spaced sublevels
proportional to g(k) was obtained by Kimble and his colleagues.['3 But in the present case,
for atomic BEC the split is much easier to be observed since the split spacing is proportional
to g(k)v/No.

Finally let us discuss little bit about the case with interatomic interactions. The strength
of the effective interaction between the atoms is about ¢’ No/h < 1072 s7! (here ¢’ = 4xl/m is
proportional to the scattering length, I, of the S-wave for the low-energy ground-ground state
scattering) and then the energy for the quasi-particle (resulting from the interatomic interac-
tion) < fik?/2m & g(k)v/Nop.[45] Therefore the energies of quasi-particle can be neglected
apparently. However, because the situations in the recent experiments of atomic BEC!—3
enjoy the weak interatomic interaction, our discussions in the present paper is only an ideal
approach in comparison with these real experiments. A more detailed discussion about the
case with interatomic interaction will be given in a separate paper. )
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